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Introduction

There are over 6,000 currently recognized species in the class Mammalia (Burgin et al.,

2018). Biodiversity is the enduring result of past events and presents environmental and

ecological conditions (Jones and Safi, 2011). The ability to interact with the environment

and display a range of behaviors depends on the coordinated interaction of different

structures of the nervous system with specialized functions, from sensory receptors to

higher sensory and motor processing centers. Thus, it is crucial to understand how these

circuits operate in order to understand mammalian behavior.

Over the years, neuroscientists have been searching for organizational principles

underlying mammalian brain function. From classical studies to advanced modern

techniques, significant efforts have been made to understand the brain circuit

organization. The first diagrams of brain circuits were created in the late 19th century,

primarily by Cajal, using the Golgi method (reviewed in DeFelipe, 2002). This technique

allows for a detailed study of the morphology of neurons and their connections, marking a

significant milestone in understanding brain architecture. Since then, the introduction of

new methods and techniques has enabled researchers to progress the study of brain

organization to better understand brain function and its role in cognition and behavior.

Nowadays, big interdisciplinary international projects (e.g., Human Brain Project, Blue

Brain Project, Brain Initiative, Human Connectome Project, Allen Institute Human

Program, and The China Brain Project) are making use of advances in imaging, artificial

intelligence, and computational neuroscience, with the aim of fully mapping brain

connections. However, despite the outstanding progress made by these projects, the vast

majority of neuroscientific studies in mammals have traditionally focused on investigating

only a few species (mainly rodents and non-human primates). These species have primarily

been chosen because of their suitability for standardized laboratory studies or their genomic

similarities to humans (as with monkeys). Nevertheless, many mammals exhibit unique

capabilities that have not yet been characterized in these species. Thus, one of the major

challenges in mammalian neuroscience is to support the study of a broad range of species in

order to reveal both conserved and species-specific features, ultimately leading to a better

understanding of mammalian brains and their role in inducing behavior.
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The importance of studying a broad
range of species

Since the very early studies of brain organization, neuroscientists

have been trying to understand how features such as brain size, the

number of brain regions, cell lamination patterns, and

interconnections between areas are organized in different brain

regions, and how they relate to cognitive abilities. There has been a

long-standing debate regarding the uniformity versus non-uniformity

of brain organization, with some researchers emphasizing the

similarities, while others highlight the differences (reviewed in

DeFelipe, 2002). For example, the cerebral cortex has been

traditionally divided into a number of cytoarchitectonic fields that

can be distinguished from their neighbors based on differences in the

overall density, size, and shape of the cells and their arrangement in

cortical layers, which supports the idea that differences in cortical

organization would give rise to a distinct and specialized neural

architecture (e.g., Brodmann, 1909; von Economo and Koskinas,

1925; von Economo, 1927; for a review, see Amunts and Zilles, 2015).

Other researchers have proposed that functional differences between

areas are mostly due to connections (Szentágothai, 1978; Creutzfeldt,

1977; Rockel et al., 1980; Douglas and Martin, 2004). Supporters of

this view affirm that during evolution, the complexity of the

neocortex increased in larger brains due to the addition of

microcircuits with the same basic structure. However, when a

range of species other than those commonly used (mouse, rat, cat,

monkey, and human) were considered, new arrangements were

found (Haug, 1987; Glezer et al., 1988; Reep et al., 1989;

Stolzenburg et al., 1989; Hof et al., 2000; DeFelipe, 2002; Defelipe,

2011; Chengetanai et al., 2020; Manger et al., 2021). Thus, new

insights can be obtained by examining species diversity. For example,

analyzing brains that are larger than the human brain can be of great

interest, such as the brains of African elephants, in which it has been

revealed that there are three times more neurons than in the average

human brain; however, the majority of these neurons are found in the

cerebellum, showing that it is the larger absolute number of neurons

in the human cerebral cortex (but not in the whole brain), which

correlates with the superior cognitive abilities of humans (Herculano-

Houzel et al., 2014).

Alternative methodologies have also allowed for the study of

new aspects of circuitry, and comparative studies are becoming

more common. Indeed, there is increasing evidence that each

species has unique molecular, anatomical, and physiological

features (Preuss and Coleman, 2002; Oberheim et al., 2009;

Defelipe, 2011; Sherwood et al., 2012; Geschwind and Rakic,

2013; Hawrylycz et al., 2012; Kaas, 2013; Eyal et al., 2018; Sousa

et al., 2017; Verendeev and Sherwood, 2017; Molnár et al., 2019;

Elston et al., 2001; Marchetto et al., 2019; Hodge et al., 2019;

Kalmbach et al., 2021; Lee et al., 2023; Galakhova et al., 2022;

Luria et al., 2023; Benavides-Piccione et al., 2024; Kanari et al.,

2024). In this regard, the concept of species-specific types of

neurons is a matter of debate because the definition of a cell type

depends on its morphological, physiological, molecular, and genetic

composition (e.g., Ecker et al., 2017). Consequently, it is important

to examine the diversity of species from different perspectives and
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encourage anatomical, physiological, and molecular researchers to

reach consensus on current controversial terms and issues

(preferably by meeting in person) in order to clarify brain

organization in different species (e.g., PING, 2008; Nelson, 2002;

DeFelipe et al., 2013; Molnár et al., 2019; Yuste et al., 2020).
Learning from the comparison of
brain features

The study of different brains allows for the comparison of

features across brain regions and species. If a particular brain

microcircuit shows specific patterns responsible for information

processing in a particular brain region, it can be investigated

whether such patterns can serve as a foundation for comparing

organizational principles across various brain systems, aiming to

uncover both shared principles and region/species-specific

adaptations (reviewed in Shepherd and Grillner, 2010). Taking

pyramidal cells (the basic building block of the cerebral cortex) as

an example, it is possible to analyze the extent to which these cells

have parallel morphologies in different cortical regions and species

by comparing distinct anatomical features, which have important

functional implications. Pyramidal cells are composed of distinct

dendritic apical and basal compartments that receive and integrate

information from functionally diverse areas (DeFelipe and Fariñas,

1992; Spruston, 2008; Aru et al., 2020). These cells have been shown

to be characterized—among different areas and species—by

markedly different dendritic structures, which are directly related

to function (reviewed in Elston, 2003; Elston et al., 2011). For

example, certain areas of the prefrontal cortex of various primate

species, including humans, have larger pyramidal cells, which are

more branched and spinous than their counterparts in the occipital,

parietal, and temporal lobes (Lund et al., 1993; Elston et al., 2001;

Jacobs et al., 2001; Luebke, 2017; Benavides-Piccione et al., 2024). In

addition, there is a trend towards increasing pyramidal cell

complexity with anterior progression in the occipitotemporal

cortex (reviewed in Elston, 2003). Regional variation in pyramidal

cell structure has also been observed in mice, albeit to a lesser degree

(Benavides-Piccione et al., 2006; Ballesteros-Yáñez et al., 2010).

Briefly, the size of dendritic arbors influences their sampling

geometry and the mixing of inputs; the patterns of dendritic

branching may determine the degree to which the integration of

inputs is compartmentalized within their arbors; and the density of

dendritic spines influences various aspects related to the integration

and co-operativity of inputs (e.g., Koch et al., 1982; Shepherd et al.,

1985; Malach, 1994; Elston, 2003; London and Häusser, 2005;

Spruston, 2008). Specifically, human pyramidal cells show greater,

but not scalable, dendritic computation complexity in certain

regions compared with pyramidal cells in other species, which

accounts for the demonstrated singularity of the biophysics of

these neurons (e.g., Jacobs et al., 1997, 2001; Jacobs and Sheibel,

2002; Elston et al., 2001; Zeba et al., 2008; Anderson et al., 2009;

Hutsler and Zhang, 2010; Beaulieu-Laroche et al., 2018; Eyal et al.,

2016, 2018; Gidon et al., 2020; Benavides-Piccione et al., 2020, 2021,

2024; Mertens et al., 2024; Kanari et al., 2024; Masoli et al., 2024).
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Nevertheless, there are relatively small and simple human

pyramidal neurons, such as those in the visual cortex (Elston

et al., 2001; Benavides-Piccione et al., 2024). Interestingly, in

brains that are larger than human brains—such as those of the

African elephant—longer dendritic segments are found, but there is

less intricate branching than that observed in human pyramidal

cells. In addition, African elephants show regional variation similar

to other rodent and primate species (Bianchi et al., 2011; Jacobs

et al., 2011).

Thus, through detailed analyses of the particular features of

pyramidal neurons across regions and species, it is possible to find

some common dendritic organizational patterns. Examples of such

patterns that have so far been determined as conserved are as

follows: pyramidal cell dendritic diameter values decrease as the

branch order increases; the length of dendritic segments increases

with higher branch orders; intermediate segments are thicker and

shorter than terminal segments; terminal segments of pyramidal

neurons exhibit similar widths; and the main apical dendritic

diameter correlates with axonal diameter and soma size—whereas

there are other features whose variation is found to contribute to the

region/species-specificity, such as the dendritic diameter, number of

primary dendrites, branching complexity, and spine density

(Benavides-Piccione et al., 2024; see also Elston and DeFelipe,

2002; Benavides-Piccione et al., 2020, 2021; de Kock and

Feldmeyer, 2023). Thus, some features reflect a general trend in

the structural organization and design of pyramidal neurons,

whereas other features represent specific morphological

parameters that contribute to the existing diversity within

pyramidal cell structures across different areas and species. In

addition, by identifying the distinct and conserved features

between regions and species, it is possible to hypothesize via

which steps pyramidal cell complexity may have increased during

cortical expansion: (1) an increase in dendritic diameter, followed

by further dendritic width enhancement of apical main and basal

dendrites, along with an increase in axonal diameter; and/or (2) an

enlargement in neuron size, involving a) extension of distal

dendritic segment lengths; b) increase in dendritic complexity

(e.g., number of nodes and dendrites); and c) an increase in the

number of dendritic spines (Benavides-Piccione et al., 2024).

In addition, because morphological features highlight

significant variations in the processing of information, it is

possible to build models that demonstrate the biophysical and

computational distinctiveness of neurons in different regions and

species (e.g., Eyal et al., 2016, 2018). Furthermore, since the

relationship between microscale cytoarchitecture and macroscale

connectome organization has been established in several species,

including humans (e.g., Scholtens et al., 2014; Barbas, 2015; van den

Heuvel et al., 2015, 2016; Beul et al., 2017; Garcıá-Cabezas et al.,

2019; Wei et al., 2019), the more elaborate the identification and

extraction of the features of pyramidal neurons, the more

comprehensive the characterization of macroscale organization.

Therefore, it is essential to identify and extract features that

capture the functional properties of pyramidal neurons in

different cortical regions and species. Moreover, the study of the

human brain in health and disease will not only help to better
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understand the mechanisms underlying human brain function but

will also provide new insights into the underlying disease

mechanisms of neurodegenerative and neurodevelopmental

brain disorders.
Extrapolation of data matters: the
case of the prefrontal cortex

A main concern regarding comparisons between species is the

extrapolation of data between regions and species. The prefrontal

cortex (PFC) is particularly relevant in this regard because its

function is still poorly understood, and potential inter-species

differences remain the subject of much debate, as demonstrated

by a recent workshop that brought together experimental and

computational scientists to discuss this matter (https://

www.humanbrainproject.eu/en/education-training-career/

workshops/pfc/). Here, we focus on only a few of the most pertinent

points debated at this workshop. The granular prefrontal cortex

(gPFC) is involved in a variety of high-level cognitive processes,

particularly those involving executive control, attention, memory,

and social behavior. It has undergone dramatic expansion in

primates and is composed of diverse regions that vary in terms of

the size, density, and distribution of their components, displaying a

complex set of connections and diverse gene expression repertoire

(reviewed in Povinelly and Preuss, 1995; Goldman-Rakic, 1996;

Kaas, 2013; Fuster, 2001; Kolk and Rakic, 2022; Preuss and Wise,

2022). Nevertheless, the long-standing question alluded to above

remains, that is, it has not yet been defined the extent to which it is

possible to extrapolate from the whole PFC to specific regions of

PFC, or species, to make comparisons (e.g., Preuss, 1995). For

example, rodents have homologs of the agranular areas found in

primates but lack homologs of the granular cortex, which

constitutes the largest part of the PFC in most primate species.

Likewise, the connectivity observed in primates as a result or

consequence of the new areas generated in primates cannot be

studied in mice. Thus, it could be agreed that the delimitation of the

PFC across species is based on the presence of a gPFC. Similarly, the

overall homology of areas between species should be revised to

define a more appropriate extrapolation of the data. Similarly, the

extent to which the same behavioral task can be applied to different

species should be better defined, highlighting potential limitations

when comparing tasks across species. In particular, inferring from

animal models to humans requires even more careful evaluation—

not only due to species specificity, but also because there are

technical and ethical constraints that limit the methods that can

be used to study the human brain. Consequently, understanding the

human brain requires the direct analysis whenever possible and

there is a clear need for more strategic tools to achieve this.

Similarly, it is important to outline the types of experiments or

strategies that should be employed to examine each brain species.

Finally, interindividual variability should also be considered,

particularly in humans and the PFC region, which exhibits

greater variability than that reported in other species (e.g., Jacobs
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and Scheibel, 1993; Peng et al., 2019; Benavides-Piccione

et al., 2021).
Concluding remarks

In summary, it is essential to support the study of a broad range of

species—rather than focusing solely on mice, rats, and other primates

—to reveal the diversity of the animal kingdom. Identifying both

conserved and species-specific features will help uncover the neural

mechanisms underlying differing mammalian behaviors. The human

brain has several unique features since every species has its own

particular traits. Promoting research on the human brain is crucial to

ensure a better understanding of its structure and function, which will

ultimately help explain human behavior. Multidisciplinary approaches

and collaboration between experimental and computational scientists

are necessary to establish a consensus on the key issues related to brain

organization across species.
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