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Immune dysregulation and lipid
interactions in systemic lupus
erythematosus-associated
atherosclerosis: mechanisms and
pathogenesis

Philippe Bilodeau and Konstantinos Tselios*

Department of Medicine, McMaster Lupus Clinic, Division of Rheumatology, McMaster University,

Hamilton, Ontario, ON, Canada

Atherosclerosis is increasingly recognized as a chronic inflammatory process,

involving intricate interactions among the endothelium, lipids, coagulation

system, and components of both the innate and adaptive immune systems. In

the context of systemic lupus erythematosus (SLE), these interactions are even

further disrupted, contributing to accelerated atherosclerosis. This narrative

review explores how immune system dysregulation plays a central role in the

development of atherosclerosis in SLE patients, where cardiovascular disease

remains the leading cause of mortality despite recent advancements. We aim

to present a model based on current scientific evidence that compares the

immune mechanisms driving atherosclerosis in the general population with

the accelerated form observed in SLE patients, highlighting the key

immunological distinctions that set SLE-associated atherosclerosis apart.

Particular emphasis was given to the interactions between interferon, lipid

alterations and adaptive immunity as mediators of atherogenesis. This model

may help identify gaps in our understanding and generate new hypotheses for

potential therapeutic targets to modulate immune responses within

atherosclerotic plaques.
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Introduction

Since the description of the bimodal pattern of mortality in systemic lupus

erythematosus (SLE) in 1976 (1), atherosclerosis remains a major focus of interest in

systemic autoimmunity. Large epidemiological studies in the 1990s and 2000s

demonstrated that SLE patients have a substantially increased risk for cardiovascular

events (CVEs) compared to non-lupus individuals (2).

Indeed, SLE more than doubles the risk of myocardial infarction and ischemic stroke

compared to controls, with the most dramatic increase in risk observed among adults

younger than 50 years of age, reaching up to 52-fold and 22-fold, respectively (2). This

heightened risk parallels ultrasound data showing that subclinical atherosclerosis in the

femoral and carotid arteries is almost twice as prevalent in SLE as in healthy controls,

and comparable to the burden observed in type 2 diabetes (3). Despite the major

advances in disease management during the past two decades, atherosclerosis and its
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sequelae remains the leading cause of death in SLE with a

standardized mortality ratio that exceeds 3 in recent studies (4).

Although most of the traditional risk factors have been

reported with increased prevalence in SLE patients, they do not

fully account for the atherosclerotic burden. However, adequate

control of the modifiable factors (i.e., arterial hypertension,

dyslipidemia, diabetes and smoking) was shown to have a

significant impact on the cardiovascular complications over

time (5, 6). Most of these factors are intrinsically related to

immune dysregulation and proinflammatory mediators.

Consequently, this complex interplay between traditional and

disease-related risk factors is believed to instigate and

perpetuate accelerated atherosclerosis in SLE. Furthermore,

certain medications that are commonly used in disease

management have been shown to modify the immunometabolic

profile and affect cardiovascular risk.

Herein, we review the pathophysiology of atherosclerosis

in SLE with particular emphasis on the interactions

between immune dysregulation and lipid metabolism as

well as the central role of certain cytokines in the

pathogenetic process.

Endothelial dysfunction as the initiator
of atherosclerosis

Endothelial dysfunction (ED) is probably the earliest

identifiable event triggering atherogenesis in SLE, as a result of

endothelial cell (EC) injury and activation from both immune

and non-immune mechanisms (7, 8) (Figure 1). Several

observational studies have consistently shown that endothelial

function is impaired in SLE, with a recent meta-analysis of 18

studies revealing a 4.3% reduction in mean flow-mediated

dilation (FMD) of the brachial artery compared to healthy

controls (9). This was demonstrated even in the absence of

clinical cardiovascular disease (CVD), suggesting that subclinical

dysfunction precedes CVEs (9–11). Brachial artery endothelial-

dependent FMD is the most commonly used non-invasive

method to assess ED and is strongly correlated with

atherosclerosis as well as traditional and disease-related

cardiovascular risk factors including hypertension, dyslipidemia,

metabolic syndrome, glucocorticoid use and lupus nephritis

(7, 12). Meta-analyses in non-SLE populations have shown that a

1% increase in FMD reduces the odds of CVE by 12%–13%,

FIGURE 1

The pathophysiology of atherosclerosis in SLE. Endothelial dysfunction via upregulation of adhesion molecules is the earliest identifiable event of the

pathogenetic cascade. This will facilitate the subintimal recruitment of LDG (with enhanced NETosis potential), macrophages and T cells.

Macrophages are polarized towards the pro-inflammatory M1 phenotype, phagocytose oxLDL and transform to foam cells (along with VSMC).

IFN-I, mainly produced by pDC further amplifies the autoimmune response. T cells are polarized towards the inflammatory Th1, Th17, Tfh and

CD8+ T cells while Tregs fail to suppress local inflammation. B cells (mainly B2 and DN B) contribute mainly through autoantibody production

and dendritic cell activation. Several inflammatory mediators (including IFN-I, BAFF, IL-6, TNF-α, MCP-1 etc.) participate in the process while tissue

damage is mediated by MMPs, complement proteins and/or direct cytotoxicity. ABC, age-associated B cell; BAFF, B cell activating factor; CD8+ T,

CD8-positive T cell; CXCR3, C-X-C motif chemokine receptor 3; DN B, double-negative B cell; EC, endothelial cell; ICAM-1, intercellular adhesion

molecule 1; IFN-I, type I interferon; IFN-γ, interferon gamma; IL, interleukin; IP-10, interferon gamma-induced protein 10; LDG, low-density

granulocyte; MAC, membrane attack complex; MCP-1, monocyte chemoattractant protein-1; MMPs, matrix metalloproteinases; M, macrophage;

NETosis, neutrophil extracellular trap formation; NETs, neutrophil extracellular traps; NEU, neutrophil; oxLDL, oxidized low-density lipoprotein;

pDC, plasmacytoid dendritic cell; piHDL, pro-inflammatory high-density lipoprotein; SR-A, scavenger receptor class A; Th, T helper cell; Tfh,

T follicular helper cell; TNF-α, tumor necrosis factor alpha; Tregs, regulatory T cells; VCAM-1, vascular cell adhesion molecule 1; VEGF, vascular

endothelial growth factor; VSMC, vascular smooth muscle cell.
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while a 1 SD decrease doubles the risk, independently of other

traditional risk factors (13).

The precise mechanisms leading to ED are only partially

elucidated. Several studies have demonstrated increased

expression of adhesion molecules (ICAM-1, VCAM-1), as well as

other soluble mediators (VEGF, pentraxin-3, thrombomodulin

and IP-10) in lupus patients, that are crucial in immune cell

recruitment into the subintima and initiate atherogenesis (8).

Activated EC also release proinflammatory cytokines and

chemokines such as IL-6, TNF-α and MCP-1, particularly during

active disease (8, 14).

There is increasing evidence that defective endothelial repair is

another key factor in SLE, with augmented apoptosis and impaired

capability of replacement by endothelial progenitors. In young

women with SLE, circulating apoptotic EC are significantly

elevated and correlate with abnormal vascular function as well as

increased tissue factor (TF) levels, suggesting ongoing vascular

injury (15, 16). Rafael-Vidal et al. identified endothelial progenitor

cells (EPC)-like populations in SLE patients with defective

angiogenic functions (17, 18). The functional impairment of these

cells correlated with increased disease activity as well as the

interferon (IFN) signature (18). EPC are a heterogeneous group of

hematopoietic (Colony-forming Angiogenic Cells, CAC;

Monocyte-derived Angiogenic Cells, MAC) and non-hematopoietic

(Endothelial Colony-Forming Cells, ECFC) cells that contribute to

vascular repair through distinct mechanisms such as re-

endothelialization, paracrine support and angiogenesis regulation.

Their characterization is technically challenging and studies in SLE

have reported conflicting results; however, it seems that they are

universally decreased (7, 18).

Several soluble mediators are implicated in ED in SLE. BAFF-

induced EPC dysfunction and apoptosis were demonstrated using

ex vivo and in vitro experiments on lupus patients and healthy

donors, which were reversed after incubation with belimumab, a

BAFF inhibitor that has been used successfully in SLE (19).

Interferons type I (IFN-I) are also involved in ED in SLE (7),

notably by inducing apoptosis of EC, EPC and CAC, which

could be reversed by interferon blockade in experimental models

(20–22). IFN-I has been shown to suppress IL-1β and VEGF-A

proangiogenic signaling (23), while paradoxically potentiating IL-

18 production in SLE patients (24). Both altered IL-1 pathway

and increased IL-18 signaling have detrimental effects on the

numbers and function of the EPC and CAC (25). Of note, IL-18

is also a driver of cardiovascular comorbidities in non-SLE

populations (12). Furthermore, IFN-α leads to disruption of the

nitric oxide (NO) signaling in EC (26). Other mechanisms of EC

activation and apoptosis in SLE will be explored in more detail

in the following sections.

The emerging role of neutrophils in
atherosclerosis

SLE patients have a distinct subset of immature activated

neutrophils, the low-density granulocytes (LDG) (27). LDGs are

notably amongst the immune cells displaying the highest

expression of IFN gene signature (28) and are implicated in

disease pathogenesis as well as vascular inflammation and

subclinical atherosclerosis (29–33). Kaplan and colleagues

substantially contributed to characterize these cells from SLE

patients’ peripheral blood, highlighting their increased

pathogenicity compared to other neutrophil subpopulations (34).

LDG exhibit reduced phagocytosis, resistance to apoptosis and

ability to activate macrophages and Th1 responses (32, 35, 36).

Their propensity to spontaneously undergo NETosis is possibly

one of the major elements linking them to atherosclerosis (33).

NETosis is a form of programmed cell death in which

neutrophils release reticular chromatin structures composed of

DNA, histones, reactive oxygen species (ROS) and antimicrobial

enzymes, designed to capture and neutralize pathogens (32).

Whether NETosis occurs in the context of SLE or not, it has

been widely identified as a mediator of endothelial damage

(37–39). Release of MMP-9 has been specifically implicated in

ED (29), whereas histones (40, 41), MPO and neutrophil elastase

are directly cytotoxic to endothelial and vascular smooth muscle

cells (VSMC), leading to apoptosis, increased vascular

permeability and overexpression of adhesion molecules (38, 42).

In atherosclerosis, NETosis is triggered by oxidized low-density-

lipoprotein (oxLDL), mitochondrial oxidative stress, and

inflammatory cytokines like IL-1β and TNF-α. Cholesterol

crystals are also capable of simultaneously inducing NETosis and

fueling NLRP3 inflammasome activation (43). IFN-primed LDGs

in SLE are further exposed and easily triggered by RNA immune

complexes (IC), dsDNA and antiphospholipid antibodies (aPL),

as well as IL-18 (25, 44, 45). This process is dependent on

FcγRIIa and TLR7 engagement, and mitochondrial ROS

release (46, 47).

LDGs themselves are a significant source of IFN-I when

undergoing NETosis, driving a feedback loop that exacerbates

inflammation (34, 46, 47). They activate plasmacytoid dendritic

cells (pDCs) by releasing large amounts of self-DNA that interact

with TLR9 along with immunostimulatory proteins like LL-37

and HMGB1, inducing robust IFN-α production (47).

Additionally, oxidized mitochondrial DNA (mtDNA) in NETs is

highly immunogenic and able to trigger the cGAS-STING

pathway along with NLRP3 inflammasome activity (46, 48).

NETs also participate in the production of proinflammatory

HDL by oxidation via MPO, NOX and NOS enzymes (49).

In healthy individuals, DNase I efficiently degrades NETs,

preventing prolonged exposure to nuclear autoantigens and

neutrophil granule proteins (50). However, SLE patients exhibit

defective NET clearance that potentiates their atherogenic impact

(50, 51). DNase I dysfunction in SLE may result from DNase

I loss-of-function mutations, DNase I inhibitors or anti-NET

antibodies that shield NET structures from degradation. Indeed,

DNase I-mediated NET degradation and PAD4 inhibitors have

emerged in experimental models as promising strategies to

mitigate NET-driven vascular damage and reduce cardiovascular

risk (52).

Ferroptosis is an alternative neutrophil death pathway that is

also increased in SLE through type I IFN-mediated suppression

of glutathione peroxide-4 (GPX4), enhancing systemic
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autoimmunity (53). Interestingly, GPX4 exerts an atheroprotective

effect by limiting lipid peroxidation, a main driver of ferroptosis. In

the early stages of atherosclerosis, ferroptotic cell death of vascular

EC and VSMCs may occur as a result of altered redox capacity,

contributing to ED and atherosclerosis progression. OxLDL

contribute to this process by promoting iron accumulation,

generating lipid ROS, and downregulating GPX4 expression (54).

T cells enabling atherosclerosis

Over the past two decades, intensive research was undertaken

to characterize the immune cellular infiltrate within the human

atherosclerotic plaques (55, 56). Recent studies have shown that

T cells account for 25%–65% of leukocytes within the plaque

(57–59). These plaque T cells are clonally expanded, likely

reflecting reactivity to self-epitopes in the plaque

microenvironment and are enriched in the fibrous cap and

adventitia of advanced plaques (60, 61). Th1 cells are the

dominant CD4+ T cell subset within the plaques and enriched

compared to peripheral blood mononuclear cells (PBMC) (57,

62). Their role has consistently been described as atherogenic in

experimental models and largely mediated by IFN-γ secretion

(55). This is particularly apparent in murine lupus models where

CXCR3 + CD4+ T cells accumulate in the arterial wall, driven by

an IFN-α-mediated increase in CXCR3 ligand expression on EC,

and drive plaque progression (63).

Th17 cells are considered predominantly atherogenic, although

this appears context-dependent (55). IL-17 induces other

proinflammatory cytokines such as IL-6, driving vascular

inflammation and acting synergistically with Th1-derived IFN-γ

(64). IL-17 levels and RORγt expression are elevated in the

serum of SLE patients, illustrating a Th17/T regulatory cell

(Treg) imbalance, which associates with atherosclerosis, tissue

damage and disease activity (65–67). In a murine lupus model,

the transfer of effector T (Teff) cells from a B6.SLE model

significantly increased the number of IL-17 + cells and accelerated

atherosclerosis (68). These Teff cells were less responsive to Treg-

mediated suppression, reaffirming previous findings in SLE (69).

Interestingly, most of the IL-17 + cells originated from Tregs

transitioning to an IL-17 + phenotype, resembling the “exTreg”

phenotypes observed in human atherosclerosis (70).

T follicular helper cells (Tfh), characterized by Bcl-6

expression, are mostly considered pro-atherogenic, notably by

driving B cell class switching and producing pathogenic

antibodies against plaque antigens (55). These cells are expanded

in SLE patients when compared to healthy individuals and

identify subsets of patients with more diverse and higher titers of

autoantibodies as well as more severe end-organ damage (71).

Regarding atherosclerosis, Morel and colleagues demonstrated

that overexpression of the lupus-associated gene Pbx1d

exacerbates plaque development by promoting Tfh expansion,

impairing Treg homeostasis, and enhancing autoantibody

production (72). Additionally, bone marrow transfer from lupus-

prone mice into ApoE-/- or LDLr-/- mice led to the expansion

of CXCR3+ Tfh cells, enhanced germinal center activity and

pathogenic IgG2c production, accompanied by lupus-like

manifestations (73). This process is driven by elevated IL-27

levels, primarily produced by CD11b + DC in response to oxLDL

through TLR4 activation.

In SLE, a recently identified T cell subset, namely peripheral

helper T cells (Tph), shares functional similarities with Tfh, but

operates within the peripheral tissues rather than lymphoid

organs (74). IFN-I has been identified as a key regulator

promoting Tph polarization (75). Tph cells secrete CXCL13, a

crucial chemokine that drives the recruitment of B and T cells

and promotes the formation of tertiary lymphoid structures

(TLS) around target tissues. In SLE, TLS support the persistence

of autoreactive T and B cells, pathogenic B cell class-switching

and sustained antigen-specific autoantibody production (76).

Similarly, Sato et al. have described CD153 + PD-

1 + CD4 + senescence-associated T (SAT) cells that are analogous

to Tph cells (77). SAT interactions with age-associated B cells

(ABC) are key drivers of age-dependent TLS formation and

kidney injury via CD153/CD30 signaling, mirroring the Tph–

DN2 (double negative B cells) axis in SLE. While direct evidence

for Tph cells in atherosclerosis is lacking, their known role raises

the possibility that they may similarly enhance local responses

and tissue damage through TLS formation around atherosclerotic

plaques in SLE patients, resembling the structure and function of

well-described artery tertiary lymphoid organs (ATLOs) in

atherosclerosis. ATLOs are located in the arterial adventitia near

atherosclerotic plaques and facilitate local antigen presentation,

clonal expansion of autoreactive T cells against plaque antigen

(e.g., oxLDL, ApoB), and promote autoantibody production (78).

However, under physiological conditions, it remains unclear

whether ATLOs are atheroprotective or atherogenic, highlighting

the need for further investigation.

In the general population, CD8+ T cells are particularly

abundant in advanced atherosclerotic plaques whereas their

presence is minimal in early lesions, reflecting a potential role in

plaque progression (55, 57, 79). CVD has been linked with age-

associated accumulation of CD8+ subsets displaying terminally

differentiated and senescence markers, along with high IFN-γ

secretion and cytotoxic phenotype (80, 81). Through mechanisms

involving perforin, granzymes, and TNF-α, they can promote

VSMC, macrophage, and EC apoptosis, thus destabilizing the

plaque and contributing to necrotic core expansion (55). In

juvenile-onset SLE, patients with high cardiometabolic risk show

expanded CD8+ T-cell populations that mirror those in

atherosclerotic plaques (82).

Despite some parallels drawn between the roles of CD8+ T cells

in SLE and atherosclerosis, the literature reveals several conflicting

findings. Atheroprotective mechanisms involving CD8+ T cells

have also been described, highlighting a context-dependent and

potentially dualistic role (55, 79). Another consideration is that

substantial heterogeneity exists in both the levels and functions

of CD8+ T cells subsets reported in SLE (83, 84). Features such

as exhaustion sometimes observed in circulating CD8+ T cells

are not necessarily reflected in tissue-resident populations, as

evidenced by the absence of exhaustion markers in kidney-

infiltrating CD8+ T cells (85).
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An imbalance between CD4 + CD25 + FoxP3+ Treg and Teff

cells is a hallmark of SLE pathophysiology (86), where Treg

numbers are reduced and their function is impaired (87, 88). Key

molecular drivers include genetic factors, such as polymorphisms

in the FoxP3 gene, and environmental influences, such as

inflammatory cytokines, oxidative stress and epigenetic

modifications, which destabilize Tregs by downregulating FoxP3

expression (86, 89). Physiologically, IL-2 signaling maintains a

balance in Treg levels by inhibiting the expression of RORγT and

inducing Blimp-1, thus limiting Th17 and Tfh differentiation,

respectively. However, this mechanism is disrupted in SLE due to

low IL-2 levels (90). Likewise, in atherosclerosis, Tregs often lose

FOXP3 expression and convert into pro-inflammatory Th1-like

or Th17-like “exTregs” that can secrete IFN-γ, TNF-α and IL-17

(70). This process may be driven by dysregulation of the FOXP3

locus, prolonged antigen exposure, chronic TLR and pro-

inflammatory signaling, and metabolic reprogramming.

Additionally, elevated intracellular cholesterol content in Treg

impairs IL-2 signaling and favors pro-atherogenic Tfh

polarization (91). It is hypothesized that apolipoprotein A-I

(ApoAI) normally interferes with Treg-to-Tfh plasticity both

directly, and indirectly by modulating DC function (91, 92).

Tregs generally exhibit a strong negative correlation with

plaque instability in coronary artery disease (93). Local numbers

of Tregs are significantly reduced in the human atherosclerotic

plaque, irrespective of its developmental stage, and even more so

in vulnerable coronary plaques (94). Moreover, Tregs secrete

anti-inflammatory cytokines such as IL-10, TGF-β, and IL-35,

supporting a relevant role in mitigating inflammation in both

SLE and atherosclerosis (93). IL-10 suppresses pro-inflammatory

M1 macrophages, while TGF-β promotes anti-inflammatory M2

polarization, thereby enhancing efferocytosis and reducing foam

cell formation. Along with TGF-β-induced VSMC proliferation

and collagen biosynthesis, these effects collectively contribute to

plaque stabilization and inflammation resolution. Additionally,

Tregs are essential in maintaining self-tolerance by modulating

DC function through co-stimulatory molecule repression and

impairing T cell activation through inhibitory cytokines and cell-

contact mechanisms (93).

B cells as mediators of plaque
progression

The involvement of B cells in atherogenesis was first suspected

in the 1980s, supported by the detection of IgM and IgG

immunoglobulins in human atherosclerotic plaques (95). Since

then, the presence of B cells in the adventitia and ATLOs is

widely accepted, while their presence in the intima is increasingly

recognized (57, 96–98). B1 cells are considered innate-like

B cells, originating in the fetal liver and residing in serosal

cavities, mostly peritoneum. They self-renew, have strong

antigen-presenting capability and produce IgM antibodies

independently of T cells with a subset capable of providing long-

term memory. In contrast, B2 cells are derived from bone

marrow progenitors and mature into follicular and marginal zone

B cells (MZB). Follicular B cells, the predominant subset,

undergo germinal center activation to produce high-affinity IgG

antibodies and differentiate into plasma cells or memory

B cells (99).

B cells have shown opposing roles in murine atherosclerosis,

driven by the distinct functions of B1 and B2 subsets (99).

Indeed, in the early 2000s, Caligiuri et al. and Major et al.

demonstrated an atheroprotective role for B cells in murine

models using splenocyte transfer and B-cell deficiency,

respectively (100, 101). Conversely, in the early 2010s, CD20 and

BAFFR-mediated B cell depletion experiments both reduced

plaques by selectively depleting B2 cells while sparing the

atheroprotective B1a cells (102–105), while B2 cell transfer

promoted atherosclerosis (102). B2 cells disruption led to marked

reductions in plaque proinflammatory cytokines (IL-1β, TNF-α,

IFN-γ), DC activation, T cell proliferation, macrophage

infiltration and pathogenic IgG against oxLDL.

In human atherosclerosis, B cells infiltrates are clonally

expanded and mostly composed of mature B2-like CD20-

plasmablasts in the adventitia and B1-like IgM-secreting cells in

ATLOs, suggesting their local regulation of atherogenesis (97). The

alleged atheroprotective effect of B1 cells seems vastly attributable

to their natural IgM secretion capability, as well as IL-10 and

TGF-beta secretion (99, 106). Of note, the identification of human

equivalents to murine B1 cells is challenging and still a matter of

debate (107, 108). They produce a subset of IgM known as natural

IgM, in contrast to immune IgM, which is a polyreactive and low-

affinity antibody produced independently of external antigens

(109). A significant amount of natural IgM is directed against

oxidation specific epitopes (OSE) and facilitates the clearance of

apoptotic cells, prevents autoimmunity, neutralizes pathogens, and

promotes inflammation resolution through immunoregulatory

effects. Innate-like B cells, comprised of B1 cells along with MZB,

produce the vast majority of circulating natural IgM (107). Their

exact role in SLE-accelerated atherosclerosis remains uncertain and

poorly explored, but evidence of their dysfunction in SLE suggests

both a loss of their atheroprotective properties and a role in

amplifying autoimmunity. In SLE patients, natural IgM levels are

consistently reduced (110), and confer strong associative risk with

atherosclerosis. This is observed despite the frequent expansion of

B1 subsets and sometimes MZB cells seen in SLE-prone mice

(111), implying an altered immune function of these cells. Indeed,

in mice models, B1 cells promote SLE disease activity and

glomerulonephritis, while their depletion alleviates disease (112).

Under certain conditions, B1 cells can undergo isotype switching

to produce high-affinity anti-dsDNA IgG1 and IgG2b antibodies

instead of protective IgM (112, 113), and MZB cells can become

autoreactive and differentiate into IgG-secreting plasma-cells (107,

114, 115). Thus, they could participate in the production of

pathogenic and atherogenic IgG antibodies and secrete less

protective IgM in specific inflammatory conditions. Moreover, B1a

cells in lupus mice models can aberrantly migrate in target organs,

in part under CXCL13 influence, and interact locally with T cells

(112). A CD11b + B1 cell population (B1b), qualified as

“orchestrators” given their T cell regulation capacity and minimal

IgM secretion, normally makes up less than 15% of the B1 cells
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population but is expanded and dysfunctional in SLE, expressing

high levels of co-stimulatory protein CD86 (116). B1b cells are

normally present in high numbers in ATLOs (117).

MZB cells emerge as potentially major producers of the

atheroprotective IgM against OSEs (118). Moreover, they engage

in complex, bidirectional interactions with Tfh cells, which

remain incompletely characterized but appear essential for the

generation of IgM against OSEs (118, 119). MZB-deficient mice

on high-cholesterol diet demonstrated markedly accelerated

atherosclerosis progression due to unregulated proatherogenic

Tfh response (119). In human studies, levels of IgM against

OSEs correlate with MZB-like unswitched memory B cells

(CD27 + IgD+) level, likely containing MZB cells (defined as

CD27 + IgD + IgM+) (118, 120). Studies in SLE patients using

the same innate-like CD27 + IgD + B cells subsets demonstrate

impaired natural IgM and IL-10 production along with decreased

numbers, correlating with disease activity, while their numbers

and functions normalized with therapy (115, 121).

The functional equivalent of murine B2 cells in humans are the

mainstream follicular naïve and memory B cells, comprising the vast

majority of circulating B cells (99). They carry out classical

T-dependent differentiation in secondary lymphoid organs,

supported by Tfh cells, and lead to formation of memory B cells

or antibody-secreting cells (ASC), including both plasmablasts and

plasma cells. The origin of the proatherogenic IgG is hypothesized

to be predominantly from germinal centers (GC), occurring in

secondary lymphoid organs or ATLOs, and supported by

mechanistic studies in murine models (98). ASCs during SLE

flares demonstrate large polyclonal expansions dominated by

highly autoreactive clones originating from activated naïve B cells

that can bypass somatic hypermutation and generate pathogenic

antibodies (122). Different CD11c + B cells sharing similar

phenotypic and functional features, namely activated naïve B cells

(aNAV; CD11c + CD27-IgD-) and double negative B cells (DN2;

CD11c + CD27-IgD-CXCR5-), possibly form a developmental

continuum in SLE with a propensity to escape B cell tolerance

mechanisms and culminate in plasmablast differentiation (123).

DN2 cells are characterized by high expression of T-bet, Toll-

like receptor 7 (TLR7) hyper-responsiveness and lack of typical

germinal center markers. Both aNAV and DN2 B cells have been

described with greater frequency in SLE patients compared to

healthy controls, with DN2 subsets often becoming the

predominant B cell population especially in highly active patients

with elevated autoantibody burden (123). Both are also

considered as a subset of ABC (ABC, CD19+CD21loCD11c+T-

bet+) (124), or ABC-like cells, which is a larger B cell subgroup

widely described in autoimmune diseases, chronic infections, as

well as healthy aging individuals (125). Interestingly, emerging

research has revealed the presence of enriched ABCs in aortic

plaques of aged Ldlr-/- mice as well as human carotid plaques,

along with age-associated highly cytotoxic Gmzk+CD8+ T cells

(126, 127). The ABCs were strongly enriched locally in the

plaque compared to peripheral blood, aligning with their

propensity to migrate at disease sites as displayed in autoimmune

or infectious contexts (85, 125, 128), and exhibited strong

antigen-presenting capacity as well as inflammatory cytokine

secretion including TNF-α and IL-1β (126). Pattarabanjird et al.

identified an increased frequency of ABC and DN2 cells in high

CAD burden patients (127). DN2 were shown to infiltrate

coronary atheroma and correlate with high levels of atherogenic

MDA-LDL IgG, enrichment in autophagy, IFN-γ and TLR

signaling pathways. Their implication in SLE-related accelerated

atherosclerosis remains elusive.

The BAFF axis dysfunction is linked with SLE (129) and SLE-

related accelerated atherosclerosis (130, 131). Elevated BAFF levels

support antibody production and prolonged survival of pathologic

B2 cells, notably aNAV and plasmablasts (129, 132, 133).

Accordingly, in experimental studies, blocking BAFFR signaling

protects against atherosclerosis by depleting B2 cells and sparing

B1a subset as well as IgM levels (99). However, in a model using

direct BAFF neutralization, the plaque burden was paradoxically

increased despite B2 cell depletion (134), while a model

overexpressing BAFF exhibited less atherosclerosis (135). More

remarkably still, the impact of anti-BAFF mAb on plaque

progression in ApoE-/- D227 K mice varied with plasma

cholesterol levels, accelerating progression at low levels but

reducing it at high levels (136). Indeed, Saidoune et al.

demonstrated that TACI receptors are present on macrophages

and, in context of high cholesterol levels in lupus-prone mice or

high BMI in SLE patients, the lack of TACI signaling in

macrophages via BAFF mAb therapy promoted foam cell

formation and atherosclerosis progression (134). Similarly, in

atherosclerosis-prone mice, protective IgM production and

reduction in atherosclerosis was dependent on BAFF-TACI

signaling in B cells (135), and BAFF-TACI signaling in

macrophages inhibits IRF7-dependant TLR9 proatherogenic

responses, such as CXCL10 production (134). These contrasting

findings highlight a potential proatherogenic role of the BAFF-

BAFFR signaling along with an atheroprotective role of BAFF-

TACI signaling. However, in a pathological state such as SLE,

multiple factors must be balanced, and the net effect of BAFF

inhibition may therefore vary from one individual to another

depending on disease activity, pathological state of B2 cells,

metabolic status, pre-existing atherosclerosis, etc.

B regulatory cells (Bregs) primarily exert their effects through the

secretion of IL-10, but also IL-35 and TGF-β. Two critical roles of

Bregs are modulating T cell differentiation and inhibiting pro-

inflammatory cytokine production. Unsurprisingly, their

dysfunction has been implicated in a variety of autoimmune

rheumatic diseases; their role in atherosclerosis remains uncertain

(137). Bregs might reduce neointima formation and plaque

inflammation through IL-10 secretion (138). Zhu et al. further

demonstrated in an SLE-atherosclerosis model that

CD19+CD5+CD1d+ Bregs regulate the Th17/Treg balance through

cytokine signaling, thus preventing a sustained inflammatory state

that would otherwise drive atherogenesis (139). In SLE, the

suppressive capacity of Bregs over T cells appears diminished, as

increased BAFF levels and hyperactivated pDC might interfere with

their activation and expansion (137). More recently, SLE patients

with subclinical atherosclerosis and antiphospholipid syndrome

(APS) exhibited lower Bregs frequencies, correlated with elevated

carotid intima-media thickness and greater disease activity (138).
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IFN type I as the orchestrator

IFN-I, predominantly IFN-α, exert widespread effects across

immune, metabolic and vascular compartments. This results in

the amplification of several well-characterized processes involved

in atherogenesis that are observed in otherwise healthy

individuals, thus positioning type I interferons as key

orchestrators of the immunopathogenesis of CVD in SLE

(Figure 2). Moreover, elevated IFN-I levels are linked to CVD in

patients with various interferonopathies, in which vascular

damage is a hallmark, as seen in conditions like STING-SAVI

and Aicardi-Goutières syndrome (14, 140). The interferon

signature detected in immune cells, tissues and peripheral blood

of patients with SLE reflects heightened type I interferon activity,

which has been shown to correlate with disease severity (51).

Along the same lines, it was proposed that IFN-αmight act as a

link between autoimmunity and metabolic syndrome (141). Both

conditions share certain pathogenic mechanisms, replicating SLE-

like immune activation, occurring within the borders of

metabolically active tissues such as the adipose tissue, liver and

atheroma. Central to this activation is the high burden of cell

death in adipocytes, hepatocytes or vascular cells with subsequent

recognition by plasmacytoid DCs and interferon type I release.

Experimental and human models have shown that plasmacytoid

DCs do localize in the human atherosclerotic plaque and secrete

IFN-I upon TLR7/TLR9 stimulation, promoting plaque instability

through various mechanisms (142). Other cells found in the

plaque or neighboring arterial structures act as sources of IFN-I,

including neutrophils and B cells (143).

Although the immune landscape within the atherosclerotic

plaques of SLE patients has not yet been characterized, IFN-I is

pluripotent and regulates multiple subsets of immune and non-

immune cells that are central to atherogenesis, including

monocytes, neutrophils and EC (143, 144). Firstly, IFN-α drives

monocyte/macrophage and neutrophil infiltration of the

subendothelial space by inducing adhesion molecules (VCAM-1,

ICAM-1) and chemokine (CCL5) expression by ECs (143, 145).

Moreover, it promotes atherosclerosis by increasing scavenger

receptor class A (SR-A) expression in monocytes and

macrophages, thus enhancing oxLDL uptake and subendothelial

foam cell formation, the major substrate for fatty streaks

development. Mice models of atherosclerosis identified

atherogenic macrophage subsets expressing type I IFN-related

genes, and similar high IFN-signature monocytes are present in

both the circulation and the affected tissues (e.g., kidney) of SLE

patients (12, 143). Studies in human atherosclerotic plaques show

that IFN-α can upregulate TLR4 expression in antigen-presenting

cells, leading to enhanced secretion of TNF-α and MMP-9 (146).

Moreover, IFN-I affects VSMC function directly by suppressing

their proliferation and inducing apoptosis, and indirectly, by

FIGURE 2

The central role of IFN-I in SLE-associated atherosclerosis. IFN-α is mainly produced by pDC and induces EC activation and upregulation of adhesion

molecules, thus facilitating monocyte/macrophage and neutrophil infiltration of the subendothelial space. It promotes SR-A expression in monocytes/

macrophages and enhances oxLDL uptake and foam cell formation. It promotes apoptosis of the VSMC as well as platelet activation. Moreover, it

enhances CD4+ T cell cytotoxicity and promotes LDG-derived NETosis. Finally, it acts synergistically with IL-1β in promoting atherosclerosis.

CCL5, C-C motif chemokine ligand 5; CD4+ T, CD4-positive T cell; EC, endothelial cell; ICAM-1, intercellular adhesion molecule 1; IFN-α,

interferon alpha; IFN-I, type I interferon; IL-1β, interleukin 1 beta; LDG, low-density granulocyte; M1, classically activated macrophage; NETosis,

neutrophil extracellular trap formation; oxLDL, oxidized low-density lipoprotein; pDC, plasmacytoid dendritic cell; SR-A, scavenger receptor class

A; VCAM-1, vascular cell adhesion molecule 1; VSMC, vascular smooth muscle cell.

Bilodeau and Tselios 10.3389/flupu.2025.1607792

Frontiers in Lupus 07 frontiersin.org

https://doi.org/10.3389/flupu.2025.1607792
https://www.frontiersin.org/journals/lupus
https://www.frontiersin.org/


enhancing CD4+ T cell cytotoxicity via TRAIL upregulation and

promoting LDG-derived NETosis (12, 41, 144).

Even platelets in SLE display an IFN-dependent transcriptional

signature that originates in megakaryocytes exposed to IFN-α,

rendering them readily activated in the circulation (147). Once

triggered, they can drive IL-1β–mediated EC activation, as shown

in vitro for SLE patients (148). Several studies have established

strong links between platelet activation and increased

cardiovascular morbidity in SLE, particularly through

thromboembolic events (147, 149, 150).

Type I IFNs and Il-1β: partners and
opponents

IFN-I engages in a complex interplay with IL-1β, a pro-

inflammatory cytokine that results from the assembly of the

inflammasome complex, which has proven to be significantly

involved in the progression of atherosclerotic plaque (151).

Therapeutic targeting of IL-1γ in the Canakinumab Anti-

Inflammatory Thrombosis Outcome Study (CANTOS) was the

first large-scale, randomized controlled trial in over 10 000

atherosclerotic patients demonstrating protective cardiovascular

and anti-inflammatory effects (152, 153). IL-1β accelerates

atherosclerosis progression by promoting endothelial activation,

leukocyte recruitment, and proinflammatory cytokine cascades

(such as IL-6) that sustain chronic vascular inflammation and

destabilize plaques (151).

Caielli et al. demonstrated that mitochondrial nucleic acids can

sequentially activate innate sensors to sustain simultaneously IFN-I

and NLRP3 signaling, while IFN-induced MxA enables

unconventional, gasdermin- and pyroptosis-independent IL-1β

secretion (154) (Figure 3). It has not been explored if this process

contributes to atherosclerosis in SLE. Indeed, the atherosclerotic

plaque provides a permissive microenvironment for chronic

monocyte priming as they are rich in damage-associated molecular

patterns (DAMPs), pathogen-associated molecular patterns

(PAMPs), oxLDL, and free fatty acids, which engage pattern

recognition receptors, leading to sustained NF-κB priming. This is

a well-established driver of atherogenesis in experimental and

human studies, as genetic disruption of these pathways mitigates

progression (151). Additionally, the plaque contains strong NLRP3

FIGURE 3

The role of IL-1β in atherosclerosis. Oxidized LDL and ROS activate NF-κB through interactions with TLR4 and other pattern recognition receptors.

This activates the NLRP3 inflammasome and promotes the production of proforms of IL-1β and IL-18 (priming). Atherosclerotic plaques are rich in

cholesterol crystals that enhance the production of caspase 1 that cleaves the inactive forms to active IL-1β and IL-18. The end result is increased

endothelial, macrophage and smooth muscle cell activation, upregulation of adhesion molecules and proinflammatory cytokine secretion. IL-1β,

interleukin 1 beta; IL-18, interleukin 18; NF-κB, nuclear factor kappa B; NLRP3, NOD-like receptor family pyrin domain-containing 3; oxLDL,

oxidized low-density lipoprotein; PRR, pattern recognition receptor; ROS, reactive oxygen species; TLR4, Toll-like receptor 4; VSMC, vascular

smooth muscle cell.
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inflammasome triggers, such as cholesterol crystals, which provide

the second signal necessary for inflammasome activation.

Furthermore, monocytes in SLE are exposed to mitochondrial

material and extracellular mitochondrial nucleic acids from various

sources, including NETotic neutrophils, mitochondria-rich

platelets, retained mitochondria in red blood cells, and

microparticles (154, 155). These retained mitochondrial DAMPs

strongly engage cGAS-STING and RIG-I-like receptors, leading

to IFN-I production. Mitochondrial RNA sensing through MAVS

triggers monocytes to release their own mtDNA into the cytosol,

another potent inflammasome trigger, driving sustained IL-1β

production. Chronic exposure to IFN-I induces MxA expression,

which facilitates unconventional, gasdermin-independent IL-1β

secretion, further propagating vascular inflammation (154).

Overall, atherosclerotic plaques in SLE may function as an

amplifying niche promoting IFN-driven IL-1β secretion, thus

reinforcing atherosclerosis progression.

Conversely, IL-1β might also exert cardioprotective effects (23,

151), and studies have shown that IFN-I normally downregulates

IL-1β pathways in SLE, with IL-1β levels being neither consistently

elevated nor clearly linked to CVD risk. However, IL-1β-driven

inflammation might be confined locally in the atherosclerotic

milieu, similar to increased activity of the inflammasome found in

other diseased tissues in SLE (e.g., kidney), possibly making serum

levels an unreliable biomarker for this purpose (156, 157).

Antibodies and immunocomplexes

Immunocomplexes (IC) formed by pathogenic autoantibodies

in SLE, a hallmark of the disease, can deposit in atherosclerotic

lesions and generate further inflammation and vascular damage.

Among the various responses elicited by IC in tissues, it is

hypothesized that Fc receptor-mediated responses have

proatherogenic capability (158). As an example, oxLDL and

oxLDL/β2GPI complexes are found in SLE and recognized by

anti-oxLDL and aβ2GPI IgG antibodies (159, 160). These large

complexes are phagocytosed by macrophages through FcyR and

TLR4, driving foam cell formation in the subintima and IL-1β

secretion (161, 162). IC also stimulate pDC within plaques to

locally secrete IFN-α (142). This response is further intensified

by Fc-mediated platelet activation and NET release, which,

among other effects, contribute further to vascular endothelium

activation, damage (44, 149).

Anti-dsDNA antibodies are positively correlated to disease

activity and major organ involvement (e.g., kidney, central

nervous system), but also with CVE (HR 1.56), noncalcified

coronary plaques, ED, oxidative stress markers, dyslipidemia and

accelerated atherosclerosis, independently of traditional risk

factors (163–166). Indeed, Patiño-Trives et al. demonstrated that,

in vitro, IgG anti-dsDNA antibodies directly promote NETosis,

monocyte apoptosis, and endothelial activation, again mediated

through Fc receptor binding (166).

aPL are another group of autoantibodies found in up to 36%

of SLE patients and directed against phospholipid-binding

proteins such as cardiolipin and β2-glycoprotein 1 (167). The

presence of anticardiolipin antibodies (aCL) was independent

predictor of CVE (168), but also carotid plaques (HR 5.2)

(169), and coronary calcifications (170). Similar findings

regarding anti-β2 glycoprotein I (aβ2GPI) and lupus

anticoagulant (LAC) have been described for CVE (168),

coronary calcifications (HR 4.1 and 4.4, respectively) (170),

and carotid plaque (LAC only, HR 5.2) (169). It is associated

with higher subclinical atherosclerosis in primary APS and

isolated positive aPL compared to healthy controls, and the

risk of CVD is even higher in SLE patients with APS (171,

172). aPL contribute to atherosclerosis in SLE by triggering

endothelial inflammation, activating EC through extracellular

vesicles and TLR pathways and increasing tissue factor

expression (163, 173). It was also shown to decrease NO

bioavailability and increase endothelin-1 production and

oxidative stress in various contexts including thrombosis,

pregnancy morbidity, and vascular dysfunction (173).

A subset of SLE patients, ranging from 15%–88%, exhibit anti-

endothelial cell antibodies (AECAs), which are also found in other

autoimmune conditions associated with vascular impairment (174,

175). SLE patients with AECAs show increased endothelial

activation and apoptosis through Fc receptor independent

mechanism compared to AECA-negative SLE patients (175, 176).

Their exact role in atherosclerosis remains unclear. Lastly, IC

arising from IgG directed against plaque antigens can also

participate in vascular damage through complement-mediated

cellular cytotoxicity (CMCC) as well as antibody-mediated

cellular cytotoxicity (AMCC) by interacting with FcyR on

immune effector cells, such as Natural Killer cells (158).

Antibodies against HSP60/65, a protein expressed on stressed

EC, have been described as a mediator of vascular damage in

atherosclerosis for over two decades ago, acting through CMCC

and AMCC (158, 177).

The role of complement

Complement activation is a driver of tissue damage in SLE and

reduced C3 and C4 serum levels serve as diagnostic markers,

especially during disease flares (178, 179). While this pathway is

well-recognized in SLE, its role in CVD is a growing area of

research, although early evidence already suggests its involvement

(95). In atherosclerosis, elements of the complement cascade, such

as C1q, C3, C4, and the membrane attack complex (MAC, C5b-9),

accumulate in the arterial plaques as early as the formation of

fatty streaks, suggesting local complement activation (180).

MAC complex deposition can be found on infiltrating

macrophages, apoptotic cells as well as EC. The complement

system is directly involved in EC dysfunction and death (181).

The membrane attack complex (MAC, C5b-9) and sublytic MAC

formation on EC induce pro-inflammatory cell death and

NLRP3-inflammasome mediated IL-1β secretion. Complement

components C3a and C5a further drive ED by engaging their

respective receptors (C3aR and C5aR1). Chronic complement

activation leads to EC exhaustion, characterized by mitochondrial

dysfunction, oxidative stress, and senescence-associated secretory
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phenotype (SASP) expression, barrier dysfunction and decreased

NO production (181, 182). Senescent EC can also be induced

through multiple stimuli including mechanical and oxidative

stress and emerge as significant players in atherogenesis (182).

Clinical findings support these mechanisms, as C5a and C5b-9

deposition correlate with plaque vulnerability and necrotic core

expansion. All three complement pathways (classical, alternative,

lectin) are activated in the atherosclerotic process, with

cholesterol crystals serving as a common trigger (180).

Additionally, the classical pathway is activated through

interactions with local IC, while both the classical and lectin

pathways are triggered by modified lipids, apoptotic cells,

microparticles and oxLDL. Of interest, genetic mutations

resulting in early classical complement pathway components

deficiency or loss-of-function, such as C1q, C4A, C4B, or C2,

have all been linked to monogenic SLE in humans, often with

severe phenotype (183). Similarly, single nucleotide

polymorphisms resulting in C2 and C4B deficiency were both

associated with increased risk of myocardial infarction and death

in human studies (181). The implication of both C2 and C4 in

IC clearance mechanisms through C3b generation is possibly the

connection between both observations. However, although C1q

displays strong atheroprotective function in murine models (184),

human genetic data are scarce, while clinical studies have yielded

conflicting results (181).

A possible explanation is the complex and pleiotropic role of

C1q in autoimmunity, distinct from other classical pathway

components. Importantly, it facilitates the non-inflammatory

clearance of apoptotic cells and IC via FcγR-mediated

phagocytosis. C1q protects against autoimmunity by modulating

monocytes/macrophages, regulating cytokine release and DC

differentiation, and suppressing IFN-α production, thereby

skewing adaptive immunity toward an anti-inflammatory

response (185). However, the efferocytotic effect of C1q is

possibly overwhelmed in advanced atherosclerotic lesions (186).

Combined with a microenvironment rich in classical pathway

inducers (e.g., CRP, oxLDL, cholesterol crystals), its balance may

shift toward a more pro-atherogenic role. The higher prevalence

of anti-C1q antibodies in SLE patients adds complexity to

understanding C1q’s role in atherosclerosis (187). Although these

antibodies have clearly been linked to target organ damage,

especially lupus nephritis, their impact on atherosclerosis remains

unexplored (187, 188).

Lupus dyslipidemia fuels adaptive
immunity towards plaque formation

Patients with SLE often present with characteristic alterations in

their lipid profile, referred to as lupus dyslipidemia. Hyperlipidemia

in SLE exhibits a high prevalence and progressive trend, with

hypercholesterolemia affecting up to 60% of patients within three

years of follow-up (189). More recent data found the condition in

20% of cases, with less lipid target attainment among APS-SLE

patients and those from middle-income countries (190). The

metabolic profile in lupus dyslipidemia typically includes elevated

total cholesterol (TC), triglycerides (TG), and low-density

lipoproteins (LDL), along with decreased high-density lipoproteins

(HDL) (191). SLE patients also demonstrate higher serum

malondialdehyde (MDA), apolipoprotein B (ApoB), and oxLDL

than control groups, reflecting an increased state of oxidative stress

and lipid peroxidation (192). These abnormalities are not

restricted to adults, as 63% of pediatric SLE patients exhibit a

similar dyslipidemia pattern at diagnosis (193).

Despite these metabolic alterations, there is no evidence of an

intrinsic causal relationship between lipid traits and SLE in either

direction. A 2022 Mendelian randomization study found no

significant genetic causal link between SLE and major lipid traits

(194), and conversely, a 2021 phenome-wide association study

demonstrated that SLE genetic risk alleles are not significantly

associated with dyslipidemia or other cardiometabolic disorders

(195). These findings suggest that dyslipidemia in SLE is rather a

result of inflammation-driven metabolic disruptions and

comorbid factors. On a similar note, TNF-α, a key cytokine in

SLE pathogenesis, has been shown to influence lipoprotein

metabolism by raising triglyceride levels, potentially through

enhanced hepatic very-low-density lipoprotein (VLDL)

production and direct inhibition of lipoprotein lipase.

Interestingly, ApoAI usually downregulates TNF-α and IL-1β, a

mechanism likely defective in SLE given low HDL levels, which

may indirectly increase inflammation. Elevated levels of MCP-1

and IL-6 have also been reported in patients with SLE, showing a

correlation with higher triglyceride and lower HDL levels,

respectively (191). Of note, non-immune mechanisms, including

corticosteroid use, lupus nephritis, low vitamin D levels, and

hypothyroidism, can significantly contribute to the exacerbation

of dyslipidemia in lupus (191, 196, 197).

Several clinical studies have yielded mixed results regarding the

use of statins for atherosclerosis progression in SLE (191, 198). In

86 SLE patients followed for 7 years, plaque progression risk was

fourfold higher, but Tektonidou and colleagues found a 50%

reduction for each modifiable cardiovascular risk factor that was

optimally managed (6). In a recent study of 151 juvenile SLE

patients stratified by a serum metabolic signature for CIMT

progression and assigned to either statin therapy or placebo, 36%

of treated patients experienced significant atherosclerosis

progression despite improvements in lipid levels, which was not

predicted by baseline metabolomic markers (198). This further

supports the involvement of disease-specific mechanisms that are

likely interconnected but not entirely dependent on lipids and

traditional risk factors.

Autoantibodies involved in lupus
dyslipidemia

Lipoprotein lipase (LPL), a crucial enzyme in lipid metabolism,

has been implicated in lupus-associated dyslipidemia, though its

precise role remains only partially understood. Autoantibodies

against LPL, detected in nearly 50% of SLE patients, are believed

to inhibit its enzymatic activity (199), with rare cases of severe

hypertriglyceridemia linked to their presence (200). In SLE,
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impaired LPL function delays the hepatic clearance of chylomicron

remnants, leading to VLDL accumulation, elevated triglyceride

levels, and reduced HDL concentrations (191). Additionally, anti-

dsDNA antibodies have also been shown to interfere with LPL

activity, reinforcing the connection between autoantibody-

mediated immune dysregulation and lipid metabolism

disturbances (201). Anti-LPL autoantibodies correlate with higher

disease activity, lupus nephritis, anti-dsDNA antibodies, and

elevated TG, ApoB, and ApoE levels, suggesting that chronic

inflammation in SLE profoundly alters the balance between pro-

and anti-atherogenic lipoproteins (199, 201).

In addition, IgG autoantibodies directed toward the anti-

inflammatory lipoprotein HDL and ApoAI have been described

recently in up to 43% of lupus patients (202, 203). Furthermore,

these antibodies positively correlate with disease activity,

inflammatory status and negatively correlate with PON1 activity

(204). Their association with CVE has been shown in populations

without coexisting autoimmune disease. It is hypothesized that an

oxidative environment promotes ApoAI oxidation, misfolding, and

dissociation from HDL, making it immunogenic and predisposing

to antibody generation in SLE (203). Interestingly, a high degree of

cross-reactivity among aCL antibodies, anti-HDL, and anti-ApoAI

IgG has been reported in SLE patients (205).

Oxidized LDL—a link between
atherosclerosis and SLE?

OxLDL has been recognized as a cornerstone of atherosclerosis,

acting as a trigger and amplifier of plaque inflammation (79, 206).

Its infiltration and retention in the arterial wall initiate the early

plaque formation, inflammatory cascade, and immune cell

recruitment. The oxidative modification of macromolecules on

lipoproteins (e.g., LDL) or phospholipids (e.g., cardiolipin)

generates OSEs, acting as neo-self-antigen (107, 172). OSEs are

highly immunogenic and act as DAMP and PAMP in mice and

humans. These epitopes trigger both innate and adaptive

immune responses and lead to the production of autoantibodies

(158). They interact with PRR, including scavenger receptors

such as CD36, SR-A1, LOX-1, and stimulate phagocytosis, foam

cell formation, IFN-γ production, cell death and necrotic core

expansion. Their recognition by VSMC and EC drive ED and

plaque instability (206).

OxLDL levels are not only elevated in SLE compared to

controls, but they also exhibit more OSEs (160, 207, 208). Its

presence is associated with active disease as well as overt and

subclinical CVD (160, 207). Interestingly, these same epitopes

also arise from apoptotic cell membranes and extracellular

vesicles and are able to generate immunogenic responses (158).

This overlap could be of particular relevance in SLE, since

microparticles and cellular debris persistence is a hallmark of the

disease. Additionally, aCL were demonstrated to cross-react with

OSEs on oxLDL (209, 210). Given this shared immunological

landscape, OSE might represent a common link between lupus-

driven autoimmunity and the heightened cardiovascular risk

observed in SLE patients.

These molecules are likely critical in modulating immune

homeostasis, as OSEs are primary targets of natural IgM in both

humans and mice, comprising over 30% of the natural IgM

repertoire in mice (211). Phosphorylcholine (PC), among the

most studied OSEs in both atherosclerosis and autoimmune

disease, is derived from phosphatidylcholine, a major component

of cellular membranes, organelles and lipoproteins, and is

exposed following oxidation process (172). In SLE, natural IgM

antibodies targeting PC and MDA enhance apoptotic cell

clearance, reduce oxidative stress, neutralize inflammatory

DAMPs, reduce foam cell formation and inhibit DC activation

through p38-MAPK signaling, thus decreasing IL-6, TNF-α,

CD86, and CD40 expression (212, 213). Furthermore, anti-PC

IgM antibodies have been shown to enhance the proportion of

Tregs in peripheral blood of patients with SLE, even restoring

their Treg levels similar to those of healthy controls (214). SLE

patients exhibit consistently reduced levels of anti-MDA and

anti-PC IgM, which correlate negatively with disease activity

(110, 212, 215–217); similarly, low levels of natural IgM against

oxidized phospholipids were linked to plaque burden and

vulnerability, independently of β2-glycoprotein I (218). In a

cohort of 114 SLE patients, anti-PC and anti-MDA IgM levels

above the 66th percentile strongly protected against plaque

prevalence and vulnerability (OR 0.08 and 0.10), while levels

below the 33rd percentile significantly increased risk (OR 3.79)

(212). Anti-PC IgM was also independently inversely associated

with plaque occurrence and cardiovascular risk scores across

mixed systemic rheumatic diseases (110, 216). On a similar note,

SLE patients exhibit significantly lower levels of autoantibodies

against native and MDA-modified apolipoprotein B-100 peptides

(both p45 IgM and p210 IgG), with more pronounced reductions

in those with CVD or organ damage (219).

On the other hand, IgG against OSEs are mostly considered

proatherogenic, although much variation exists in the relevant

studies (98). Disparities might be the result of different IgG

subclass (e.g., IgG1), antigen target (e.g., ALDH4A1), FcyR

engagement (e.g., FcyRIIB) and post-translational alterations

(e.g., glycosylation), among others, some being atheroprotective.

However, in SLE, a wide array of IgG autoantibodies interacts

with key components of atherogenesis (including lipids, EC,

macrophages, and neutrophils) thereby potentiating the

pathogenic role of IgG in promoting accelerated atherosclerosis.

Dysfunctional HDL

HDL is a structurally and functionally complex lipoprotein

composed of various apolipoproteins, most notably ApoAI,

alongside phospholipids, sphingolipids, free cholesterol,

cholesteryl esters and triglycerides (220). HDL carries several

enzymes, such as paraoxonase-1 (PON1), its most potent

antioxidant, along with ApoAI, which constitutes 70% of

HDL’s protein fraction and supports PON1 stabilization,

cholesterol homeostasis, and immunomodulation (174, 220).

Beyond its role in protecting against oxidative stress, HDL

exerts a strong cardioprotective effect, largely through reverse
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cholesterol transport, a multi-step process in which cholesterol

efflux capacity plays a critical role in macrophage cholesterol

removal and preventing foam cell formation. HDL exerts

significant protective and immunomodulatory functions in

healthy state, through binding lipopolysaccharides, neutralizing

bacterial toxins, regulating endothelial barrier integrity and

immune cell trafficking, suppressing monocyte and

macrophages activation, inhibiting DCs maturation and

influencing T cell differentiation.

In SLE, a significant proportion of HDL loses its protective

function, becoming dysfunctional with impaired ability to

inhibit LDL oxidation (221). HDL molecules become pro-

inflammatory as evidenced by findings from Smith et al.

demonstrating increased macrophage inflammatory cytokines

production through interaction with LOX-1 (222). This

dysfunctional HDL molecule subset has been identified as an

independent risk factor for subclinical atherosclerosis and

carotid plaque in women with SLE. Moreover, its levels are

significantly decreased as assessed in a recent meta-analysis,

which is also among the most prevalent lipid abnormalities

reported in SLE cohorts (191, 223). Disease activity is strongly

linked to this finding, and various SLE-specific mechanisms

might explain the altered HDL function and level (224, 225). In

an inflammatory environment, HDL loses its anti-atherogenic

properties through oxidative stress and interactions with acute

phase reactants (226–228), translating in elevation of oxLDL

levels in SLE and RA patients (228). In SLE, excessive NETosis

releases oxidative enzymes like MPO and NADPH oxidase

which directly contribute to HDL and LDL oxidation (49).

Mitochondrial dysfunction and
oxidative stress as a bridge between
interferons, lupus dyslipidemia and
local inflammation

Mitochondrial dysfunction and mito-inflammation have

emerged as crucial mediators of SLE, shedding light on the

impact of disruptions in mitochondrial integrity on immune

dysregulation and chronic inflammation (51, 155). This concept

seems to be particularly relevant in the process of accelerated

atherosclerosis that characterizes lupus. Indeed, patients with

mtDNA mutations develop mitochondrial atherosclerosis even in

the absence of traditional cardiovascular risk factors (229).

Genetic mutations in mtDNA, including various SNPs and

D-loop polymorphisms, also contribute to autoimmune diseases

like SLE (155). Mitochondria are also the primary source of ROS

overproduction and oxidative stress in SLE (230), and IFN-I

emerges as a key driver in this process (51, 155). IFN-I enhance

oxidative phosphorylation (OXPHOS) and fatty acid oxidation in

immune cells, leading to mitochondrial mtROS accumulation.

This phenomenon is strongly implicated in lipid peroxidation,

forming 4-hydroxynonenal (4-HNE) and malondialdehyde

(MDA)-modified proteins among others. Such alterations are

notably responsible for generating oxHDL, oxLDL, oxidized

nuclear products and oxPL.

IFN-I also disrupt mitophagy mechanisms, leading to

accumulation of dysfunctional mitochondria and cytoplasmic

release of mtDNA and mitochondrial DAMPs, which amplifies

inflammation, notably through cGAS-STING, TLR and NLRP3

inflammasome pathways (51). The NLRP3 inflammasome is the

most extensively studied pathway linking mitochondria and

inflammation, particularly in atherosclerosis (152).

In atherosclerosis, oxidative stress from excessive local mtROS,

oxLDL, and aging leads to mitochondrial damage, triggering the

release of mtROS, cardiolipin, and mtDNA. These components

activate the NLRP3 inflammasome, fueling chronic inflammation

and elevating IL-1β and IL-18 levels, which further impair

mitochondrial function by promoting calcium influx (229).

Mitochondria also play an important role in endothelial

homeostasis, notably in NO production. The vicious cycle of

mitochondrial dysfunction and ROS accumulation disrupts NO

production and promotes ED and EC activation, ultimately

accelerating atherosclerosis progression (229).

On another level, defective mitophagy has been observed in

CD4+ and CD8+ T cells, monocytes, and DCs of SLE patients,

further promoting atherogenic pathways (231). Indeed, as a

result, excess mtROS and cytoplasmic mtDNA engage the MAVS

pathway, which leads to even more IFN-I production (51). In

monocytes, this IFN-α-induced mitochondrial dysfunction results

in differentiation into pro-inflammatory DCs, which perpetuate

the cycle of immune activation in SLE (232). In CD4+ T cells,

mitochondrial dysfunction can activate the mammalian target of

rapamycin (mTOR) pathway, which can skew their

differentiation towards pro-inflammatory phenotypes (233).

Restoring normal T cell metabolism has been suggested to

potentially alter both SLE and atherosclerosis progression (231).

Finally, recent findings have suggested an intriguing role of

intracellular complement (referred to as the complosome) in

modulating metabolic processes including mitochondrial activity

and autophagy in human immune cells (234). For instance,

activation of intracellular C5aR1 on mitochondrial membranes in

mouse models was shown to increase ROS production, glycolysis,

and IL-1β secretion in macrophages (235). This process was

promoted by cholesterol crystals and was shown to be a key player

in atherosclerosis progression (235), alongside impaired intracellular

C3-mediated efferocytosis (181). It is worth highlighting that

various other pathological alterations of the complosome have been

linked to autoimmunity and described in SLE, scleroderma as well

as rheumatoid arthritis (185, 234). The complosome emerges as yet

another potential bridge between autoimmunity, mitochondrial

dysfunction and inflammation, although its specific contribution to

accelerated atherosclerosis in SLE remains unexplored.

Immune senescence

Immunosenescence refers to the functional decline of the

immune system with age, encompassing loss of self-tolerance, cell

exhaustion, relative resistance to apoptosis, and chronic low-

grade inflammation. This phenomenon is characteristic of aging

individuals and is implicated in the emergence of various age-
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related diseases, including cancer, increased infection susceptibility,

autoimmune disorders, decreased vaccination response as well as

promotion of atherosclerosis (236, 237). Cellular senescence

refers to an irreversible cell cycle arrest and occurs as cells are

exposed to non-fatal insults.

Both immune and non-immune senescent cells contribute to

inflammaging, a chronic inflammatory state mediated by the

senescence-associated secretory phenotype (SASP), characterized

notably by secretion of IL-6, IL-1β, IL-8, TNF-α and

metalloproteinases (238). Inflammaging is believed to play a

significant role in atherosclerosis. Senescent cells are found in early

atherosclerotic plaques and are likely strong contributors in

initiating the disease and participating in plaque expansion and

instability (238). Immunosenescence appears significantly accelerated

in patients with SLE (236). Key mechanisms include mitochondrial

dysfunction leading to oxidative stress, but also telomere shortening,

DNA damage and genomic instability, epigenetic alterations, and

chronic antigenic stimulation.

T cell senescence is notably associated with higher disease

activity, kidney involvement, increased carotid intima-media

thickness and decreased FMD (199–201). Senescent T cells are

broadly identified by increased expression of CD57 and KLRG1,

downregulation of CD27 and CD28, upregulation of p53, and the

secretion SASP (237). They are terminally differentiated

lymphocytes that can no longer proliferate but remain highly

cytotoxic. Their identification in other autoimmune diseases such

as rheumatoid arthritis, Grave’s disease and ankylosing spondylitis

reinforces their possible pathogenic role, all the more so given their

association with severe clinical manifestations and poor treatment

response (239). In relation to atherosclerosis, these T cells have

been shown to secrete high levels of IFN-γ in addition to SASP, a

major cytokine in driving macrophage M1 phenotype and

promoting plaque instability (240).

As an example, angiogenic T cells (Tang,

CD3 + CD31 + CXCR4+) are critical for endothelial repair and

EPC levels, possibly through pro-angiogenic mediators such as

IL-8 and MMP-9, although their activity is disrupted in SLE

(241). Indeed, SLE patients exhibit an expanded senescent

CD28null Tang phenotype. Unlike their CD28 + counterparts,

CD28null Tang cells express cytotoxic markers (perforin,

granzyme B) and pro-inflammatory cytokines (IFN-γ)

impairing endothelial repair and contributing to vascular

damage and atherosclerosis (242). These Tang cells correlate

with reduced EPC activity, anti-dsDNA and anti-Ro antibody

positivity, and LDL cholesterol levels (241, 242). In young SLE

patients without prior CVE or significant conventional risk

factors, dysfunction of Tang cells was shown to be an early,

SLE-specific, event in the disease course toward CVD (241).

Conclusion

Endothelial dysfunction is the earliest identifiable event

triggering atherogenesis in SLE, as a result of endothelial cell

injury and activation as well as defective repair. This leads to

immune cell recruitment into the subintima, mainly comprising

of low-density granulocytes, macrophages, dendritic cells and

T cells that promote inflammation and foam cell formation via

the uptake of oxLDL. B cells contribute substantially to

atherosclerosis via antibodies against various epitopes and

immune complexes formation that further enhance the local

inflammatory response. Several soluble mediators, mainly IFN

type I and IL-1β, amplify this process via mechanisms involving

complement and NLRP3 activation. The inflammatory

microenvironment in SLE affects multiple lipoproteins that, in

turn, induce the activation of the autoimmune response as well

as autoinflammatory mechanisms. Mitochondrial dysfunction

and oxidative stress are emerging factors further underlining the

complexity of accelerated atherosclerosis in SLE and the need for

deeper understanding and improved management of the CV risk

in these patients.
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