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The identification of defect causes plays a key role in smart manufacturing as it

can reduce production risks, minimize the effects of unexpected downtimes,

and optimize the production process. This paper implements a literature review

protocol and reports the latest advances in Root Cause Analysis (RCA) toward

Zero-Defect Manufacturing (ZDM). The most recent works are reported to

demonstrate the use ofmachine learningmethodologies for root cause analysis

in the manufacturing domain. The popularity of these technologies is then

summarized and presented in the form of visualizing graphs. This enables us to

identify the most popular and prominent methods used in modern industry.

Although artificial intelligence gains more and more attraction in smart

manufacturing, machine learning methods for root cause analysis seem to

be under-explored. The literature survey revealed that only limited reviews are

available in the field of RCA towards zero-defect manufacturing using AI and

machine learning; thus, it attempts to fill this gap. This work also presents a set of

open challenges to determine future developments.
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1 Introduction

1.1 Motivation and scope

With the onset of Industry 4.0, manufacturing companies are in need of a continuous

upgrade of their manufacturing processes in terms of products and operations to become

more competitive. In their effort to provide an optimized production operation and

consistent delivery of better products, detecting defects and identifying defect causes

upstream becomes a crucial factor for the industry. More specifically, defect detection is

used by the industry operators to conduct a quality inspection in the production line,

OPEN ACCESS

EDITED BY

Oscar Lazaro,
Innovalia Association, Spain

REVIEWED BY

Alexandros Bousdekis,
National Technical University of Athens,
Greece
Hongbae Jun,
Hongik University, South Korea

*CORRESPONDENCE

Elpiniki I. Papageorgiou,
elpinikipapageorgiou@uth.gr

SPECIALTY SECTION

This article was submitted to Life Cycle
Engineering,
a section of the journal
Frontiers in Manufacturing Technology

RECEIVED 18 June 2022
ACCEPTED 14 October 2022
PUBLISHED 28 October 2022

CITATION

Papageorgiou K, Theodosiou T, Rapti A,
Papageorgiou EI, Dimitriou N,
Tzovaras D and Margetis G (2022), A
systematic review on machine learning
methods for root cause analysis towards
zero-defect manufacturing.
Front. Manuf. Technol. 2:972712.
doi: 10.3389/fmtec.2022.972712

COPYRIGHT

© 2022 Papageorgiou, Theodosiou,
Rapti, Papageorgiou, Dimitriou,
Tzovaras and Margetis. This is an open-
access article distributed under the
terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permittedwhich does
not comply with these terms.

Frontiers in Manufacturing Technology frontiersin.org01

TYPE Review
PUBLISHED 28 October 2022
DOI 10.3389/fmtec.2022.972712

https://www.frontiersin.org/articles/10.3389/fmtec.2022.972712/full
https://www.frontiersin.org/articles/10.3389/fmtec.2022.972712/full
https://www.frontiersin.org/articles/10.3389/fmtec.2022.972712/full
https://www.frontiersin.org/articles/10.3389/fmtec.2022.972712/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fmtec.2022.972712&domain=pdf&date_stamp=2022-10-28
mailto:elpinikipapageorgiou@uth.gr
https://doi.org/10.3389/fmtec.2022.972712
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/manufacturing-technology
https://www.frontiersin.org
https://www.frontiersin.org/journals/manufacturing-technology
https://www.frontiersin.org/journals/manufacturing-technology#editorial-board
https://www.frontiersin.org/journals/manufacturing-technology#editorial-board
https://doi.org/10.3389/fmtec.2022.972712


while defect source identification is used to further conduct smart

quality control by identifying defects or anomalies per root cause.

Product quality improvement has been the cornerstone of

Industry 4.0. The technological advances of the modern industry

have brought new challenges in the quality improvement stage,

which traditional quality control methodologies cannot handle.

New concepts have been born, like the development of policies

toward Zero-Defect Manufacturing (ZDM) (Psarommatis et al.,

2020a), which support the migration to this new era (Psarommatis

et al., 2022). ZDM heavily relies on new technologies like virtual

metrology, i.e., the ability to inspect product quality from

production data without physically measuring it (Dreyfus et al.,

2022). An extensive review of ZDM opportunities and

shortcomings has been presented in (Psarommatis et al.,

2020b). ZDM can be further boosted by the integration of

numerous Artificial Intelligence (AI) methods into traditional

technologies, such as metrology, digital twins, internet of

things, computer vision, augmented reality, quality control, and

predictive maintenance; at least 15 EU-funded projects (mostly

FoF-11 projects) and numerous individual publications may be

identified in the literature (OPTIMAI, 2021–2023; Papageorgiou

et al., 2021).

Defect detection aims to monitor the production line and

assess the quality of products. The quality requirements and

defect specifications are provided by the end-users on a per-case

level. Defect detection is mainly oriented along the following two

directions i): defect detection from images, which include

photographs, 3D scans, point clouds, and every other data

format that can be directly converted into a picture, and ii)

anomaly detection, through the analysis of time-series data,

feature analysis and discovery of unexpected events. In the era

of data-driven smart manufacturing (Tao et al., 2018), defect

detection procedures may benefit from AI technologies and

transform manual operations into semi- or even fully automatic.

Industry 4.0 takes defect detection to the next level by

pursuing not only defects but also their causes. Traditional

defect detection targets capturing faults and defects; thus, it

fails to provide any information about avoiding recurrence or

how the defect is related to production processes. Defects may

often go unattended and propagate along multiple production

stages before being captured. This leads to taking corrective

actions at a later stage, which is probably not related to the

defect’s actual cause. A systematic methodology has been realized

within smart manufacturing to identify the sources of defects,

termed Root Cause Analysis (RCA). This methodology can seek

among the production stages and determine the primary cause

responsible for delivering defective products. The goal of RCA is

obviously to prevent the recurrence of failures. RCA can be

thought of as an optimization process in smart manufacturing

that focuses on minimizing scrapping yields by addressing “what

caused the failure?” rather than “what is the failure?” Thus, RCA

can become a key asset to ZDM for industrial applications that

involve many sequential and complex processes.

Traditional RCA methodologies such as Pareto Analysis,

Fishbone Diagram, and Five-Whys have already been

established in manufacturing (Murugaiah et al., 2010; Jayswal

et al., 2011; Ma et al., 2021). However, these methodologies are

highly correlated with expertise and knowledge and thus are

hindered by biases, individualism (as they cannot be saved or

transferred), and time inefficiency. Moreover, the major

drawback of traditional methodologies is the under-

exploitation of the information that exists in the data from

production processes. The large volume of data that is being

gathered through production processes in industry 4.0 is

considered very important for ZDM. Nevertheless, research

questions arise about how these data can be exploited and

what are the proper models for processing them, as these data

are often multisensorial, multidimensional, and highly non-

linear. Machine learning has proved that it can efficiently treat

such types of data and thus, should be considered for AI-

based RCA.

The aim of this work is to conduct a systematic review survey

demonstrating the use of artificial intelligence methods for RCA

in smart manufacturing, with a focus on Machine Learning

Methods for RCA toward Zero-Defect Manufacturing. A key

objective of the paper is to present the employed survey

methodology in detail so as to not only present the current

state of the art in a repeatable way but also guide readers on how

to extend it in a consistent way and according to their needs.

An extensive literature review revealed the existence of only

two surveys that regard RCA in manufacturing (e Oliveira et al.,

2022; Solé et al., 2017), none of which deals with AI technologies.

The first survey covers a spectrum of RCA techniques applied in

various industrial domains, such as the semiconductor and

chemical industries (e Oliveira et al., 2022). According to the

survey, the most popular methodologies include association/

classification rules, control charts, regression models, and

principal component analysis. The second survey follows a

different approach and categorizes available methodologies

based on causality; deterministic and probabilistic

methodologies are thoroughly reviewed, targeting mainly

information technology applications (Solé et al., 2017).

According to this survey, Bayesian networks are among the

most popular learning models in this area. The current paper

focuses on the integration of ML methodologies into RCA

models applied in smart manufacturing, thus, filling a gap in

the current literature. The performed survey covers the most

recent advances in a 5-year period, from 2017 up to date.

1.2 Models for ML-based root cause
analysis

There is a wide range of AI/MLmodels that could be involved

in the RCA process. These models belong either to the

deterministic or the probabilistic group of AI-based
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methodologies. Each class expresses different attributes, may

have different implementations and demonstrates different

performance implications (Solé et al., 2017). On the one hand,

deterministic models are developed by applying statistical

learning techniques, which allow these models to identify

patterns in the data automatically. To accomplish that, the

models need to be trained on large datasets to unearth

boundaries and relationships in the data. The more data are

used to train the model, the higher the predictive accuracy. On

the other hand, probabilistic models can be constructed

hierarchically from data, which allows their wide use for RCA.

They enable reasoning behind the uncertainties inherent to most

data, thus allowing for fully coherent inferences over complex

data structures. Representative probabilistic models are those

based on Bayesian Networks and probabilistic Fuzzy Cognitive

Maps (FCMs). Since no domain knowledge is available to build

these models, the only way is to use learning algorithms that

exploit the raw data of the examined system. Various learning

algorithms have been developed, oriented on either learning both

structures and parameters of the model or just learning the

parameters in a given structure.

Deep Learning (DL) is a division of ML which has recently

displayed remarkable applicability in a range of different

applications, as well as in smart manufacturing. In smart

manufacturing, DL has found significant applicability for

processing and analyzing big manufacturing data. In most

cases, DL networks can be trained using supervised learning

with large sets of training data. The most popular DL methods

are the following:

1) Deep Neural Networks (DNNs). A DNN resembles an

Artificial Neural Network (ANN) with many hidden layers.

The difference is in the training process. DNN uses deep

learning as a class of machine learning algorithms with the

following main aspects: (a) use a cascade of multiple layers of

non-linear processing units for feature extraction and

transformation, (b) learn in supervised (e.g., classification),

and/or unsupervised (e.g., pattern analysis) manners, and (c)

learn multiple levels of representations that correspond to

different levels of abstraction; the levels form a hierarchy of

concepts. DNNs have more than three layers trained to model

non-linear problems.

2) Convolutional Neural Networks (CNNs). They are among the

most powerful deep learning techniques presenting notable

capabilities in analyzing and classifying images. They are

mainly employed in image processing applications

(semantic segmentation, image classification, instance

segmentation, object detection, etc.). Their neurons

architecture is based on the features of images they process

(width, height, depth, etc.). Typical CNNs have a similar

structure to ANN and consist of one or more filters

(i.e., convolutional layers), followed by aggregation/pooling

layers in order to extract features for classification tasks. Since

a CNN has similar characteristics to a standard ANN, it uses

gradient descent and backpropagation for training tasks,

whereas it contains pooling layers along with layers of

convolutions. The vector that is sited at the end of the

network architecture can deliver the final outputs.

3) Residual Neural Networks (Res-Nets). They are an extension

of DNNs. They are highly considered in industrial

applications where precision is vital for machinery health-

state diagnosis. Res-Nets typically perform better than CNN-

based approaches.

4) Recurrent neural networks (RNN). These are ANNs that

utilize connections between units in order to form a

directed graph along a sequence. RNNs use their internal

memory to process such sequences, something that is not met

in feed-forward ANNs. However, RNNs suffer from short-

term memory and the problem of vanishing gradient during

backpropagation. This is resolved by the Long Short-Term

Memory (LSTM) algorithm, presented in the following.

5) Long Short-Term Memory networks (LSTMs). LSTMs excel

over the original RNN due to their specific cell structure,

which allows the algorithm to add or remove information

from this cell using entities called gates. These gates control

this memorizing process by allowing the model to learn which

information to store in the long memory and which to

discard. The cell state resembles a conveyor belt. It runs

straight down the entire chain, with only some minor linear

interactions. Gates are a way to optionally let information

through. They are composed of a sigmoid neural net layer and

a pointwise multiplication operation. LSTMs have been

applied in predictive maintenance and prognostics in

manufacturing processes.

DL techniques enable to i) automatically learn from data ii),

detect underlying patterns, and eventually, iii) make efficient

decisions. With automatic feature learning and high-volume

modeling capabilities, DL provides an advanced analytics tool

for smart manufacturing in the big data era. It uses a cascade of

layers of non-linear processing to learn the representations of

data corresponding to different levels of abstraction. The hidden

patterns underneath each other are then identified and predicted

through end-to-end optimization. Thus, DL offers great potential

to boost data-driven manufacturing applications. Several review

papers extracted from the related literature show the actual

implementations of ML and DL methods in factory operations

within the smart manufacturing domain.

2 Systematic literature review

The presented review is based on the “Preferred Reporting

Items for Systematic reviews and Meta-Analyses” (PRISMA)

principles (Moher et al., 2010). This methodology is globally

accepted in the research community as it leads to well-structured
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article surveys, allowing investigators to perform accurate

systematic reviews. According to PRISMA, a predefined set of

questions needs to be defined. Then, identified documents are

collected, filtered, analyzed, and critically evaluated.

2.1 Research questions

The goals of this review can be outlined as i) to determine

what AI-based technologies have been exploited toward RCA

within smart manufacturing; ii) to investigate specific

applications and find out how these technologies have been

implemented; thus, iii) to shed light in current practices so

that further improvements may be built. To achieve these

goals, the following research questions (RQs) have been posed:

1) What AI algorithms have been employed? This RQ reveals the

available tools in the quiver of current smart manufacturing.

2) What is the accommodated industrial application? This RQ

reveals the field of application.

3) What is the popularity of each employed methodology? This

RQ reveals the trends in the employment of AI for RCA;

popular and well-established methods will probably be the

foundation for future developments.

Each article found during the search has been reviewed to

answer these questions. The answers were compiled in a

comprehensive way to give the reader a clear picture of the

current state of the art and its potential for future developments.

2.2 Review protocol

The review protocol includes the selection of proper sources,

the definition of search terms, and the definition of acceptance/

rejection criteria. These are described in the following.

2.2.1 Search sources
Amongst the many available databases and search engines,

Google Scholar and Scopus were preferred because i) they are

among the most popular in the research society, ii) they provide

consistent and reproducible search results, and iii) Google

Scholar provides free access, while Scopus is available to most

scientists and researchers through institutional subscriptions.

2.2.2 Search terms
Predetermined search terms were employed for searching the

most suitable articles; search terms were pursued in title, abstract,

and keywords. The literature search strategy was conducted by

utilizing the keywords “defect identification,” “root cause

analysis,” “deep learning,” “machine learning,” “artificial

intelligence,” “industry,” and “manufacturing,” using the

depicted query string (Figure 1).

Raw search returned a vast number of results; thus, the

inclusion/exclusion criteria needed to be defined so that only

the most relevant works were considered for evaluation. The

inclusion/exclusion criteria are outlined in the following

paragraphs and summarized in Table 1 in the form of

acceptance/rejection rules.

2.2.3 Inclusion criteria
This study focuses on ML-based methods for RCA in

smart manufacturing. Thus, studies in consideration

should include RCA methodologies applied in industrial

environments and applications and implementing AI, DL,

or ML in any of their flavors. Since the state of the art is

investigated, only the latest works within the last 5 years

were pursued, namely works published between 1 January

2017, and 15 April 2022 (date of literature search). Only

publications in English were considered, as all primary

studies are published in English.

The inclusion criteria include: 1) papers published; 2) the

process of root cause analysis and defect-cause identification in

industry; 3) ML-based algorithms, including both traditional ML

and DL techniques incorporated for defect-cause analysis; 4) ML

methods for RCA in smart manufacturing.

2.2.4 Exclusion criteria
To reduce the number of articles for investigation and keep

this survey within scope, numerous exclusion criteria were set.

First, articles published before 2017 were not considered, as they

do not reflect the current state of the art. Furthermore, RCA

methodologies should be literally based on AI/ML methods;

otherwise, they are considered irrelevant. Material of

questionable quality content was also neglected; such material

includes websites and online material, student theses, book

chapters, editorials, commentaries, non-original research

articles, protocols, meta-analyses, etc., as well as all non-peer-

reviewed content. Journal and conference reviews were omitted

as well. Nevertheless, articles published in languages other than

English were eliminated by this search.

2.3 Literature collection

After a thorough review of all mined articles, only those

fulfilling the established criteria were considered in the industrial

or manufacturing domain. After the adoption of the PRISMA

method and only those articles that were explicit about the

subject of this short review were retrieved. The overall search

process is graphically illustrated in Figure 2.

Finally, 30 research papers were selected for further

analysis. The selected articles are listed in Table 2, along

with the year of publication, the method employed, the

scope of the study, and the industrial process in which the

methodology is applied.
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3 Results

The review for AI-based RCA was divided into two families

according to the applied models’ specifications.

The first family of AI methods incorporated for automatic

RCA is based on probabilistic models, which comprise several

techniques, each one having different implementations and

certain performance implications. In this category, the main

representatives are the Bayesian and Hybrid Bayesian

networks. A Diagnostic Hybrid Bayesian Network is built in

(Chigurupati and Lassar, 2017) to model the cause-effect

relationship between the degradation parameters (cause) and

failure modes (effect) that occur in order to capture the cause-

symptom relationship within the examined hardware system.

The required step of assigning conditional probabilities for

building up the Bayesian network topology is accomplished

with the deployment of the linearly varying Weibull and

Lognormal distributions. This model was applied in two real-

life field use cases concerning a small batch of hardware modules.

The utilization of a Bayesian Network is also discussed in

(Lokrantz et al., 2018) as part of the proposed framework for

automatic root cause analysis and failure diagnostics in two

simulated manufacturing processes, which consist of three and

five process steps. To build the Bayesian network, various

algorithms were utilized for structure learning, parameter

learning, and inference. Regarding model training on

historical data, the inference is conducted on the causal nodes,

whereas the root causes of possible new process failures were

determined. Finally, the result of inference was given in the form

of conditional probabilities of the desired variables. The next use

case involves the determination of possible causes in the

manufacturing process of a bottle opener, termed the “Lion’s

Jaw” (Brundage et al., 2017). This article introduces a framework

for the formal, systematic manufacturing diagnosis of problems

arising in manufacturing systems. A Bayesian network was

selected because it models the cause-effect (causal)

relationship between nodes, increasing the system’s accuracy.

The required probabilities for model training were obtained from

the Simio simulation model (simi.com).

The second family of methods reported in this review

comprises ML and Artificial Neural Networks, which are

referred to as deterministic models since there is no

involvement of randomness in calculating the output state of

the model. In this regard, an ANN classifier tuned with an

intelligent Genetic Algorithm (GA) is proposed in (Arias

Velásquez and Mejía Lara, 2020) to improve the root cause

analysis and diagnosis of faults in power transformers.

Moreover, the authors in (Ma et al., 2021) develop a big-data-

driven root cause analysis system utilizing ML techniques. More

specifically, they apply K-Nearest Neighbor (K-nn) and Neural

Network (NN) classifiers to improve the performance of RCA in

their effort to enhance product quality performance and reduce

quality risk. The proposed framework comprises three distinct

modules: Problem Identification (PI), Root Cause Identification

FIGURE 1
Query string for literature search on RCA.

TABLE 1 Inclusion/Exclusion rules.

Rules Description

Rule 1 Search years from 2017 to 2022 (5 years period)

Rule 2 Remove books, technical reports, dissertations and theses, articles in press, editorials and commentaries

Rule 3 Remove journal and conference reviews

Rule 4 Remove documents that are not in English

Rule 5 Remove all publications that do not belong to subject area: Engineering, Computer Science, Decision Sciences, Energy, Materials
Sciences and Mathematics

Rule 6 Remove all publications that do not use the search terms Industry, Smart Manufacturing, Artificial Intelligence, Machine Learning,
Deep Learning, Root Cause Analysis and Defect-Cause Identification in the title, abstract or keywords
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(RCI), and Permanent Corrective Action. In the RCI Module, a

supervised ML method is deployed to detect possible root causes

of the defined quality problem. Then, the Multi-Layer Perception

(MLP)model is employed to define quality problems and identify

the root causes of the quality problems.

The contribution of another NN for industrial root cause

diagnosis is presented in (Chen et al., 2020). The Sparse Causal

Residual Neural Network (SCRNN) model is a ML-based

method which seeks to figure out the causal relationships and

causality lags between multiple variables. It seeks to predict the

future state of a target variable using as input the previous state of

the multiple time series, behaving in a regressive way, thus

directly determining the causal relationship between variables

after optimization. SCRNN comprises two modules: Variable

selection and Fitting. In the secondmodule, the fault variables are

determined, and then the RCA follows by deploying the SCRNN,

ending up in the isolation and recovery of the faults.

In the field of manufacturing industry, another ML model

was built, which deployed several anomaly detection techniques

for improving product quality in two assembly lines

(Abdelrahman and Keikhosrokiani, 2020). These techniques

include Histogram-Based Outlier Score (HBOS), IForest,

K-nn, Cluster-Based Local Outlier Factor (CBLOF), One Class

Support Vector Machine (OCSVM), Local Outlier Factor (LOF),

and Angular-Based Outlier Detector (ABOD). Their behaviour

was assessed through the application of two performance metrics.

Among these models, K-nn and ABOD showed the highest

performance. The authors performed an RCA using the

Pareto chart to identify those variables that cause the

anomalies. Also, 2 ML algorithms, namely Random Forest

(RF) and Support Vector Machine (SVM) were deployed in

(Sarkar et al., 2020) to accurately classify accident reports in a

steel plant, using text classification approaches and evaluate their

usefulness. The proposed RCA implementation aimed to find

hidden causal factors that would help the steel plant company to

take proper precautionary measures tominimize injuries, as RCA

provides a much deeper insight into the root causes behind the

incidents. In the case of RF, such a model was built in

(Steurtewagen and Van den Poel, 2019) and further compared

with an ANN to determine potential root causes of machinery

breakdowns and, more specifically, to identify possible breakage

points of compressor units that constitute the examined case

study. RCA was performed to implement predictive modelling as

well as to accurately predict compressor behaviour based on

sensor data. Two more approaches based on RF models were

developed in (Gonzalez et al., 2017; Berges et al., 2021) on two

different case studies. The first deals with the identification of

root causes of errors that happen in a network, and are based on a

historical dataset of events, while the second refers to the

detection of the signals triggering defect occurrence in the

semiconductor industry of automotive products.

Isolation Forest (IF) is another ML approach, and it is

proposed in (Carletti et al., 2019) for the task of Anomaly

Detection. Specifically, the IF algorithm is involved in the

Depth-based Isolation Forest Feature Importance (DIFFI)

FIGURE 2
Research screening process.
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TABLE 2 Collection of reviewed articles.

No Author Year AI/DL method Scope Industrial process

1 Brundage et al. (2017) 2017 Bayesian network Manufacturing diagnosis Manufacturing of a bottle opener

2 Chigurupati and Lassar
(2017)

2017 Diagnostic hybrid Bayesian network Hardware failures diagnosis Two real life field issues - small batch
of hardware modules

3 Gonzalez et al. (2017) 2017 Random forest Anomaly detection Corporate network real dataset

4 Crocco and O’Hern
(2018)

2018 Convolutional neural network Defects classification Image sensor product

5 Lokrantz et al. (2018) 2018 Bayesian network Failure diagnostics Two simulated manufacturing
processes (3-5 process steps)

6 Shah et al. (2018b) 2018 RRN-based deep learning model and graph-
based techniques

Detection of changes and tracing of
causes

Semiconductor manufacturing plant
data

7 Steenwinckel et al. (2018) 2018 Relational graph convolutional network
(RGCN) and generative adversarial
networks (GAN)

Adaptive anomaly detection Sensor stream environment

8 Carletti et al. (2019) 2019 Isolation forest algorithm (IF) Anomaly detection Synthetic and real industrial datasets

9 Diren et al. (2019) 2019 Ensemble approach of ML classification
algorithms - individual and ensemble NN

Product quality assessment and fault
prediction

Multivariate manufacturing process
in automotive sector

10 Steurtewagen and Van
den Poel (2019)

2019 Random Forest (RF) and artificial neural
network (ANN)

Predictive modelling and
maintenance decision support

Compressor units’ real-time sensor
data

11 Wasfi et al. (2019) 2019 Decision tree (DT) and gradient boosting (GB) Error detection of unreliable data Intelligent field equipment data on
transmission nodes

12 Chen et al. (2020) 2020 Sparse Causal Residual Neural Network
(SCRNN)

Process monitoring and fault
diagnosis

Tennessee eastman (TE) process

13 Tiensuu et al. (2020) 2020 Gradient boosting methods Quality prediction Steel strip center line deviation

14 Abdelrahman and
Keikhosrokiani (2020)

2020 Multiple anomaly detection techniques: HBOS,
IForest, KNN, CBLOF, OCSVM, LOF, and
ABOD

Anomaly detection Assembly machines and
measurements for two series of
connectors

15 Arias Velásquez and
Mejía Lara (2020)

2020 Intelligent GA-tuned ANN Diagnosis of faults Power transformers

16 Pan et al. (2020) 2020 Decision-tree model and frequent-pattern
mining

Identification of the root causes of
system failures

Two industry case studies for
network systems

17 Sarkar et al. (2020) 2020 Random forest (RF) and support vector
machine (SVM)

Safety performance improvement Steel plant incident data

18 Shen et al. (2021) 2021 Recurrent neural network (RNN) and granger
causality (GC)

Automatic fault diagnosis Tennessee Eastman (TE) chemical
process

19 Leonhardt et al. (2021) 2021 Graph CNN Product quality improvement and
zero-defect manufacturing

Meshed CAD models - automotive
vehicle engine hood

20 Ma et al. (2021) 2021 Supervised ML techniques, Multi-Layer
Perception (MLP)

Product quality performance
improvement and quality risk
reduction

Real operations data

21 Steenwinckel et al. (2021) 2021 ML technique incorporating Semantic
knowledge: FLAGS

Anomaly detection and fault
recognition

Sensor data streams in the railway
domain

22 Berges et al. (2021) 2021 Random forest, logistic regression, bootstrap
Forest

Detection of defect occurrence Semiconductor industry of
automotive products

23 Sun et al. (2021) 2021 Moving window KPCA and IGCI Adaptive fault detection and RCA Tennessee Eastman (TE) chemical
process

24 Pan et al. (2021b) 2021 Structure expansion reduction (SER) and
structure transfer (STR)

Defects identification Nanoscale FET dataset in
semiconductor industry

25 Lin et al. (2021) 2021 Supervised DL with CNN: YOLOv4 Manufacturing defects identification EL images of solar PV modules

26 Huang and Li, (2021) 2021 Tree-based models: CART, RF, XGBoost, MLP,
LDA, SVM, LR, K-NN

Quality and repeatability evaluation
of additive manufacturing

Laser powder bed fusion technology

27 Pan et al. (2021a) 2021 Two-stage clustering approach and transfer-
learning method

Defect-cause analysis Datasets of industrial network

28 Xie et al. (2021) 2021 Feature Fusion CNN (FFCNN) Defect detection Image samples of magnetic tiles
surface

(Continued on following page)
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framework, which is proposed for defining and evaluating feature

importance in industrial scenarios and further enables simple

RCA. IF is part of the isolation procedure, which defines a

tree-like model of decisions, called an Isolation Tree, in which

each node is linked with a variable, and its children are determined

based on a splitting value. According to it, a feature is defined as

important for anomaly detection when it can isolate samples,

meaning that it can induce isolation of outliers at small depths and

does not contribute to the isolation of inliers. RCA can then be

performed based on features that are marked as the most relevant

by the proposed approach.

Among the frameworks that belong in the same ML and

ANN family of methods, a scheme that consists of a moving

window using kernel principal component analysis (KPCA) and

an information geometric causal inference (IGCI) is reported in

(Sun et al., 2021) and concerns the adaptive fault detection and

RCA. Another method for fault root diagnosis is based on

Recurrent Neural Network (RNN) and Granger Causality

(GC), as proposed in (Shen et al., 2021). The framework

comprises three steps. First, a Principal Component Analysis

is performed to detect faults. Then, Dynamic Time Warping

(DTW) is used to group fault candidate variables based on

similarity and perform causality testing. Lastly, the

combination of RNN and GC models is used to locate the

root cause of faults. In addition, a new methodology for

adaptive anomaly detection and RCA was explored in

(Steenwinckel et al., 2021), using ML along with expert

knowledge. The developed Fused-AI interpretable Anomaly

Generation System (FLAGS) framework combines the

advantages of both data- and knowledge-driven techniques

towards optimizing anomaly detection, fault recognition, and

RCA, while providing interpretable causes for the occurred

anomalies. The proposed methodology was tested using a

predictive maintenance case in the railway domain. This

method seems to reduce downtime and provide more insight

into frequently occurring problems while it gives the operator a

new tool to investigate possible errors in the system.

A ML-guided methodology concerning tree-based models

(Decision Tree, RF, and XGBoost) for RCA is demonstrated in

(Huang and Li, 2021) to identify influencing production

parameters for repeatability improvement and quality

evaluation of additive manufacturing printed parts of the laser

powder bed fusion (L-PBF) technology. An unsupervised RCA

method deploying a decision-tree model is also demonstrated in

(Pan et al., 2020), which is combined with frequent-pattern

mining to cluster the data. Two case studies from the industry

are involved, adopting real-world test data from network

systems. In (Wasfi et al., 2019), a Decision Tree (DT)

algorithm along with a Gradient Boosting (GB) model were

selected to implement pattern recognition algorithms, which

target the recognition of those transmission nodes

characterized by unreliable data. On the other hand, the GB

model was proposed in (Tiensuu et al., 2020) to find root causes

behind the center line deviation of the steel strips. Using feature

extraction and domain knowledge, the authors performed data

reduction and new features construction to train the GB model.

Their case study showed a correlation of errors between a former

procedure (the hot rolling process) and a latter procedure (the

RAP-line process).

In addition to individual ML methods, it is recorded a

combination of such methods in the related literature. For

example, a NN ensemble technique was developed in (Diren

et al., 2019) to determine the root cause of uncontrolled

situations in a Multivariate Manufacturing Process in the

automotive sector. Five different root causes were identified in

the process of painting seats, door panels, and bumper modules,

paying attention to surface quality and fluidity. In (Pan et al.,

2021a), another AI method based on ensemble learning is built to

facilitate transfer learning in order to select the valuable samples

from a source product similar to the target product. The

examined case studies refer to two industry designs. The aim

of the proposed model is to improve the RCA accuracy on the

target product.

Apart from the two AI-based families of methodologies, as

reported above, there is one more group of models that has a

significant contribution to RCA, demonstrating notable

performance. This group includes the DL and CNNs models,

which are developed and applied in certain case studies as

presented in the following lines. More specifically, the authors

in (Crocco and O’Hern, 2018) perform a statistical RCA using

CNNs for manufacturing quality improvement of an image

sensor array. They investigate defects classification in an

image sensor product to their corresponding origin. Root

cause failure analysis was performed for all pixels exhibiting

failures. In another study, a novel process for RCA utilizing

unsupervised machine learning techniques for clustering and a

TABLE 2 (Continued) Collection of reviewed articles.

No Author Year AI/DL method Scope Industrial process

29 Weber et al. (2021) 2021 CNN. Combination of unsupervised ML
techniques: k-means and Autoencoder

Defect identification Wafer maps manufacturing dataset

30 Javanbakht et al. (2022) 2022 Self-attention-based BiLSTM-CNN Fault detection Tennessee Eastman (TE) chemical
process
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CNN deep learning network for classification is proposed

(Weber et al., 2021). The use case concerns a known root-

cause for specific defect patterns in wafer maps. For automatic

defect identification, an end-to-end CNN architecture is also

proposed in (Xie et al., 2021), termed fusion feature CNN

(FFCNN), consisting of three modules: feature extraction,

feature fusion and decision-making. This intelligent machine-

vision-based system was developed to detect surface defects on

magnetic tiles during the production stage. AlexNet, VGG-16,

and Resnet-50 were investigated for the development of the

appropriate network. Another CNN model, namely the

BiLSTM-CNN classifier, was built in (Javanbakht et al., 2022)

to analyze alarm data of the Tennessee Eastman chemical

process. After its training, the neural network was used for

online fault detection, identifying the root cause of the alarms

by the first five alarms of each fault scenario. Its structure

includes six layers; input layer, 1D-CNN, BiLSTM, Self-

Attention, Dense layer, and output layer.

In an effort to enhance the detection rate and automatically

interpret the cause of an anomaly, the author in (Steenwinckel

et al., 2018) adds prior experts’ knowledge into ML systems. One

such technique is the Relational Graph Convolutional Network

(RGCN), which operates on realistic knowledge graphs, fusing

both ML and semantics to improve anomaly detection together

with the ability to identify root causes inside a stream of data

accurately. In another study, a Graph Convolutional Neural

Network (GCNN) is also utilized as a part of the proposed

model termed Process Estimator Neural Network (PEN),

which was developed to tackle the non-linear issue of the

state-sparse model (Leonhardt et al., 2021). PEN is actually a

NN that uses a single graph convolution layer followed by two

fully connected layers and constitutes a novel RCA methodology

targeting modern multistage assembly lines for increasing

product quality and implementing zero-defect manufacturing.

In order to perform root cause detection, the authors in (Shah

et al., 2018a) used an RNN to extract two types of causal

relationships (interdependencies and lagged dependencies)

among the time-series of the examined system. They used

dynamic dependency graphs that have been extracted from

multivariate time series data.

A CNN is also utilized in the automatic Segmentation of Cells

and Defect Detection (SCDD) system, proposed in (Lin et al.,

2021), that aims to visually inspect defects in Electroluminescence

(EL) images of single-crystalline silicon solar panels in

photovoltaic (PV) industries. ResNet50 was utilized as a

classifier, while YOLOv4 contributed as a detector for the

panel-based defect detection. By applying cutting-edge deep

CNNs, this approach achieves highly accurate defect detection

rates from limited training samples of cell images. Finally, two ML

models, termed STR (Structure transfer) and SER (Structure

Expansion Reduction), and an ensemble (MIX) model were

proposed to conduct a failure analysis through defect detection

on nanoscale field-effect transistors (FET) of the semiconductor

industry (Pan et al., 2021b). These MLmodels were trained on the

same two defect datasets (FinFET and GAA-FET), providing

notable accuracy in the identification of failures of the devices,

guiding the acceleration of the production process.

The taxonomy of employed ML-based models is shown in

Figure 3.

To sum up, detecting root causes of defected parts in the

production process is a highly demanding task in the

manufacturing industry and needs extensive knowledge from

experts to perform analyses. However, this demands high costs

and offers low flexibility (Mueller et al., 2018). In this direction,

ML-based techniques are able to model a vast amount of process

data empirically, contributing to an automated root cause analysis,

also reducing the costs and the necessary expert knowledge. In

contrary to manual RCA which was previously conducted also

using predefined root causes as training, ML-based algorithms

possess the ability of analyzing complex data of different sources

and types providing an automated way for root cause analysis. In

that case, the abovementioned literature review brings together a

number of ML methods that have been exploited toward the

automatic RCA within smart manufacturing.

4 Discussion

4.1 Findings

Through the current systematic review, valuable outcomes

have been extracted, as illustrated in the following graphs, and

further analyzed, evaluated and discussed, so that certain insights

are elicited, highlighting the contribution of ML methods for

RCA in smart manufacturing. To begin with, Figure 4 shows the

distribution of publications during the investigated period. There

is an evident increase in the number of publications, reflecting

the growing interest in AI/ML-based RCA. As for the limited

number of publications in 2022, this is due to the fact that this

review was conducted at the beginning of 2022. However, an

increasing tendency in the number of publications is anticipated.

The literature analysis regarding the utilization of various AI

technologies dictates that the deterministic methods (ML-, DL-,

and NN-based) is the most popular choice (Figure 5) having 90%

preference against the family of probabilistic models. In

particular, the ML methods and their combinations are by far

the most popular choice (60%), followed by DL and CNNs (30%),

whereas the group of probabilistic methods (Bayesian and their

Hybrid modules) come as the least employed methodologies for

RCA with only 10%. This indicates that the major categories

(ML, DL and CNNs) demonstrate their dominant presence in

almost all case studies (90%) regarding AI-based RCA in smart

manufacturing. This preference is attributed to the efficient

learning capacity and performance of ANNs and the adequate

performance of the traditional ML technologies for lesser

amounts of input data.
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The distribution of AI-based models exploitation shown

in Figure 5 is further quantified in Figure 6. CNNs are the

most popular architecture (23%), as reported in the reviewed

literature. Then, ANNs and Tree/Forest-based methods

follow with 20% each, while the third best architecture is ML

with 17%. Clustering is also well preferred (13%) either in its

traditional forms (K-NN etc.) or combined with some AI

architectures. The Bayesian methods also exhibit the same

popularity. On the other hand, SVM demonstrates reduced

popularity (7%), whereas RNNs, ResNets and GA seem to be

the least favored methods (3%). The rest of the examined studies

are scattered among other less popular methodologies. This

categorization was performed under the consideration that

some of the works investigated might employ more than one

AI method; thus, the overall sum of the individual ratios

exceeds 100%.

It is noteworthy that AI methods have been exploited in a

wide variety of industrial sectors. Figure 7 shows the distribution

in the percentage of all the industrial applications involved,

considering the reviewed studies. The manufacturing sector is

the leader in the use of AI methods as most reviewed papers

(33%) concern some sort of manufacturing process. Quality

Control/Assessment, Tennessee Eastman Process, and Data

Analytics are equally (13%) employing AI techniques. The

semiconductor industry follows (10%) along with Imaging

applications (7%). One paper is related to Incident Analysis,

targeting accident prevention. The rest of the papers (27%) are

scattered among various other industrial sectors. It needs to be

mentioned again, that the sum of the partial ratios exceeds 100%,

as in some papers, more than one industrial sector is involved.

Furthermore, the applications that currently benefit most

from the ML-based RCA are summarized in Figure 8. The

majority of the ML-based RCA methods seem to be most

embraced by Manufacturing (50%) and Quality Control (27%)

applications. Manufacturing is further analyzed and categorized

into general product fabrication applications (18%),

semiconductor fabrication (14%), hardware and devices

manufacturing (14%), and assembly line monitoring (4%).

FIGURE 3
Taxonomy of employed AI-based models for RCA.
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4.2 Lessons learned

This systematic review was conducted to investigate the

potential of using AI/ML for RCA in smart manufacturing.

An increasing trend is demonstrated (Figure 4) regarding the

number of relevant publications in the literature, which proves a

growing interest in this area. This review was directed by a set of

research questions; the answers to these questions provided

insight regarding the developments and popularity of

employed methods. First, a taxonomy of AI algorithms and

methods has been compiled (Figure 3). This taxonomy lists

the available tools, in a manner that considers the relevance

among each other. That is, if a tool exhibits weaknesses, a similar

one in the list may be exploited to overcome the observed

limitations of the previous tool. Second, AI/ML-based RCA is

not limited to a few specialized fields, but rather spans a wide

range of industrial applications. The heterogeneity of industrial

sectors (Figure 7) reveals a growing endeavor for novel AI tools

for RCA. Third, Neural Networks in their many variants seem to

be the dominant technology in AI-based RCA. This is attributed

to their exceptional learning capabilities, their architectural

flexibility, and their extraordinary capacity to discover

underlying patterns.

4.3 Challenges

Despite the successful use of AI in RCA, there are still

challenges to be addressed:

1) Explainability. The domain of AI is considered unclear by

humans as regards its behavior, especially in the process of

decision-making. This originates from AI models’ high

complexity, ambiguity and the increased source of data,

along with the inexplicit AI learning methods employed.

Hence, the produced results cannot be directly and

adequately explained by humans, and this leads to a sort

of failure in applying AI models to a number of critical

problems, failing overall to configure the best decision-

making process. In this direction, Explainable AI (XAI) is

FIGURE 4
The distribution of publications for 2017-2022.

FIGURE 5
Categorization of AI models employed for RCA.
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a promising domain that allows humans to uncover clarity

and reasoning in AI systems in an effort to comprehend AI

models’ complex behavior at certain tasks and to arrive at a

specific decision. On that basis, the incorporation of XAI

into RCA methods would surely strengthen confidence in

derived decisions.

2) Quality of Training. The performance of AI algorithms in

RCA strongly depends on the availability of high-quality

data. However, lack of adequate and suitable sources of data,

as well as data scarcity, are common issues in the training

process of AI models. Four papers were identified dealing

with data for AI-based in RCA, including big-data, feature

importance, data streams, etc. Thus, innovative data

processing methods (e.g., data augmentation) are highly

needed for efficient RCA and should probably be a topic

of deeper investigation.

FIGURE 6
Popularity of AI methodologies.

FIGURE 7
Usage of AI methods in various industrial sectors.
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3) Standardization and Interoperability. As demonstrated in the

presented graphs, there is a broad range of industrial

applications that already benefit from AI-based RCA. Each

operator may, of course, use their own protocols and

practices. However, the establishment of standard rules

and compatible interfaces and protocols would enable

broad collaborations and joint efforts.

4) Data Privacy. The progress in AI and especially in DL is the

result of a collaboration of multiple contributions, including

open-source data offered by the community. Open-source

datasets e.g., ImageNet (Deng et al., 2009), played a key role in

establishing AI methods and boosted their development and

optimization. AI-based RCA can also benefit from such

datasets. However, the nature of RCA requires datasets

from different production stages that could potentially

expose sensitive information about the industrial provider.

Thus, obtaining a real industrial benchmark dataset to further

evaluate the effectiveness of AI methods for RCA is a real

challenge.

5) Security. The industrial environment requires secure

transactions. On the one hand, data security would prevent

the leakage of sensitive or confidential information. On the

other hand, data integrity is also necessary to prevent

corruption and information loss. Such issues may be dealt

with using current technologies like blockchain, but this

certainly is a topic that deserves its own research.

6) New technologies. The development of AI-based methods

is progressing at a fast pace and new tools appear every

day. Digital twins provide a means to create a digital

replica of the manufacturing line, which can be employed

to tailor and optimize production parameters without

affecting the running production. Digital twins may be

exploited towards RCA, but this requires future research

on this topic.

4.4 Concluding remarks

AI technologies have demonstrated remarkable efficiency in

the implementation of RCA in smart manufacturing. A wide

range of AI models is increasingly involved in the manufacturing

processes that struggle to provide optimized production

operation and consistent delivery of better products. To

achieve that, quality inspection and smart quality control

become crucial processes in the production line towards

conducting detection of defects and defect source

identification. This systematic literature review aims to

demonstrate the integration of various AI methods into RCA

models applied in smart manufacturing, investigating their

implementation methodology as well as current practices. To

accomplish the goals of this work, the PRISMA method was

followed, while proper database sources were selected, including

Google Scholar and Scopus, to mine published scientific papers

from the year 2017 up to 2022. The followed review protocol also

included the search term and the inclusion and exclusion criteria

set by the authors. The list of the retrieved papers contains the

authors, the year of publication, the AI method employed, the

scope of the AI model’s implementation, and the industrial

process the AI method was applied in toward defect source

identification. The results have shown an increasing trend in

the number of publications that report on the contribution of AI

methods for RCA in smart manufacturing. The first goal

regarding the availability of the AΙ tools in the realm of

current smart manufacturing was accordingly answered. Based

on our study, it was found that several deterministic and

probabilistic AI technologies were applied for RCA in

industry to identify defect sources in the early stages. Such

technologies include ML-, DL- and NN-based models as well

as Bayesian and their Hybrid modules. A variety of industrial

processes were also reported to comply with the second goal of

FIGURE 8
Industrial applications currently using ML-based RCA.
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this review study. These were related to the manufacturing sector,

semiconductor industry, data analysis, quality control and

several others. Furthermore, this study also revealed the

popularity of the AI technologies that have been employed for

RCA in smart manufacturing so far. That was the third research

question to be answered in this study. The findings showed that

CNNs are the most popular architecture, followed by ANNs and

Tree/Forest-based methods, while ML, Clustering, and Bayesian

come with a smaller percentage in their contribution to RCA in

industry 4.0. SVM, RNNs, ResNets, and GA seem to be the least

favored methods in the examined field. In addition, this research

study pinpoints a number of challenges that need to be

considered in the future implementation of AI methodologies

in RCA. Among them, explainability, quality of training,

interoperability, privacy, and security have a significant share

and role when AI-based technologies are exploited towards RCA

within smart manufacturing, and thus they need to be further

investigated.

5 Summary

To sum up, many AI technologies have already been

successfully incorporated within the framework for RCA

toward zero-defect manufacturing. In fact, there is a growing

interest in further development, as implied by the number of

publications per year. To accomplish an efficient literature

survey, a set of research questions were initially posed. Then,

a systematic literature review protocol was properly chosen to

answer the posed queries. The conducted survey was focused on

the most popular online, well-respected, and highly available

databases, covering a wide range of disciplines, from the

theoretical to the applied. Taking a close look at the produced

outcomes, it is noted that ML and DL have shown a major

contribution to RCA for smart industry applications. Seeking

further, it seems that Neural Networks in their many variants

(ANNs, CNNs, RNNs, etc.) are the current trend for automatic

RCA in smart manufacturing using AI models. However, despite

the current success, there are still open issues regarding

explainability, data quality, standardization, data security,

integrity, etc. These challenges deserve papers of their own

and will be dealt with in future extensions of this work.
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