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Introduction: The manuscript presents an experimental investigation into
the linguistic and motor control mechanisms underlying grammatical marker
production in Austrian Sign Language (ÖGS). It focuses on the cross-linguistically
attested phonological parameter of hand articulator tension and its role as a
grammatical marker for adjective intensification.
Method: By combining advanced methods, including motion capture and
electromyography (EMG), the study allows for a multimodal analysis of
grammatical marker production in ÖGS. The experimental data were recorded
from six proficient ÖGS signers, each producing fifteen adjectives (based on
a set varied in phonological parameters of root forms) in intensified and non-
intensified forms. Motion capture data were analyzed in terms of the kinematics
of hand and arm movements [velocity, acceleration, as well their temporal
distribution such as time to peak deceleration and spatiotemporal index (STI)];
EMG data of muscle activation in forearm and upper-arm flexor and extensor
muscles were analyzed both separately and in active combination (using mean
and median band-specific EMG and co-contraction indices as measures).
Results: Results revealed significant di�erences between intensified and non-
intensified forms, with intensified adjectives showing higher co-contraction
indices in forearm and upper-arm muscles and later deceleration patterns
within signs. These findings demonstrate that articulator tension is a quantifiable
grammaticalmarker of intensification, reflected in distinct biomechanical control
patterns.
Discussion: This study advances understanding of the neural and
motor correlates of sign language production by operationalizing the
biophysical basis of grammatical markers. It highlights the linguistic
control of biomechanical articulator features, advancing models of
language production. Individual variations observed in intensified adjective
production suggest further avenues for research into signing styles,
language proficiency, and language acquisition. In addition to its linguistic
contributions, the manuscript proposes a novel methodological approach
for studying variables at the intersection of linguistics, neuroscience,
and kinesiology. This work o�ers practical applications for sign language
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teaching, language acquisition research, and cross-modal investigations into
human language systems, contributing to a broader understanding of linguistic
communication as a multimodal phenomenon.

KEYWORDS

Austrian Sign Language, adjectives, intensification, kinematics, muscle activation,

motion capture, electromyography

1 Introduction

The question regarding the relationship between grammatical

features and their expression in articulatory motion in sign

languages has long been of interest to linguists and cognitive

scientists (Klima and Bellugi, 1979; Boutet and Garcia, 2009;

Tyrone et al., 2010), as it lies at the intersection of language,

cognition, and biomechanics. Understanding the cognitive

mechanisms underlying sign language production requires

accounting for the modality-specific interaction between motor

control and linguistic processing (Malaia and Wilbur, 2019). In

this work, we use a multimodal analysis (motion capture combined

with electromyography/EMG) to examine a well-established

grammatical marker in sign languages—adjective intensification—

in Austrian Sign Language (ÖGS). Our focus is on the linguistic

parameter of “tension,” as expressed in hand motion and neural

control (as inferred from EMG).

Although the linguistic relevance of the movement of manual

and nonmanual sign articulators, along with the dynamic

properties of these modulations, has been noted since the early

days of linguistic research on sign languages (e.g., Klima and

Bellugi, 1979; Wilbur, 1979, 1987, 1994, 1999; Wilbur and Schick,

1987), less is known about (a) which kinematic variables (e.g.,

velocity, acceleration, or duration) are used to indicate specific

grammatical markings and (b) which arm muscles are involved

in executing the movement modulations that express linguistically

relevant distinctions. In this experiment, we combined motion

capture and EMG analysis to operationalize the linguistic marker

of tension and investigate the linguistic control of motion

in ÖGS.

To put the question in perspective, it is useful to revisit the

origin of the term “tense” in the sign language literature. In

both spoken and signed languages, tension has been recognized

as a perceptual correlate of linguistic function, particularly

in marking grammatical, prosodic, or affective contrasts. The

term initially referred to a perceptual-level phenomenon, as

there were no techniques available for quantifying production.

In spoken language, this may manifest as changes in vocal

fold tension (e.g., “creaky” phonation). Although frequently

referenced descriptively in linguistics and speech pathology

literature, tension has remained a perceptual category: reliably

noted by native users and linguists, but not formally quantified

or grounded in physiological mechanisms. In spoken languages,

it has been observed that in addition to increasing tension

in the vocal channel, methods of increasing tension may

include the addition of beat gestures that may replace an

intensifier in a sentence (cf. Khatin-Zadeh et al., 2023). In

sign language research, Klima and Bellugi (1979) used the term

to describe various sign “modulations,” including: (1) adding

stress 1; (2) rapid, tense movement for intensification; (3) a

sharp (rapid, tense) movement incompatible with repetition; (4)

a single, tense rapid movement for “dark blue” derived from

“blue;” (5) successive repetitions with increasing tension and

sharper movements for “redder and redder;” (6) a thrustlike

motion combining brief tension (in forearm muscles) with a

lax, soft handshape termed the “thrust” modulation for the

“susceptative aspect;” and (7) a tiny, tense, uneven movement

made as rapidly as possible and iterated, termed the “tremolo”

modulation for the “incessant aspect.” Sorting through these

descriptions is essential for teaching sign learners the correct

muscle actions needed to convey accurate messages. From a

linguistic perspective, we can identify the following standard

functions:

1. Prosodic stress marking (see Wilbur, 2022)

2. Adjectival intensification (cold - very cold)

3. Adjectival derivation (blue - dark blue)

4. Augmentative reduplication (redder and redder)

5. Predicate adjective aspectual modification (“thrust” for

“susceptative”)

6. Verb aspectual modification (“tremolo” for “incessant”)

Unlike non-communicative motion (e.g., a reaching

movement), which typically follows a bell-shaped velocity

profile with gradual acceleration to a mid-movement peak and

symmetric deceleration to rest, sign language production is

modulated by linguistic constraints (Blumenthal-Dramé and

Malaia, 2019). Sign language motion is driven primarily by

the need to encode grammatical and semantic content across

multiple scales of motion, as opposed to end-point attainment,

as reaching motion may be. Prior research has shown that sign

language motion has higher information density than everyday

movement, as evidenced by greater fractal complexity (Malaia

et al., 2018; Borneman et al., 2018). Notably, the visual form

of verbs in, for example, ASL systematically reflects argument

structure distinctions (such as transitivity) even for native viewers,

indicating that sign language encodes grammatical structure in

motion in a perceivable and learnable way (Bradley et al., 2022;

Bradley and Wilbur, 2023). Experimental data from EMG and

motion capture further confirm that sign language motion exhibits

distinct timing and muscular activation profiles depending on

linguistic features such as differences in verb type (Krebs et al.,

2023).

1 which they describe generally as tension of the muscles and rapid

movement but do not distinguish from other uses of tension and speed
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In this study, we focus on adjectival intensification as the test

case for the operationalization of tension as a grammatical marker.

In general, the intensification of adjectives in sign languages is

expressed through the modification of manual and non-manual

components.2 For American Sign Language (ASL), Wilbur et al.

(2012) report that intensified adjectives are produced by an

increased tension of the manual and facial articulators. The manual

movement is modified by adding a path movement (if none)

and/or enlarging the movement trajectory. They also observe a

delayed release of the onset of sign movement. Many of the

intensified adjectives produced with such a delayed release show

a hold of the hands in space prior to movement onset. If the

sign involves a change in mouth position, this occurs with the

onset of hand movement. The non-manual modifications marking

adjectival intensification involve a frown on the face and a head tilt

(Wilbur et al., 2012). Schlenker and Lamberton (2021) also report

that a brow raise can be used to intensify adjectives in ASL.

In ÖGS, adjectival intensification is marked by modulating

the manual movement such that intensified adjectives are

longer in duration than non-intensified signs. Adjectives may

also be modulated in space (e.g., larger or smaller sign

movement) to indicate intensification. Additionally, specific non-

manual markings co-occurring with adjective signs may indicate

intensification. The non-manuals observed in the context of

adjectival intensification in ÖGS include raised or furrowed

eyebrows, wide-open or squinted eyes, various forms of mouth

gestures, enhanced mouthing, and head nods (Krebs and Fenkart,

2024).

This study aims to fill that gap in quantification of tension

as a marker by operationalizing it as co-contraction of agonist

and antagonist muscles: a well-documented biomechanical strategy

used to increase joint stiffness and movement precision without

necessarily changing the outward form of the movement (Gribble

et al., 2003; Enoka and Duchateau, 2015). Co-contraction allows

signers tomodulate the internal force of a sign while maintaining its

shape and trajectory, effectively layering grammatical information

onto a given lexical form. This is particularly salient in the case

of adjective intensification, where the same sign can be modified

to convey grammatical intensification through increased muscular

engagement rather than additional motion.

Experimental methods, such as motion capture and

electromyography (EMG), provide a valuable framework for

analysis of sign language production, as they allow us to quantify

both articulatory dynamics (which are also relevant to perception)

and motor control that governs the production of grammatical

markers. For example, in a previous report, we presented motion

capture data from four Deaf ÖGS signers producing pairs of

adjectives (intensified vs. non-intensified; e.g., cold vs. very cold),

showing that intensified adjectives are longer in duration compared

to non-intensified forms (Krebs et al., 2024a). An analysis of the

phonological structure of the tested adjective signs suggested that

the longer duration in intensified adjectives appears to be related to

the size of the sign and the velocity of hand motion, but not to sign

repetition. The data also revealed individual differences among the

2 Although there is a sign with the meaning “very” in ÖGS, this sign is

usually not used to indicate the intensification of adjectives in ÖGS (a similar

observation has been reported in ASL, Wilbur et al., 2012).

signers, which might be interpreted as personal signing styles [cf.

Bigand et al., 2020; see also Xavier, 2013, which describes intra-

and inter-subject variation in expressing meaning intensification

through the doubling of the number of hands in Brazilian Sign

Language (Libras)]. The present study expands on interdisciplinary

work at the intersection of linguistics and kinesiology by examining

additional kinematic variables corresponding to the grammatical

marking of adjective intensification and presenting corresponding

EMG data. While previous EMG studies on sign language

production have primarily used this method for developing

automatic sign language recognition or translation systems (e.g.,

Zhuang et al., 2017; Savur and Sahin, 2016; Galea and Smeaton,

2019; Tateno et al., 2020; Gu et al., 2022; for a review, see Ben

Haj Amor et al., 2023), our research employs EMG combined with

motion capture to investigate the grammatical structure of ÖGS

(as previously shown by Krebs et al., 2023). To the extent that

a sign viewer is expected to perceive these distinctions visually

for meaningful purposes, we hypothesize that different muscle

activations, as reflected in the EMG recordings, will help us

understand how these distinct messages are produced.

We use surface EMG to operationalize the linguistic control

of hand motor units in sign language in the context of muscle

activation. Our previous research on ÖGS has shown that telic

verb signs (verbs with a defined endpoint) exhibit higher muscular

activity in upper arm muscles compared to atelic verbs (verbs

without a defined endpoint), demonstrating that different types of

movements in sign language require distinct patterns of muscle

activation (Krebs et al., 2023). The analysis of motor activation

in sign language differs somewhat from the analysis of motor

control in sports, as muscles contain different types of motor units

(slow, fast fatigue-resistant, and fast fatigable), which are recruited

depending on the task. In sign language, proficient movement is

fast (Borneman et al., 2018; Bosworth et al., 2019), finely spatially

coordinated (Wilbur, 1987), but does not involve strong muscle

contractions. Since the level of muscle activation (measured by

EMG) is related to the force required to produce movement (Enoka

and Duchateau, 2015), our analysis focuses on EMG signals in the

lower frequency range, which have been shown to be more sensitive

to contractions below 30% ofmaximal contraction (Roman-Liu and

Konarska, 2009).

Importantly, while such tension is visually perceptible

to fluent signers, our study is focused on sign language

production: on how signers encode grammatical distinctions

through neuromuscular control. In the overall communication

chain, it is the signer’s responsibility to provide linguistic

cues and the perceiver’s task to interpret them. Although we

do not assess perception directly here, the production-side

evidence presented in this study offers strong grounding for

future research on how observers recognize and interpret such

grammatical cues.

2 Material and methods

2.1 Participants

Six Deaf signers (4 F) were included in the analysis (Age

M = 55, SD = 9, range 40–64). All participants were born

deaf or lost their hearing early in life (4 participants were

Frontiers in Language Sciences 03 frontiersin.org

https://doi.org/10.3389/flang.2025.1632226
https://www.frontiersin.org/journals/language-sciences
https://www.frontiersin.org


Krebs et al. 10.3389/flang.2025.1632226

born deaf, one lost her hearing between 0–3 years and another

signer lost her hearing around 4 years of age). All of the

participants who took part in the study were fluent ÖGS signers,

used ÖGS as their first language in daily life, are members

of the Deaf community, are trained ÖGS instructors, and

have been associated with our research for many years. Five

participants self-reported as right-handed; one self-reported as

left-handed.

2.2 Materials and design

Each participant produced a list of 102 signs. The critical

stimuli comprised 15 adjectives in non-intensified form (e.g.

sweet), and the same 15 adjectives in intensified form (e.g.,

very sweet). The tested adjectives are: HOT, COLD, BIG, SMALL,

OLD, YOUNG, RICH, POOR, FAR, NEAR, SHORT, LONG, SWEET,

SOUR, and THIN. The additional signs functioned as filler

material including verbs (36 telic such as ARRIVE and 36 atelic

verb such as WRITE). The stimuli were presented in a power

point presentation, whereby a written gloss of each sign was

presented on a separate slide. The stimuli were elicited in pseudo-

randomized order, such that no sign type appeared more than

two times in a row. To eliminate potential order effects, every

other participant was presented with the list in the reversed

order. One participant returned to repeat all 102 signs one week

later (also in reversed order) to estimate reproducibility of any

observed differences.

2.3 Data collection and analysis

2.3.1 3D-motion capture
Body kinematics of the trunk, head, and upper extremities

including hands were recorded using a custom-built marker set

(see Figure 1), and a 12-camera infrared motion capture system

(Qualisys AB, Göteborg, Sweden) with a sampling frequency of

300 Hz. A 2D-Video (150 Hz, Qualisys AB, Göteborg, Sweden)

of the participant’s frontal plane was recorded simultaneously, and

time-locked to motion capture data. Marker trajectories were low-

pass filtered using a second-order, zero-lag Butterworth filter with

a cutoff frequency of 25 Hz. Segment positions and orientations

were determined using an inverse kinematics algorithm (V3D; C-

Motion, Rockville, MD, USA). Joint centers of the wrist, elbow, and

shoulder were defined as virtual landmarks at 50 percent of the

line between the lateral and medial joint markers. The velocity of

the wrist joint center (vertical component) of the dominant hand

was used to define the onset (v>0.1 m/s) and offset (v<0.1 m/s) of

hand movement. The dominant hand in sign language production

is the one that is used for signing one-handed signs. In two-

handed asymmetric signs the dominant hand executes the primary

movement and the second (non-dominant) hand functions as a

place of articulation. For statistical analysis, each sign was evaluated

individually, and the dominant hand data for each signer and sign

were used.

All signers started their hand/arm movement from the same

resting position with the arms at the sides of the body. The start

and end of the sign phase was visually set by a skilled signer

FIGURE 1

Motion capture marker set.
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FIGURE 2

Example motion capture processing steps performed for one sign
(“sehr weit”) and participant. Sign start and end manually labeled as
detailed in methods. Abbreviations: m, meters; s, seconds.

using 2D video recording time-aligned tomotion capture data. Sign

onset was defined as the video frame when the target handshape

reached the target location from where the sign movement started

(Wilbur and Malaia, 2008). The sign offset was defined as the

video frame when the handshape or the hand orientation of

the sign changed or when the hand moved away from the

final position. The complete sign was divided into 3 phases: the

preparation phase (hand movement onset–start sign), the sign

phase (start sign–end sign), and the down phase (end sign—hand

movement offset). The present analysis focused exclusively on the

sign phase.

The wrist position data were exported from V3D to

MATLAB (2024b, The Mathworks Inc., Natick, MA). After

trimming to sign phase, sign duration was extracted and then

the position data were time-normalized to 100 points using

spline interpolation. The first and second derivatives were

calculated using MATLAB function “gradient” to obtain velocity

and acceleration, respectively (see Figure 2). Velocity data were

transformed using the Euclidean norm to obtain absolute speed,

from which the median and peak speed (m/s) were labeled.

Resultant acceleration was also calculated, from which peak

deceleration (m/s2) and the time to peak deceleration (0 −

100% of sign) were extracted. Movement entropy was calculated

from the speed vector using the function “SampEn” with a

0.2 tolerance (Lee, 2025). Finally, a spatiotemporal index (STI;

velocity and acceleration) was calculated to estimate movement

variability by calculating the standard deviation (SD) at every other

time point (50 SDs) and then summing all SDs into a scalar

value (Howell et al., 2009).

2.3.2 Electromyography
In biomechanics and kinesiology, surface EMG is frequently

used as a non-invasive technique to measure electric signal on

the surface of the muscle. It is particularly valuable for identifying

the start and end of muscle activation, as well as the relative

magnitude of contractions, including intermuscular coordination

patterns (Schwameder and Dengg, 2021).

The EMG analysis was performed using EMG sensors

(Ultium(TM) EMG, Noraxon, Scottsdale, AZ, USA) connected to

surface electrodes (Ambu blue, 30 × 22 mm, Ag/AgCl). Data were

collected simultaneously with the kinematic analysis through the

Qualisys Track Manager (Qualisys AB, Göteborg, Sweden). EMG

data were collected at 2,000 Hz. EMG signals were recorded from

four arm muscles: m. extensor digitorum, m. flexor digitorum,

m. biceps brachii and m. triceps brachii of the dominant arm.

EMG electrodes were placed on the participant’s skin, which was

prepared beforehand (by shaving and disinfecting the skin to

remove skin scales, hair, and skin oil to get the best possible

EMG signal) at specific anatomical places (e.g., thickest part of the

muscle of interest) according to the recommendations of SENIAM

(http://www.seniam.org/).

Participants performed maximum voluntary contraction

(MVC) procedures according to best practices (Burden, 2010)

by contracting against a fixed object in standardized positions

(wrist 0, elbow 90 degrees flexion). They were given strong

verbal encouragement to push maximally for three seconds.

MVC estimation was performed as it allows for more accurate

comparison of activation levels between adjacent muscles.

EMG data were post processed using MATLAB according

to best practice recommendations (Muceli and Merletti, 2024).

Raw EMG data were high-pass filtered at 10 Hz, low-pass filtered

at 300Hz then notch filtered at 50 Hz to remove power line

intereference. Next it was rectified and smoothed using root mean

square with a moving window of 100 data points (0.05 s). MVC was

extracted from the highest 1s average in accordance with current

best practices (Burden, 2010). Sign phase EMG was trimmed and

normalized to MVC.

A co-contraction index was calculated to approximate the

degree of activation between agonist and antagonist muscles in the

dominant hand (e.g., upper arm biceps and triceps) (Li et al., 2021).

The formula of Rudolph et al. (2000) was adapted to consider that

certain sign expressions had alternating agonist muscles within the

sign. Thus, at each sample point the following formula was used:

(emgl/emgh) ∗ (emgl + emgh) (1)

Where emgl is the EMG signal with a lower amplitude and emgh
higher. The mean value across the sign was retained as a discrete

representation of co-contraction for each sign.

Next, the power spectral density estimate was obtained from

the sign phase raw EMG signals using the function “periodogram”.

Then, the mean and median frequency were extracted and the

power in five distinct frequency bands was estimated (6–15, 16–

25, 26–60, 61–75, and 76–140 Hz). This approach was selected as

Roman-Liu and Konarska (2009) demonstrated its sensitivity and

specificity to comparing different muscle contractions below 30%

maximal contraction.
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2.4 Statistical analysis

All participants in the study were proficient and fluent signers

of Austrian Sign Language (ÖGS). As language competence is an

individual, and not group-level trait, each signer’s data represent

a valid realization of linguistic production, rather than a noisy

approximation of a shared norm. Therefore, the focus of the

analysis is on the systematic patterns within and across individual

signers. This approach aligns with established practices in linguistic

and psycholinguistic research (Davis et al., 2014).

Given the known distributional properties of EMG and

motion capture data (Borneman et al., 2018), we employed non-

parametric statistical tests (Wilcoxon signed-rank tests) for within-

subject comparisons. Non-parametric methods offer a more robust

analysis framework under these conditions and are widely adopted

in neuromuscular and kinematic research for this reason.

Data are presented as mean ± standard deviation unless

otherwise stated. Kinematic and EMG variables for all adjective

pairs (intensified and non-intensified) were compared using

paired non-parametric Wilcoxon sign-rank tests. Cohen’s d effect

sizes with confidence intervals were calculated using MATLAB’s

“meanEffectSize” function with “robust” and “paired” settings,

which utilizes 20% trimmed means, pooled 20% Winsorized

variance, and bootstrapped confidence intervals. Alpha was set at

α = 0.05 (Algina et al., 2005).

3 Results

A total of 90 adjective pairs were collected, from which three

were excluded due tomissing data. Table 1 contains descriptive data

for all participants, as well as results of statistical comparisons. An

example comparison for one adjective pair is displayed in Figure 3.

Intensified adjectives had an average 0.21 s longer sign duration

versus non-intensified pairs (p < 0.001, d = 0.38 [0.22,0.54]). The

time to peak deceleration occurred about 2% later in the intensified

forms (p= 0.01, d = 0.43 [0.18,0.66]).

Forearm and upper arm co-contraction were higher in

intensified adjective forms (p= 0.01, d = 0.26 [0.10 , 0.47] and p <

0.001, d = 0.30 [0.15, 0.55], respectively) (see Figure 4). Although

mean and median power frequencies had negligible differences (p

= 0.07–0.92), there was greatly elevated activity in the intensified

forms within the wrist extensors (d = 0.27–0.36), four of five bands

in the biceps (d = 0.18–0.33), and four of five in the triceps (d =

0.51–0.67) (see Figure 5).

4 Discussion

The present study operationalizes the biophysical bases of

grammatical marking of intensified adjectives in ÖGS, and, more

broadly, offers a possible measure for the parameter of tension in

sign language research. The results demonstrate clear differences

in both kinematics and muscle activity between intensified and

non-intensified adjective forms in ÖGS. Specifically, the intensified

adjectives were characterized by a significantly later time to

peak deceleration than non-intensified adjectives with the same

root; differences in peak deceleration magnitude did not reach

statistical significance. Electromyographic (EMG) data identified

significantly increased co-contraction indices in both forearm

and upper arm muscles during intensified forms, allowing for

greater precision in 3D motion control, with muscular co-

contraction (i.e., increased articulatory tension) as the likely source

of the observed kinematic differences (cf. Figure 4). Notably,
wrist extensor and upper arm muscle activity were increased

across multiple frequency bands in intensified adjectives (Figure 5),
also supporting the hypothesis that tension is a key marker of

grammatical intensification. The findings highlight the relationship
between biomechanical and linguistic control of grammatical
intensification marker in sign language production, offering first
approaches to operationalizing tension as a grammatical and
perceptual cue.

The repeated trials of one Deaf signer were analyzed prior

to group analysis to qualify the impact of these findings. In this

analysis, all kinematic variables were seen to have a smallest

worthwhile change (0.2*coefficient of variation; Hopkins, 2000)

of <5%, while the smallest worthwhile change in EMG measures

ranged between 5%–20%. Rather, this single signer exhibited a

high degree of consistency in producing these signs. This indicates

that differences greater than these values in the present analysis

are likely real, not by chance, and would be observed in repeated

observations with other signers.

While there were some differences in deceleration

characteristics and spatiotemporal variability, these were likely

driven by the larger and more consistent differences in muscle

activation: co-contraction (d = 0.26–0.30), forearm extensor (d

TABLE 1 Kinematic measures comparing non-intensified and intensified adjectives between all participants.

Kinematic Non-intensified Intensified p-value Median di�. Cohen’s d CI

Median speed (m/s) 0.00050± 0.00041 0.00052± 0.00040 0.60 0.0000069 0.02 [–0.13, 0.16]

Peak speed (m/s) 0.0021± 0.0010 0.0024± 0.0014 0.75 0.00016 0.15 [–0.06, 0.36]

Duration (s) 1.05± 0.39 1.25± 0.51 <0.001 0.21 0.38 [0.22, 0.54]

Sample entropy 0.09± 0.08 0.08± 0.08 0.17 –0.010 0.01 [–0.22, 0.21]

Peak decel. (m/s2) –0.000075± 0.000048 –0.000094± 0.000077 0.34 –0.0000070 –0.23 [–0.42, –0.06]

Time to peak decel. (% sign) 7.95± 7.76 13.14± 13.21 0.013 1.95 0.43 [0.18, 0.66]

STI (speed) 0.00038± 0.00025 0.00035± 0.00025 0.34 –0.000056 –0.14 [–0.39, 0.09]

STI (accel.) 0.000029± 0.000032 0.000026± 0.000025 0.34 0.0000013 –0.06 [–0.32, 0.18]

decel., deceleration; STI, spatiotemporal index; diff., difference; CI, confidence interval.
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FIGURE 3

Example kinematic and EMG data for one adjective pair “weit” (far) and “sehr weit” (very far) in one participant. Sign time displayed from manual start
and end labels as detailed in methods. Relative activation indicates percentage of maximal voluntary contraction. Co-contraction index units are
arbitrary (au). m/s, meters per second.

= 0.27–0.36), and both upper arm muscles’ activity were greater

(d = 0.18–0.67) in intensified versus non-intensified forms. Wrist

flexion and extension results from coordinated activity of the

flexor and extensor muscle masses located on the medial and

lateral portions of the forearm, respectively. Similarly, elbow

movement is primarily controlled by the biceps and triceps.

Co-contraction indices such as those investigated by Li et al.

(2021) are generally used in kinesiology to estimate joint stiffness

in gait and pathologies; however, it also provides a unique basis

for movement analysis in manual communication. This is, to our

knowledge, the first report using this analytical approach in sign

language. Co-contraction may be increased to convey specific

elements of intensification such as “tension.” This is corroborated

by the known biomechanical consequences of joint stiffness.

Alternatively, it could be a reflection of fine motor control; with

greater voluntary muscle action, larger motor units in the muscle

produce more force that must be counteracted by antagonist

muscle groups to produce the target movement accurately. Future

work should consider such analyses during natural conversation or

to examine learning processes in sign languages. Further variability

in articulatory modulation may also arise as a result of individual

differences in age of sign language acquisition, which have been

shown to have life-long effects on linguistic processing (Krebs

et al., 2021).

4.1 Limitations

As in our previous report, we observed individual differences

between signers which might be due to differences in signing

style (Krebs et al., 2024a; Bigand et al., 2020; Xavier, 2013). For

example, although sign duration exhibited consistent differences

between intensified and non-intensified forms (p < 0.001, median

difference = 0.19s, d = 0.39), within-participant differences ranged

from 0.09–0.59s (d = 0.37–0.83). Hence some signers might use

timing more than others to express intensification. We observed

a similar pattern with forearm co-contraction, as effect sizes ranged

from d = –0.27–0.93 within participants. It could be the case that

(some) adjectival signs are intensified by cues other than differences

in kinematics and manual muscle activation. The intensified

adjectives are accompanied by specific non-manual markings

which are absent in the non-intensified adjective form. The non-

manuals observed in the context of adjective intensification in ÖGS

are raised or furrowed eye brows, wide open or squinted eyes,

different forms of mouth gesture, an enhanced mouthing or a head

nod (Krebs and Fenkart, 2024). Thus, it might be that some signers

may intensify some adjectives only by non-manual markings. The

non-manual marking alone may convey the linguistic information

about intensification and thus may be a sufficient grammatical cue

for the perceiving addressee.

The present study focused exclusively on manual articulators.

Non-manual signals, such as head motion and non-manual

articulator contribution, while important (Krebs et al., 2024b;

Malaia et al., 2018), are beyond the scope of this work and were

not considered in our analysis.

5 Conclusion

While we quantify tension as a measurable correlate of

grammatical adjective intensification in manual articulation

in ÖGS, our objective is not to reduce signed language

communication to overt motor mappings or embodied gestures.

Instead, our approach reflects the view of language as a co-evolved

system that leverages the brain’s capacity for multiscale information

extraction and structured symbolic representation (Malaia et al.,

2023). Embodiment may serve as a useful metaphor at the

perceptual level, but it is not explanatory at the computational
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FIGURE 4

Gardner-Altman plots of the di�erences in forearm and upper arm co-contraction between intensified and non-intensified adjective pairs. Each line
represents one participant/adjective pair for the dominant signing arm among all participants. Orange lines represent adjective pairs with greater
co-contraction in the intensified form, while blue lines the opposite. a.u., arbitrary units.

FIGURE 5

Power spectral density (PSD) of selected muscles and frequency bands for intensified and non-intensified adjectives between all participants.
Significant di�erences between paired data at each band are marked with *.
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level of language architecture (cf. Borneman et al., 2018). The

communicative precision observed in sign language arises from

an interaction between articulator control and linguistic structure,

not just from general motor expressiveness (Malaia et al., 2018).

Our goal in modeling articulator dynamics was to characterize

how language systems encode high-density information across

temporal and spatial scales. While sequential morphemes added

to lexical items do exist in sign languages, a major distinction

between signed and spoken languages is the possibility of

simultaneous production of multiple levels of morphemic

information—in this case, the adjective and its grammatical

intensifier morpheme - in signed language. Quantification of

linguistic tension as a biomechanial phenomenon—co-contraction

with precise timing characteristics of MU control—is one of

the spatiotemporal windows into the algorithms underpinning

linguistic communication in the visual modality, but certainly not

its limit.

In the EMGdomain, our results suggest that there is not a single

frequency band that reliably captures articulatory tension across all

signs, because they vary in articulation and reliance on the specific

muscles. Instead, we observed variation across multiple low- to

mid-frequency bands, with specific patterns differing between

muscle groups (e.g., biceps vs. triceps) and signs. In proficient

signers, this appears to reflect coordinated interaction between

frequency bands—a characteristic of multi-scale motor control.

Skilled sign language production relies on precise modulation of

tension, requiring simultaneous recruitment of different motor

units with varying firing properties. As a result, motor control is

distributed across MU types, particularly in lower frequency bands.

Multimodal research in this domain is critical for advancing

sign language linguistics, as it operationalizes expression of

grammatical markers in articulator motion, and allows for further

cross-linguistic exploration into universal vs. language-specific

patterns. By investigating the linguistic motor biomarkers of

“tension,” this work contributes to better understanding of how

grammatical markers are physically realized in sign languages, and

supporting interdisciplinary work at the intersection of linguistics,

neuroscience, and kinesiology. From the perspective of kinesiology,

this work adds a linguistic control angle to the analysis of motor

production. Multimodal experimental analysis of this type provides

a testing ground for theoretical models in linguistics, and generates

data for advancing computational research into sign language

segmentation and recognition, including assistive communication

systems (Tyrone, 2015; Kurtoğlu et al., 2021).
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