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Molecular polymorphism of
Plasmodium vivax Duffy
binding protein domain II
from Nicaragua, and global
diversity patterns
René Ortega-Monroy1†, Hugo A. Tomasini-Ovilla1†,
Frida Santillan-Valenzuela1, Alberto Montoya2

and Lilia Gonzalez-Ceron1*

1Regional Center of Research in Public Health, National Institute of Public Health, Ministry of Health,
Tapachula, Mexico, 2Parasitology Department, National Centre for Diagnosis Reference, Ministry of
Health, Managua, Nicaragua
Background: Plasmodium vivax Duffy binding protein domain II (PvBDPII) is a

promising vaccine candidate due to its crucial role in reticulocyte invasion.

However, polymorphism is a concern as it may confer evasion of blocking

antibodies. In this study, nucleotide and protein polymorphism were analyzed

in parasites collected during a decline in malaria cases in Nicaragua.

Methods: Genomic DNA was extracted from P. vivax blood samples obtained

from symptomatic patients in Nicaragua during 2012–2013. The PvdbpII gene

was amplified and sequenced, and genetic structure, genealogical relationships,

and amino acid polymorphism were analyzed. For comparison and to elucidate

global variation of this gene, homologous sequences from other geographical

regions were included.

Results: Sixty-three consensus sequences from Nicaragua were obtained,

revealing 12 non-synonymous mutations and 6 haplotypes (Hd=0.704).

Nucleotide diversity was lower (p=0.0044) than in other endemic regions. The

Z test of selection (dN/dS) was positive (3.17; p < 0.001), similar to parasite

populations worldwide (Latin America, Middle East, Asia, Southeast Asia, Africa,

Papua New Guinea). Network analysis revealed that Nicaraguan pvdbpII

haplotypes differed by 3–12 mutational steps. High-frequency haplotypes from

six other Latin American countries were shared, showing signs of diversification

and limited population structure. Five Nicaraguan haplotypes corresponded to

the 10 most frequent globally. Haplotypes defined solely by amino acid changes

at positions 417, 437, and 503 were of the Sal-I type (NWI), NWK, and KRK. These,

along with KRI, were shared across most regions at varying frequencies. Based on

these variations, two main divergent groups were identified.
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Conclusions: The low diversity observed in pvdbpII suggests a population

contraction aligning with the decline of malaria cases in Nicaragua during the

sampling period. The PvDBPII haplotypes found may represent those best

adapted in Nicaragua and in other endemic regions globally, encompassing

both Sal-I-related and divergent types. It would be beneficial to assess the ability

of the most frequent and persistent haplotypes to elicit phenotype-transcending

immunity, which is critical for the development of a multicomponent vaccine and

for monitoring its effectiveness.
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Introduction

Malaria is caused by protozoan parasites of the genus

Plasmodium and transmitted by female mosquitoes of the genus

Anopheles. More than 85 countries are at risk of malaria

transmission. In 2023, there were 263 million clinical cases,

representing an increase of 11 million compared with the

previous year (World Health Organization, 2024).

In the Region of the Americas, malaria cases declined by 65.4%,

from 1.5 million to 0.6 million between 2000 and 2022, and in 2023

(World Health Organization, 2024). Plasmodium vivax accounted

for approximately 73% of the 505,642 confirmed malaria cases,

while about 27% were caused by Plasmodium falciparum (World

Health Organization, 2024). The Central and South America have

experienced significant changes in malaria transmission. In

Nicaragua, malaria cases gradually decreased between 2000 and

2010, reaching more than 90% reduction (from 23,281 cases in 2000

to 896 in 2010 (World Health Organization, 2023). The number of

cases fluctuated slightly between 2011 and 2014 (1,171–1,564 per

year) and then drastically increased from 2,886 in 2015 to 23,323

and 16,158 in 2021 and 2022, respectively (World Health

Organization, 2023). Although Nicaragua reported fewer cases in

2023 (6,716), it remained the country with the highest malaria

burden in Central America (World Health Organization, 2024).

Malaria elimination requires continuous assessment and

improvement of control measures and strategies. Understanding

parasite molecular diversity contributes to knowledge of disease

epidemiology, delineates transmission patterns, and informs the

development of vaccine candidates and antimalarial drug resistance

monitoring. Studies of genetic and antigenic diversity can also help

predict and monitor the effectiveness of interventions by detecting

reductions in parasite diversity or the emergence of biologically

important phenotypes (Arnott et al., 2012; Escalante and

Pacheco, 2019).

P. vivax merozoites invade reticulocytes through complex

interactions between parasite ligands and reticulocyte receptors.

The Duffy binding protein (DBP) domain II (DBPII) participates in

the formation of a tight, irreversible junction with the erythrocyte
02
Duffy antigen receptor (DARC), which is essential for successful

invasion (Singh et al., 2005). The pvdbp gene, located on

chromosome six, encodes a 140-kDa type 1 integral membrane

protein that is secreted into the microneme. Its structure contains

seven domains: a signal peptide, two cysteine-rich domains (II and

VI), three hydrophobic domains (III–V), and one transmembrane

domain (VII) (Adams et al., 1992; Ranjan and Chitnis, 1999). The

cysteine-rich DBPII consists of 170 amino acids spanning residues

198–522. This domain is highly immunogenic, and during infection

it induces blocking antibodies that prevent P. vivax merozoite

invasion of reticulocytes (Michon et al., 1998, 2000). These

blocking antibodies are thought to be the mechanism by which a

PvDBPII-based vaccine could confer protection, making this

protein a promising target for vaccine development (Tsuboi et al.,

1994). Both linear and conformational epitopes may be important

in eliciting a protective immune response. Antibodies reactive to

PvDBPII linear epitopes have been detected in residents of endemic

areas in Papua New Guinea following repeated P. vivax exposure

(Cole-Tobian et al., 2002; Xainli et al., 2003; Cole-Tobian

et al., 2007).

Analysis of nucleotide diversity in pvdbpII provides information

on circulating antigenic variants and the feasibility of a universal

vaccine (Nobrega de Sousa et al., 2011). Domain II accounts for 93%

of the polymorphism in the PvDBP molecule and may play a role in

parasite immune evasion (Cole-Tobian et al., 2007; Chootong et al.,

2014; Sousa et al., 2010; VanBuskirk et al., 2004). The 10 most

frequent global amino acid variations in PvDBPII include R308S,

K371Q, D384G, Q385K, K386N/E, R390H, N417K, L424I, W437R,

and I503K (Sousa et al., 2011; Almeida-de-Oliveira et al., 2020)

Residues N417K, W437R, and I503K have been implicated in

immune evasion (VanBuskirk et al., 2004). More recently,

residues D309–A326, Q401–N417, L315–K334, and Q401–W420

have been identified as participating in conformational epitopes

(Urusova et al., 2019).

Central America appears to be the last region colonized by

P. vivax, with parasite populations exhibiting low diversity and

similarity to the Sal-I strain (Taylor et al., 2013). Previous

genetic studies using markers such as pvama1 and pvmdr1
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suggest that P. vivax in Nicaragua (Gonzalez-Ceron et al., 2017;

2023) may represent a unique population, possibly not exposed to

pyrimethamine and distinct from South American populations

(Gonzalez-Ceron et al., 2020). To characterize PvDBP diversity in

Central America, this study analyzed nucleotide diversity

and molecular polymorphism of P. vivax DBP domain II using

isolates from Nicaragua collected in 2012–2013. Homologous

sequences from Latin America and other geographical regions

were included for comparative analysis and to assess

global variation.
Materials and methods

The study was approved by the Ethics Committee of the

National Institute of Public Health (CI1042) and the National

Centre for Diagnosis and Reference, Ministry of Health,

Nicaragua. The study followed bioethics guidelines (CITI

program). All participants older than 18 years provided written

informed consent, and minors aged 7–17 years gave assent

accompanied by the written informed consent of one parent or

guardian, in accordance with the Declaration of Helsinki. Patient

personal information was encrypted, and only the municipality of

residence was recorded.
P. vivax samples

P. vivax diagnosis was conducted by parasitological analysis of

thick blood smears at the national sentinel laboratory network of

the Ministry of Health. Blood samples were obtained from

symptomatic patients living in affected areas of Nicaragua

between 2012 and 2013 (Gonzalez Ceron et al., 2023; Gutierrez

et al., 2016). P. vivax infected blood samples were spotted onto

Whatman #2 filter paper, dried, and stored in the dark for later use.

Sixty-five previously obtained samples from different municipalities

were selected for this study.
Gene amplification and sequencing

DNA extraction was performed using the QIAamp Blood

Minikit (Qiagen, Valencia, CA, USA) according to the

manufacturer’s instructions. Three circles of 5 mm each were cut

from the dried blood spots. A final elution volume of 50 μL

containing extracted DNA was stored at −20°C for subsequent

analysis. The Pvdbp domain II was amplified using nested PCR. The

first PCR was performed in a 20 μl reaction mixture containing;

9.2μl H2O, 4μl 5x Buffer, 1.6μl 25mMMgCl2, 1μl 1.2mM dNTP, 2μl

10μM DBPF1 (5´ -GATAAAACTGGGGAGGAAAAAGAT- 3´)

and DBPR1 (5´-CTTATCGGATTTGAATTGGTGGC- 3´)

primers, 0.2μl GoTaq® DNA polymerase (Promega, Madison,

WI, USA), and 2μl extracted DNA. The nested PCR was
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performed in a 50 μl reaction containing: 25.5 μl H2O, 10 μl 5x

Buffer, 4 μl 25mM MgCl2, 2.5 μl 1.2mM dNTP, 5 μl 10μM DBPF3

(5´ -CCTCGAATGGTGGCAATCCT- 3’) and DBPR3 (5’ -CCTC

TTCAACGGAACAAACGCA- 3’) primers, 0.5μl of GoTaq®

Polymerase and 2.5μl of first PCR product to obtain a fragment

of ∼984 bp.

Both PCR reactions were carried out under the following

conditions: 95°C for 3 min; 35 cycles of 94°C for 40 s, 58°C for

40 s, and 72°C for 90 s; and a final extension at 72°C for 5 min.

Reactions were performed in a T100 Thermal Cycler (Bio-Rad,

Hercules, CA, USA).

Amplified fragments were resolved on 1% agarose gels stained

with ethidium bromide and visualized under ultraviolet (UV) light

using a digital photo documentation system (UVP Inc., Upland,

CA, USA). PCR products were purified using the MiniElute PCR

Purification Kit (Qiagen, Valencia, CA, USA) according to the

manufacturer’s instructions and quantified using a NanoDrop

ND2000 spectrophotometer (Thermo Scientific, USA). Samples

with a concentration of at least 30ng/μl were sequenced by the

Sanger method with DBPF3 and DBPR3 primers at the High-

Throughput Genomics Unit, University of Washington, Seattle,

USA. Electropherograms were reviewed in BioEdit 7.2.5 (Hall,

1999) using the Sal-I reference sequence (XM_001608337.1). All

sequences showed single peaks, suggesting a single genotype per

amplified product. Consensus sequences were deposited in

GenBank (accession numbers PV581685–PV581747).
Genetic analysis

Parameters of diversity and neutral evolution estimates were

run in dnaSP v6.12 (Rozas et al., 2017), including the number of

mutations (M), segregating sites (S), haplotypes (H), haplotype

diversity (Hd), and synonymous and non-synonymous nucleotide

changes (S, NS). Nucleotide diversity (p), defined as the average

number of nucleotide differences per site between two or more

sequences in a population, and genetic diversity (q-w), defined as

the variety in the DNA segment composition within a population,

were also estimated.

Tajima’s D is based on the expectation that the estimates of S/a1

and k are unbiased estimates of q-w under a neutral model (Tajima,

1989). Here, S is the number of segregating sites, n is the number of

nucleotide sequences, and k is the average number of nucleotide

differences between pairs of sequences. A negative Tajima’s D value

indicates an excess of low-frequency polymorphism, which may

suggest directional selection or population expansion, whereas a

positive value suggests balancing selection or population

contraction. D* and F* of Fu and Li evaluate whether the pattern

of polymorphism is consistent with a neutral model. D* is based on

the difference between hs, the number of singletons (sites segregating

at a frequency of 1/n or (n − 1)/n), and h, the total number of

mutations, whereas F* is based on the difference between hs and k

(Fu and Li, 1993). Tests were run in DnaSP (Rozas et al., 2017).
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The Z test of selection (dN/dS) was estimated using the Modified

Nei–Gojobori model with Jukes–Cantor correction in MEGA v11

(Tamura et al., 2021). This test calculates the ratio of non-synonymous

(dN) to synonymous (dS) substitutions per site across all sequence

pairs, and the variance of the difference was computed using the

bootstrap method with 1,000 replicates. To delineate genealogical

relationships among pvdbpII haplotypes from Nicaragua and other

regions, median-joining networks were generated using Population

Analysis with Reticulate Trees in PopART v1.7 (Bandelt et al., 1999).

Genetic structure differences in the distribution of variants were also

analyzed to identify groups of sequences sharing similar patterns of

variation, using a Bayesian clustering approach with Markov chain

Monte Carlo (MCMC) estimation under an admixture model (Porras-

Hurtado et al., 2013). Tests were run 20 times with a burn-in of 50,000

and 100,000 iterations for K values ranging from 2 to 5 in

STRUCTURE v2.3.4 (Porras-Hurtado et al., 2013). The most

probable number of clusters or subpopulations was estimated using

the online tool Structure Harvester https://taylor0.biology.ucla.edu/

structureHarvester/ (accessed 30 June 2023) (Earl and vonHoldt,

2012). Genetic differentiation between two or more populations was

calculated using the FST index (Wright, 1951) in dnaSP v6.12.03

(Rozas et al., 2017). FST values range from 0 to 1, where 0 indicates

genetically identical populations and 1 indicates completely

unrelated populations.

To compare and gain a broader understanding of PvDBPII

diversity, homologous sequences from various geographical sites

were retrieved from NCBI. PvdbpII homologous sequences,

accessible via NCBI (https://pubmed.ncbi.nlm.nih.gov) and

PlasmoDB (http://plasmodb.org/plasmo/), were acquired and are

listed as follows: Brazil (BRA, n = 122) EU812839.1 - EU812960.1

(Sousa et al., 2010); Mexico (MEX, n = 35) KP759780.1 -

KP759814.1 (Gonzalez-Ceron et al., 2015), Ecuador (ECU,

n = 51) Pv001-Pv091 (Nunez et al., 2023); Peru (PER, n = 11)

Peru06-Peru10, Peru1008, Peru1021, Peru1022, Peru2025,

Peru257-Peru262 (Hupalo et al., 2016); Colombia (COL, n = 38)

U50590.1 - U50575.1 (Ampudia et al., 1996), and 30102100448 -

30102100440 (Hupalo et al., 2016); Iran (IRN; n = 12) KF791926.1 -

KF791921.1 (Valizadeh et al., 2014a), KF318359.1 - KF318358.1

(Valizadeh et al., 2014b), and KF751810.1 - KF751807.1

(Nateghpour et al., 2017); Pakistan (PKN; n = 118) (Nguyễn

et al., 2024); India (IND; n = 61) MN549534.1- MN549594.1

(unpublished), Sri Lanka (SLK; n = 100) GU143914.1 -

GU144013.1 (Premaratne et al., 2011), China (CHN; n = 124)

MZ765947.1 - MZ766070.1 (Shi et al., 2021); South Korea (SK; n =

13) JN989484.1 - JN989472.1 (Ju et al., 2013); Thailand (THL; n =

22) EF368159.1 - EF368180.1 (Gosi et al., 2008); Myanmar (MYN;

n = 167) MN233573.1 - MN233489.1, MN233488.1 - MN233407.1

(Hu et al., 2019); Papua Nueva Guinea (PNG, n = 88) AF469515.1 -

AF469602.1 (Cole-Tobian et al., 2002); Ethiopia (ETH; n = 75)

MZ062409.1 - MZ062224.1 (Lo et al., 2021); Sudan (SUD; n = 97)

MG805657.1 - MG805616.1 (Hoque et al., 2018), MZ062409.1 -

MZ062224.3 (Lo et al., 2021); Uganda (UGA; n = 31) KX009560.1 -

KX009537.1 (unpublished) , JX174528.1 - JX174522.1

(unpublished); Botswana (BTW, n = 8) MZ062409.1 -

MZ062224.2 (Lo et al., 2021).
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Amino acid and haplotype polymorphism.

DNA sequences were translated into amino acid sequences, and

the frequency of the most common amino acid substitutions and

haplotypes found in Nicaragua was compared with those from

other geographical regions. Additionally, the frequency of the eight

amino acid combinations derived from polymorphic residues 417,

437, and 503 was compared regardless of other substitutions. These

polymorphic residues are implicated in immune evasion

(VanBuskirk et al., 2004).
P. vivax circulation in Nicaragua using
pvdbpII versus pvdpbII - pvama1I-II

To test the sensitivity of pvdbpII haplotypes in tracking P. vivax

circulation in Nicaragua, these haplotypes were mapped to the

municipality level using ArcGIS v10.8.1. Furthermore, since

pvama1I-II sequences were available for most isolates, their

geographical distribution was compared with that of a

concatenated sequence comprised of pvdbpII and pvama1I-II.

Sixty-one isolates covering both pvdbpII (from this study) and

pvama1I-II sequences (GenBank: ON730710.1–ON730730.1,

ON730732 .1–ON730736.1 , ON730738 .1–ON730746 .1 ,

ON730749.1–ON730774.1) (Gonzalez Ceron et al., 2023) were

used. PvdbpII (1,806 bp) and pvama1I-II (915 bp) sequences were

concatenated in MEGA v11, and haplotypes were resolved in

DnaSP. Genetic relationships were investigated using a maximum

likelihood phylogenetic tree in MEGA.
Results

Diversity parameters for pvdbpII,
Nicaragua.

Sixty-three consensus pvdbpII sequences of 891 bp were

obtained, corresponding to nucleotides 595–1485 of the Sal-I

strain. Only nonsynonymous mutations were detected, and the

mutation at codon 441 was a singleton (Supplementary Table 1).

No mixed-genotype infections were detected. Nucleotide and

genetic diversity were low (p = 0.006 and q-w = 0.004,

respectively). A sliding window analysis of nucleotide diversity

showed higher values across nucleotides 900–1500 (Figure 1). Six

haplotypes were detected, with haplotype diversity (Hd) of 0.704.

Tajima’s D for pvdbpII was 1.531, and Fu and Li’s D* and F*

statistics were 1.411 and 1.326, respectively; none were significant.

The R² coefficient of linkage disequilibrium for the Nicaraguan

parasites was 0.356.
Haplotype networks

Amedian-joining network using 63 sequences from Nicaraguan

parasites showed six haplotypes separated by 1–12 mutational steps.
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Haplotype Nh1 was the most frequent and was separated by three

mutational steps from Nh2 and Nh6, and by four steps from Nh5.

Nh4 and Nh3 were separated by one and three mutational steps

from Nh5, respectively. Nh2 and Nh6 shared two nonsynonymous

mutations (R384G and R390H), while Nh3, Nh4, and Nh5

(divergent haplotypes) shared four nonsynonymous mutations

(N417K, L424I, W437R, and I503K) (Figure 2).

The haplotype network of global isolates was highly complex,

with multiple genealogical groups and no discernible geographic

structure, as reported previously (Nguyễn et al., 2024). Figure 3A

shows a network of Latin American pvdbpII haplotypes present in at

least two individuals. Intra-haplotype mutational steps ranged from

1 to 30. Four of the six haplotypes from Nicaragua represented the
Frontiers in Malaria 05
most frequent haplotypes (Nh1, Nh2, Nh3, and Nh5), albeit at

different frequencies (Figure 3A). A higher number of unique

haplotypes were detected in Ecuador > Brazil > Colombia

compared with other Latin American sites.
Structure analysis

The Evanno test for structure analysis based on pvdbpII
suggested five distinct subpopulations in Latin America; however,

the Delta K value was low (0.549). Population structure at K = 5 and

K = 4 did not differ significantly (Figure 3B). Most admixture was

observed in Brazil and Colombia. Nicaraguan subpopulations were
FIGURE 1

Sliding window analysis of pvdbpII gene fragments from Nicaraguan isolates. Midpoints were calculated for a window length of 100 bp with 25
overlapping nucleotides * P<0.05, ¶ P<0.10.
FIGURE 2

Haplotype network of P. vivax dbpII from Nicaragua, 2012–2013. Haplotypes are represented by different colors, with each circle corresponding to a
unique haplotype. The circle size is proportional to the number of sequences sharing that haplotype. As only nonsynonymous mutations were
detected across the 63 sequences, the amino acid polymorphism defining each haplotype is indicated. The four common mutations present in
haplotypes Nh3, Nh4, and Nh5 are shown in bold.
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shared with South American parasites, with the greatest difference

observed against Mexico.
Genetic parameters of pvdbpII in
Nicaragua, Latin America and globally

This analysis included 1,234 sequences covering 224 codons

(739–1410 nucleotides) from 19 affected countries: 318 sequences

from six regions in Latin America (LA; 25.8%), including

Nicaragua; 137 from the Middle East (11.1%); 155 from South

Asia (12.6%); 189 from Southeast Asia (15.3%); 135 from East Asia

(10.9%); 210 from Africa (17%); and 88 from Papua New Guinea
Frontiers in Malaria 06
(PNG; 7.1%). A total of 133 polymorphic sites and 144 mutations

were identified, of which 60 were singletons. Of the 244 haplotypes

detected, 70 were present in two or more individuals, representing

85.9% of all sequences.

Nicaraguan parasites showed the second-lowest nucleotide

diversity (p) in LA and the third-lowest globally. PvdbpII
haplotype diversity in Nicaragua was lower than in Peru, Brazil,

and Colombia but higher than in Mexico. Overall, genetic diversity

in South America was higher than that in Mesoamerica. Globally,

the highest nucleotide and haplotype diversity were observed in

Thailand and South Korea, respectively (Supplementary Table 2).

Tajima’s D values varied widely across regions, ranging from

−1.562 in PNG to 1.92 in India. Similarly, Fu and Li’s D* and F* values
FIGURE 3

Haplotype network and genetic structure of P. vivax dbpII from Latin America. (A) Median-joining haplotype network of pvdbpII haplotypes. Each
circle represents a unique haplotype, and its size is proportional to haplotype frequency (based on 269 sequences, including only haplotypes with
two or more sequences). Haplotypes are connected by lines, with short vertical stripes indicating the number of mutational steps between them.
Nh1–Nh6 denotes Nicaraguan haplotypes. Reference strains such as Sal-I (**), Pv01, and Belem were included. *Haplotypes showing four
simultaneous amino acid changes at residues N417K, L424I, W437R, and I503K are marked. (B) Genetic structure of 319 P. vivax isolates. Each color
represents one subpopulation. The Y-axis indicates the percentage of shared ancestry among individuals. The blue (K = 5) or green (K = 4)
subpopulation includes the *Sal-I strain. Individuals displaying more than one color indicate mixed ancestry.
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ranged from −5.57 to 1.74 and from −4.74 to 1.91 in PNG and Brazil,

respectively. The Z test of selection also varied among parasite

populations and was positive and significant in parasites from

Nicaragua, Mexico, and Colombia, as well as in populations from

the Middle East, Asia, Africa, and PNG (Supplementary Table 2).

The fixation index (FST) was estimated between parasite

populations from different geographical regions. FST values

between Nicaraguan and other LA parasites were low (0.032–

0.114), except with Mexican parasites (0.247). Low FST values

were also observed between parasites from Nicaragua and those

from India (0.043) and Iran (0.064) (Supplementary Table 3).
Frequency of PvDBPII amino acid
substitutions and haplotypes in Nicaragua,
Latin America and globally

All mutations detected in Nicaraguan parasites were shared

with other geographical regions (Table 1). The most frequent

substitution in Nicaraguan parasites was I503K (n = 63; 49.2%),

followed by D384G (42.9%). The simultaneous occurrence of four

changes at N417K, L424I, W437R, and I503K was observed in

31.8% of isolates from Nicaragua. These were present in all Latin

American (LA) regions and at frequencies ranging from 26% to
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100% globally. In Nicaragua, mutations at K386N and K386Q

occurred at similar frequencies (12.7% and 11.1%, respectively),

but K386Q was infrequent globally (Table 1).

No exclusive PvDBPII haplotypes defined by 14 residues

(R308S, L333F, K371E, N375D, D384G, E385K, K386N/Q,

R390H, N417K, I419M, L424I, W437R, S447K, I503K) were

detected in Nicaraguan parasites. Five of the six haplotypes

corresponded to the 10 most frequent haplotypes estimated in

our study (gh1–gh10), four of which occurred at >5% frequency

(Table 2). Gh2 (Sal-I/Nh1), gh3 (Nh5), and gh5 (Nh3) were present

in all LA regions, whereas gh7, gh8, gh9, and gh10 had the least

distribution. Gh10 (Nh4) from Nicaragua was also observed in the

Middle East and Africa. In LA, both Sal-I–related and divergent

haplotypes were widely distributed (Table 2). Supplementary

Table 4 shows the frequency of the most frequent haplotypes

by country.

The frequencies of PvDBPII phenotypes defined by

combinations at residues N417K, W437R, and I503K—known to

participate in antibody evasion (VanBuskirk et al., 2004) —were

also estimated, regardless of other substitutions. Phenotypes

corresponding to the Sal-I sequence (NWI) and NWK were

present in all regions at varying frequencies. The divergent

phenotype KRK was detected in 31.7% of Nicaraguan parasites

and showed wide variation in LA and outside the continent
TABLE 1 Frequency (%) of polymorphisms in PvBDPII from Nicaragua compared with other geographical sites.

Origin
Polymorphic residues

R308S K371E D384G E385K K386N R390H N417K L424I W437R I503K

Nicaragua 12.7 23.8 42.9 12.7 12.7 19.1 31.8 31.8 31.8 49.2

Mexico 17.1 20 31.4 17.1 17.1 11.4 88.6 88.6 85.7 91.4

Colombia 13.6 24.3 48.7 21.6 21.6 8.1 51.4 51.4 37.8 37.8

Ecuador 19.6 31.4 66.7 19.6 19.6 37.3 60.8 60.8 56.9 86.3

Peru 18.2 45.5 81.8 18.2 18.2 36.4 63.6 63.6 72.7 54.6

Brazil 6.6 26.2 81.2 19.7 22.1 49.2 40.2 47.5 49.2 43.4

Pakistan 16.9 34.7 87.3 29.7 28.8 61.9 36.4 50.8 37.3 53.4

Iran 5.3 42.1 68.4 10.5 10.5 26.3 52.6 63.2 63.2 73.7

India 11.5 34.4 75.4 22.9 22.9 47.5 36.1 47.5 36.1 52.5

Sri Lanka 13 34 94 20 20 66 36 49 37 55

China 14.52 26.6 83.1 46.8 47.6 54 60.5 71.8 68.6 49.2

South Korea 0 53.9 100 0 0 100 53.9 100 46.2 46.2

Thailand 22.7 22.7 81.8 50 45.5 59.1 45.5 86.4 68.2 50

Myanmar 6.6 11.4 96.4 43.1 38.9 85 75.5 83.8 73.7 47.9

PNG 55.7 1.1 54.6 10.2 10.2 40.9 26.1 52.3 26.14 28.4

Ethiopia 30.7 56 92 40 37.3 52 66.7 72 68 53.3

Sudan 29.2 40.6 77.1 16.7 16.7 36.5 65.6 90.6 65.6 72.9

Uganda 0 29 90.3 0 0 90.3 45.2 100 45.2 32.3

Botswana 100 0 100 0 0 100 0 100 0 100
fr
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(Table 3). Haplotypes with the NWI and KRK phenotypes were

found in most regions, followed by NWK and KRI. While

Nicaragua had the top three phenotypes globally, parasite

populations from Myanmar and Sudan exhibited seven of the

eight phenotypes (Table 3).
Geographic distribution of P. vivax
haplotypes in Nicaragua municipalities

Most pvdbpII haplotypes were widely distributed in Nicaragua.

Haplotype Nh1 (Sal-I) was common in RACCN and found in one

isolate from the Pacific coast (Figure 4A). Haplotype Nh2 was the

second most frequent (17.4%) in RACCN. Haplotypes Nh3–Nh5

were restricted to RACCN municipalities, while Nh4 predominated

on the Pacific coast (Figure 4A). Of the six pvdbpII haplotypes, only

two were exclusive to a single municipality.

The concatenated sequence (pvdbpII–pvama1I-II) significantly

increased resolution, yielding 16 haplotypes and identifying

exclusive haplotypes for each region or municipality (Figure 4B).

Notably, 30 of 31 parasites with pvdbpII Sal-I also exhibited pvama1

I-II Sal-I. The Mining region harbored two frequent and exclusive

haplotypes, while Bonanza had one and Rosita had two. Waspam

and Puerto Cabezas displayed six and one exclusive haplotypes,

respectively. All three haplotypes detected on the Pacific coast were

exclusive (Figure 4B).

A phylogenetic tree revealed several genetic groups that

exhibited a degree of homogeneity when analyzed with either

pvdbpII alone or the concatenated sequence (Figure 5).
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Discussion

The low P. vivax dbpII diversity found in Nicaragua aligns with a

continuous decline in the number of P. vivax cases since 2001,

including a significant drop between 2007 and 2012. This decline

was likely intensified operational activities for malaria control in the

country (Pan American Health Organization, 2020; World Health

Organization, 2021). Low genetic diversity was also observed in

pvama1I-II (Gonzalez Ceron et al., 2023), which is consistent with

mitochondrial DNA analysis of Central American isolates

compared with those from South America or outside the

continent (Taylor et al., 2013).

The invasion process of P. vivax requires the interaction of the

Duffy binding protein domain II (DBPII) and the DARC receptor

on reticulocytes (Singh et al., 2005). This molecule shows

polymorphism that might hinder its effectiveness as a vaccine

candidate (VanBuskirk et al., 2004). PvdbpII from Nicaragua

exhibited mutation and haplotype patterns similar to those found

in Latin America and elsewhere (Sousa et al., 2011; Almeida-de-

Oliveira et al., 2020). Haplotype network analysis, STRUCTURE

analysis, and the FST index based on pvdbpII suggest limited genetic

differentiation between Nicaraguan and other Latin American

parasites, a finding echoed in recent studies of global parasites

(Nguyễn et al., 2024). In contrast, analysis of pvmsp142, pvama1I-II,

and pvmdr1 gene markers has shown a differentiated population in

Nicaragua (Gutierrez et al., 2016; Gonzalez-Ceron et al., 2017;

2020). This is supported by the finding that mutations associated

with pyrimethamine resistance in PvDHFR, which are common in

South America, were not present in parasites from Nicaragua or
TABLE 2 P. vivax DBPII: most frequent global haplotypes.

Haplotype
Frequency (%)
LA/Global

Codon number

308 333 371 375 384 385 386 390 417 419 424 437 447 503

Amino acid (Sal-I strain)

R L K N D E K R N I L W S I

gh1 (Nh2) 14.1/10.4 . . . . G . . H . . . . . K

gh2 (Nh1) 15.4/8.2 . . . . . . . . . . . . . .

gh3 (Nh5) 14.7/7.2 . . . . . . . . K . I R . K

gh4 5.6/6.9 . . E . G . . . K M I R . .

gh5 (Nh3) 9.1/4.5 S . E . G K N . K . I R . K

gh6 2.5/4.4 . . . . . . . . . . . . . K

gh7 0/3.8 S . . . G . . H . . I . K .

gh8 0/3.7 . F . D G K N H K . I R . K

gh9 0/2.9 . F E . G K Q . K . I R . .

gh10 (Nh4) 2.2*/2.6 . . E . G . Q . K . I R . K
frontier
Total sequences: Latin America (LA, n = 318) and Global (n = 1235). Nh1-Nh5 were haplotypes named for Nicaraguan.
PvDBPII sequences. Sal-I strain sequence XM_001608337. *only Nicaragua.
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Mexico collected the same period (Gonzalez-Ceron et al., 2020).

The presence of similar mutations in pvdbpII globally might indicate

convergent evolution, possibly similar to genes involved in drug

resistance or other genes under selective pressure (Abera et al.,

2021; Flannery et al., 2015).

The exclusive presence of nonsynonymous mutations and a

positive Z test of selection in Nicaraguan parasites may indicate that

this protein is under antibody pressure, consistent with findings

from other geographic regions (Almeida-de-Oliveira et al., 2020;

Cole-Tobian and King, 2003; Chen et al., 2016; Michon et al., 2000).

Varying intensities of antibody selective pressure and/or genetic

drift (VanBuskirk et al., 2004), might explain the variation in

haplotype frequencies observed between Nicaragua and other

geographical regions. Although PvDBPII is less diverse compared

with other molecules more exposed to the immune system

(Gonzalez-Ceron et al., 2015), a proportion of infected individuals

develop variable antibody titers, which appear to increase with

exposure (Zakeri et al., 2011; Nicolete et al., 2016). These antibodies

inhibited the binding of P. vivax to human erythrocytes (Grimberg

et al., 2007) and may be phenotype-transcending and long-lasting

(King et al., 2008; Nicolete et al., 2016; Thawornpan et al., 2022).

In Plasmodium, amino acid substitutions in molecules involved in

parasite development and in vaccine candidates frequently modify the

protein’s antigenic profile, potentially allowing parasites to escape
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heterologous antibody responses. Experimental studies have shown

that antibodies targeting PvDBPII Sal-I (N417-W437-I503) inhibit

erythrocyte adhesion to COS cells expressing the homologous

phenotype. However, naturally occurring mutants showed varying

levels of inhibition, with NRK and KRK variants showing the

strongest inhibition (VanBuskirk et al., 2004). Similar results were

observed in P. vivax ex vivo short-term assays using heterologous

monoclonal antibodies (Rawlinson et al., 2019). Remarkably,

heterologous haplotypes carrying NWI/NWK versus KRK, NRK, and

KRI were the most prevalent globally, including in Nicaragua.

Further experiments using a mouse model demonstrated the

induction of cross-reactive inhibitory antibodies by different PvDBPII

phenotypes prevalent in Thailand and the humoral responses were

either phenotype-transcending or phenotype-specific (Thawornpan

et al., 2022). Haplotypes with variations similar to global haplotypes

gh8 and gh9 showed >50% inhibition of adhesion in vitro against all

polymorphic haplotypes except the Sal-I phenotype. In contrast, one

haplotype similar to the highly frequent gh1 induced strain-specific

antibodies. Sera from P. vivax-infected individuals showed variable

inhibition, blocking adhesion of between two and five PvDBPII

phenotypes (Thawornpan et al., 2022). Conserved continuous or

conformational B-cell epitopes may contribute to phenotype-

transcending immunity (VanBuskirk et al., 2004; Sousa et al., 2011;

Ntumngia et al., 2012; Chootong et al., 2014; Valizadeh et al., 2014a;
TABLE 3 Comparison of the frequencies (%) of P. vivax BDPII phenotypes in parasites from Nicaragua (2012-2013) and other geographical sites.

Origin
PvDBPII haplotypes by residues: 417-437-503

N-W-I* N-W-K K-W-I K-W-K K-R-I N-R-I N-R-K K-R-K

Nicaragua 50.8 17.5 0 0 0 0 0 31.7

Mexico 8.6 2.7 0 2.7 0 0 0 85.7

Colombia 43.2 5.4 10.1 2.7 8.1 0 0 29.7

Ecuador 1.9 37.3 2 2 9.8 0 0 47.1

Peru 9.1 18.2 0 0 36.4 0 9.1 27.3

Brazil 27.1 23.8 0 0 27.1 2.5 6.7 13.1

Pakistan 29.7 33.1 0 0 17.8 0 0.8 18.6

Iran 10.5 26.3 0 0 15.8 0 10.5 36.8

India 32.8 31.1 0 0 14.8 0 0 21.3

Sri Lanka 18.8 44.6 0 0 25.7 0 1 9.9

China 20.2 11.3 0 0 30.7 0 8.1 29.8

South Korea 46.2 0 0 7.7 7.7 0 0 38.5

Thailand 22.7 9.1 0 0 18.2 9.1 13.6 27

Myanmar 22.8 1.8 1.2 0.6 28.1 0.6 0 44.9

PNG 70.5 3.4 0 0 1.1 0 0 25

Ethiopia 25.3 6.7 0 0 20 0 1.3 46.7

Sudan 28.3 6.3 0 0 0 0 0 65.6

Uganda 54.8 0 0 0 12.9 0 0 32.3
* Sal-I phenotype. Amino acid changes are indicated in italics. P. vivax from Botswana had only one phenotype (Asn-Trp-Lys n = 8).
frontiersin.org

https://doi.org/10.3389/fmala.2025.1620450
https://www.frontiersin.org/journals/malaria
https://www.frontiersin.org


Ortega-Monroy et al. 10.3389/fmala.2025.1620450
Urusova et al., 2019; Rawlinson et al., 2019; Almeida-de-Oliveira et al.,

2020; Valizadeh et al., 2014c).

Previous findings suggest that the overall pattern of

polymorphism is more relevant than individual amino acid

substitutions in generating phenotype-transcending humoral

responses. However, the quality and quantity of antibody

responses vary among individuals. In Nicaragua, two main

PvDBPII phenotype groups were detected, representing highly

frequent and widespread haplotypes globally: gh1, gh2, and gh6,
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which are related to Sal-I, and divergent haplotypes (gh3, gh4, and

gh5) exhibiting variant phenotypes N417K-W437R-I503K or

N417K-W437R. Both groups occurred at similar frequencies, with

haplotype gh3 (Nh5) being the most widespread globally.

In Nicaragua, over half a million people are at risk of malaria,

with P. vivax being the predominant species. In RACCN, where

malaria transmission is most persistent, indigenous groups such as

the Miskito population (Ministerio de salud, 2014), are particularly

vulnerable due to natural disasters, climate change, economic
FIGURE 4

Geographic distribution of P. vivax haplotypes in Nicaragua, 2012–2013. (A) dbpII and (B) dbpII–ama1I-II haplotypes (H) were mapped using ArcGIS
v10.8.1. The Sal-I haplotype*, and haplotypes exclusive to the Mining region (M), Pacific coast (P), RACCN (Ro, Rosita; Bo, Bonanza; Wa, Waspam;
and PC, Puerto cabezas).
FIGURE 5

Maximum likelihood (ML) phylogenetic trees of 61 P. vivax isolates from Nicaragua, 2012-2013. (A) PvdbpII and (B) PvdbpII - pvama1I-II concatenated
haplotypes (H) were analyzed in MEGA v11 using the HKY model and bootstrap method with 1,000 replications. Thirty of 31 pvdbpII Sal-I haplotypes
also carried pvama1I-II Sal-I.
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instability, and limited access to health services (Ministerio de salud,

2014; Larrañaga et al., 2013; Soto et al., 2022). Notably, the RACCN

accounted for 67.6% of all malaria cases in Nicaragua between 2013

and 2018. During this period, reported P. vivax cases in the region

increased from 950 in 2013 to 14,501 in 2018, alongside a high rate

of presumed relapse episodes (Soto et al., 2022). Puerto Cabezas was

the most affected municipality. Significant population movement

from areas such as Waspam to Puerto Cabezas may have

contributed to the dispersal of P. vivax haplotypes, a factor that

warrants further evaluation. The pvdbpII marker alone is

insufficient for parasite surveillance, but it could be informative

when used in combination with other markers.

Because sampling in Nicaragua was conducted after

transmission had declined, the prevalent pvdbpII haplotypes in

Nicaragua might correspond to those that were best adapted.

These haplotypes would persist, but their frequencies could

fluctuate—a phenomenon previously observed using temporal

networks for pvama1I-II (Flores-Alanis et al., 2017) and

pvmsp142 (Flores-Alanis et al., 2022) in southern Mexico.

More integrated and temporal studies could help explain how

haplotypes (both Sal-I–related and divergent) interact and fluctuate

in a population over time, and explore evidence of immune evasion

in natural infections. In addition, studying histocompatibility

leukocyte antigen (HLA) associations with homologous and

heterologous antibody responses would be beneficial. For

instance, in the Brazilian Amazon, antibody responses against the

Sal-I haplotype were associated with specific HLA antigens (Kano

et al., 2016). Moreover, some Nicaraguan haplotypes were among

the most frequent globally, providing potential candidates for

mono- or polyvalent vaccines beyond just the Sal-I haplotype.
Conclusions

P. vivax dbpII in Nicaragua showed low genetic diversity, and

while its mutations and haplotypes were shared with other

geographic areas both within Latin America and globally, their

frequencies varied. Non-synonymous mutations predominated and

were located at sites involved in B-cell epitopes under

immunological selective pressure, consistent with findings in

other regions. This information contributes to the development of

PvBDPII-based vaccines, suggesting that the extent and type of

polymorphism relevant for vaccine design may already have been

identified. However, ongoing parasitological surveillance remains

crucial to detect new variants that could potentially lead to

immune evasion.
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