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Implementation of Machine Learning (ML) to improve product and production
development processes poses a significant opportunity for manufacturing
industries. ML has the capability to calibrate models with considerable
adaptability and high accuracy. This capability is specifically promising for
applications where classical production automation is too expensive, e.g., for
mass customization cases where the production environment is uncertain and
unstructured. To cope with the diversity in production systems and working
environments, Reinforcement Learning (RL) in combination with lightweight
game engines can be used from initial stages of a product and production
development process. However, there are multiple challenges such as
collecting observations in a virtual environment which can interact similar to a
physical environment. This project focuses on setting up RL methodologies to
perform path-finding and collision detection in varying environments. One case
study is human assembly evaluation method in the automobile industry which is
currently manual intensive to investigate digitally. For this case, a mannequin is
trained to perform pick and place operations in varying environments and thus
automating assembly validation process in early design phases. The next
application is path-finding of mobile robots including an articulated arm to
perform pick and place operations. This application is expensive to setup with
classical methods and thus RL enables an automated approach for this task as well.
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1 Introduction

Product customisation based on unstructured and uncertain requirements has increased
the challenges in developing product and production processes. Knowledge-based
engineering and various design optimization methods have proved to be efficient over
the years but only up to a certain extant before they become too expensive. With more
demanding and complex market demands, a more flexible and robust approach is required
to take the next leap in product customization. An approach utilizing Reinforcement
Learning (RL) to perform preliminary exploration and validation is outlined in this
paper. With the conventional knowledge- and rule-driven automation approaches, the
models are created according to the provided parameters which are later optimized
according to the design space. For an unstructured and uncertain environment however,
this task becomes too time-consuming and expensive because the environment becomes
difficult and sometimes impossible to model in a flexible and reusable way. The benefit of RL
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in this regards is the possibility to automatically adapt to
unstructured and uncertain environments in a dynamic fashion.

Utilizing game engines like Unity allows for fast training of
agents, especially when compared to legacy CAD and CAE software.
The Unity platform supports dynamic multi-agent interaction
(Juliani et al., 2018), with the possibility of generating a virtual
world with natural physical forces. With legacy software on the
hand, many type of engineering evaluations are done intuitively and
iterative by experienced expert users. This approach is
computationally expensive and manually exhaustive, furthermore,
it is not certain that optimal solutions can be achieved.

This study explores the use of RL, the agent setup, and its
adaptability in an unstructured production setting using a game
engine as the platform. One of the key contributions of this work to
the field of study is its open-source nature, making all elements of
the project freely accessible to the public. This paper outlines the use
of RL in two separate industrial applications, which are discussed in
detail in subsequent sections.

1.1 Mobile robot control

With advancements in automation, it is possible to program a
robot to perform a predefined task. As to path-finding, the
conventional method relies on the data from the surrounding
environment, and the reduced efficiency of the algorithms in a
dynamic environment restricts the development of a better
approach in this field (Bakdi et al., 2017; Yu et al., 2020). In the
case of a mobile robot, conventional path-finding algorithms like the
Dijkstra algorithm and A* are effective for a static work
environment (Karur et al., 2021). However, when it comes to
stochastic and dynamic environments, there is a need to
investigate a different approach which can validate the process/
product development method. With the introduction of RL and a
lightweight game engine, it is possible to perform the path-finding
operation for a mobile robot platform integrated with a Robot
Operating System (ROS). In real-life applications, sensors similar
to industry tools are used to perform the simulation. Implementing
RL for path planning and obstacle avoidance of a mobile robot not
only improves the process planning efficiency but also can be further
developed for a safe human-robot interaction. The second
application presented is path-finding and pick-and-place
operation of a mobile robot by utilizing Robot operating system
(ROS) integrated with Unity.

1.2 Mannequin control

Assembly procedures must be validated when generating new
designs. Legacy programs can evaluate these features, however there
is a need to setup the context of the assembly and optimize the
position of mannequin’s limbs to validate whether the assembly
operation is possible and ergonomically safe (Hanson et al., 2014).
Needless to say, this is a repetitive and time consuming task since the
design and environment will change repeatedly during the product
development process, from early conceptual to later design phases.
By combining RL and physics based game engines, it is possible to
setup a framework which can automatically load new context and

designs and then explore and validate these in an automated way. In
order to benefit from such a setup, it is required that the automated
process is able to mimic humanmotion and also evaluate ergonomic
motions. This is the starting point for the presented mannequin
application. In the paper, the mannequin performs tasks in
unstructured environments in a automatic fashion.

2 State of the art

A challenge with unstructured production environments is fuzzy
objectives and constraints. With the current development in the
manufacturing, higher machine-human interaction is desired.
Numerous research is being conducted in this field for faster
production and customised production line. The challenge is
accurate sensing, obstacle identification, and modelling of
crowded unstructured environments. The concept of digital twins
and simulation models have made it possible to program different
robots or machines to work synchronously in a cluttered
environment. But with the introduction of a dynamic
environment, these models fail to achieve their objectives for
undefined contexts. The models need to adapt to real-life
conditions dynamically. With the technological transformation
aligned with Industry 4.0, a smart factory should use advanced
technologies such as AI and ML to automate, optimize and analyze
the data in a dynamic a real time fashion. Modern industrial systems’
data creation has grown rapidly, reaching about 1,000 Exabytes
annually (Tao et al., 2018). The robustness of production planning
control may be enhanced byML since data-included knowledge may
aid in handling both predictable and unforeseen situations (Cadavid
et al., 2019). The conventional method of supervised learning has
proven to be useful in a static environment, but as it comes to an
entire factory floor with multiple mobile robots, automated guided
vehicles and humans working simultaneously, the capability of
predicting the uncertainties is arguably poor. The model needs to
adapt to new situations rather than from the pre-created data sets
and rules. Considering the classical method of controlling the robot
motion, it is required to take into account all potential scenarios in
the collaborative environment (Liu et al., 2021). However, research
with a focus on deep learning where the robots can learn their
control strategies on their own with minimal human interventions
has opened up the real-world application of RL (Gu et al., 2017).
Since RL and the application of production is still at the cutting edge
of AI and product development research, there is a need for
investigation on generalization of RL in complex scenarios, with
real physics and enhanced sensors for smoother controls in
customized industrial tasks.

2.1 Mobile robot control

Recent research has sought to use deep RL to address a range of
continuous motor control issues, such as motion planning, object
detection, and collision avoidance for industrial robots directly from
sensory input (Mnih et al., 2016). However, these methods are
computationally expensive and heavily time-consuming (Meyes
et al., 2017). Tools for robot manipulations are usually built in-
house and are often computation-intensive. The low-level mapping
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of sensors to actuators must be frequently iterated to reach
calibration. It can be challenging for a programmer to convert
their understanding of how to perform a task into a language
that the robot can comprehend (Smart and Kaelbling, 2002). In
the case of a mobile robot, the challenging parts are the navigation of
the robot platform towards a goal avoiding obstacles and performing
the desired operations without any collision or singularities.
Presented research that utilized Q-learning and PID for mobile
robot trajectory generation was effective in simple cases, but
performed poorly in more complicated scenarios. (Wang et al.,
2020).

2.1.1 Path-finding and navigation
Creating a series of motion orders to transport a robot from its

present start point to a specified target location in a predetermined
environment is the classical mobile robot navigation problem (Xiao
et al., 2022). One of the oldest methods used to find the shortest path
in a known environment is by using Dijkstra’s algorithm. This is a
type of tree search algorithm, which creates nodes in a 2D
environment and uses the weights of the edges to calculate and
minimize the distance between the source node and all other nodes
Dijkstra (1959). Another efficient method is the A* algorithm, which
is an extension of Dijkstra’s algorithm using heuristics preventing
searching of unnecessary nodes from searching (Goyal et al., 2014).
This is accomplished by weighting the cost values of each node’s
distance from the target endpoint by its euclidean distance.
Therefore, only routes that are typically taking the right course
will be assessed. Apart from these two methods, there are other
methods using probabilistic methods like the rapidly-exploring
random tree technique or by discretization of working space into
small grids and using occupancy grid maps. However, the A* and D*
algorithms failed to predict/plan a path in a dynamic environment,
but the AD* algorithm was proposed which can work perfectly in
both static and dynamic environments (Ng et al., 2020).

A pioneering proof of concept for totally replacing the
conventional sense-plan-act architecture with a single learned
policy was attempted using end-to-end ML for fixed goal
navigation (Thrun, 1995). The first approach which learns
from a supervised demonstration to navigate a robot platform
through obstacle-cluttered environments to reach the provided
target. In this method, a network is trained using imitation
learning which mimics the ROS navigation package utilizing
Dijkstra’s algoritm (Pfeiffer et al., 2017). However, with low-
dimensional LiDAR data, RL where the robot learns by trial-and-
error proved to be working as efficiently as imitation learning, but
without the need for demonstrations (Tai et al., 2017). Moreover,
a DRL approach facilitated changing goals and environment
using onboard sensors and without classical localization or
mapping of the environments (Zhang et al., 2017). For a
dynamic environment, the most suitable approach to perform
navigation seems to be with the application of DRL. An
unstructured production line will be a perfect application for
DRL, but for faster training involving natural physical forces, a
game engine platform is the desired solution.

2.1.2 Trajectory planning
In industrial robots, trajectory planning is moving the tool

centre point from point A to point B over time while avoiding

object collisions. The most prevalent kind of robot employed in
an industrial setting is the one with rotating joints called
articulated robots. The framework of an articulated robot
might be as basic as two axes or as complicated as ten axes,
while the most common are the ones with six axes. The
relationship between a robot’s links and its position,
orientation, and acceleration comes under robot kinematics,
which can be separated into forward kinematics (FK) and
inverse kinematics (IK). In the forward kinematics method,
the position of the end effector is computed from the
kinematics equations and joint variables of each link. IK is the
exact opposite of FK, where the end effector position is specified
and the kinematics equation is used to calculate the joint
variables for each link (Singh et al., 2017). With the
development of AI and artificial neural networks along with
matured sensors and improvement in image recognition and
vision systems, the next step in the field of trajectory planning of
the end effector of a robot arm is the implementation of ML in
both path plannings as well as for validation. However, the
requirement to properly translate the robot position in
Cartesian space to the angular and/or translational
displacements in joint space is one of the most important
issues in motion planning and motion control (Li et al., 2021).
Most of the research focused on the application of DRL in
robotics is to control the position and/or orientation of end
effector in the Cartesian space, and later use the IK method to
translate this into joint space (Yang et al., 2021). There have been
methods developed to approximate the IK solutions in terms of
joint values (Phaniteja et al., 2017), although it is very time
consuming, especially as the robot’s degrees of freedom rise, it is
challenging for DRL to obtain precise enough IK solutions
through a finite number of excursions because of the
randomly sampled experience updates (Li et al., 2021). To
solve the problem of time consumption and visualization, the
contemporary game engine (Unity) aids the creation of a virtual
environment which allowed for simultaneous training of several
robot arm instances sharing their experience as one brain. This is
an important breakthrough in the automation of an unstructured
production environment where the robots can learn and discover
the most efficient and fault-tolerant approach to perform an
operation (Matulis and Harvey, 2021).

2.2 Mannequin control

Since its inception, the manufacturing sector has undergone
continual innovation, allowing it to achieve increasing levels of
performance to accommodate more demanding clients. Non-
etheless, despite rapid technical advancement, humans remain an
important resource in most industrial settings. Humans are an
important variable during the design, development and operation
of a production environment. Commonly the human factor is
related to ergonomic evaluations and it is a necessary link for
worker wellbeing in monitoring, production planning and
human-robot collaboration. Conventionally, all these
evaluations are performed offline and the model cannot adapt
to a dynamic environment (Montini et al., 2021). Human-robot
collaboration and ergonomic assessments for adaptive
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automation are two interesting subjects in the use of controlling
mannequins.

2.2.1 Human-robot collaboration and adaptive
automation

With an increase in automation and the use of robots in the
manufacturing industry, human-robot collaboration is on the rise
and research on the application of smoother and safe human-robot
interaction is increasing. An approach using camera vision and
wearable sensors and an artificial neural network for static, dynamic,
and composed gesture classification of human upper body gestures
in an environment with human and robot collaboration proposes a
method to perform operations like holding an object to/for an
assembly (Neto et al., 2019). Similarly, a human-robot
collaboration framework that allows for real-time adaptation to
dynamic human elements and intentions using DNN for image
recognition improved the ergonomics and reconfigurability of a
production process (Kim et al., 2019). The approach using DCNN
for improved planning and control of robot motion, predicting the
actions of a human using visual observation of worker’s motion
achieved a high recognition accuracy (Wang et al., 2018). The use of
RL in human-robot collaboration to solve the problem of task
allocation and sequence allocation allowed the model to cope
with dynamic human model features without the requirement for
pre-training data (Zhang et al., 2022). This study demonstrates that
the RL technique has a lot of potential for dynamically dividing
human-robot collaboration activities.

2.2.2 Ergonomic analysis
One of the primary characteristics of a production

environment is the ergonomics of both humans and robots.
Bio-mechanical stress is a major risk factor in the production
environment and a potential cause of musculoskeletal disorders.
Various numerical calculation methodologies have been
developed over the years with a focus on an efficient and safe
production environment. However, most of these methods are
based on checklists and are subjective. Which often makes it
difficult to include this factor while designing a production/
process line. A tool called ema (editor for manual work
activities) implements a modular method to create and define
human work activities based on “complex operations” that reflect
an aggregation of single elementary motions geared at carrying
out a specific work activity (Fritzsche et al., 2011). This tool can
convert typical job descriptions into a series of natural
movements, which can later be used to perform ergonomic
evaluations. After the outbreak of research in digital twins, a
lot of research has been conducted to develop a digital twin of
various machines. However, a methodological framework that
uses digital twins of humans, aids in the monitoring and decision-
making process regarding the ergonomic performance of manual
production lines (Greco et al., 2020). ML approaches can be
employed for process planning and system design in addition
to traditional product design and job assignment. Anghel et al.
(2019) offers experimental research on the ergonomic
workstation redesign process for automobile assembly lines by
merging neural networks with rapid upper limb assessment
(RULA) analysis. Apart from the conventional approach of
digital simulation, camera sensors and recorded videos are

used to automatically compute RULA scores based on
computer vision and ML (MassirisFernández et al., 2020).

2.3 Research gap

As depicted above, there has been a major leap in cutting edge
research in the automation of machine elements in production
processes. RL frameworks are currently either implemented in
legacy CAD software or non-public in-house software. Creating a
virtual environment and training in legacy software is
computationally expensive which limits the performance of the
RL. There is a need for an open source environment in order to
achieve result validation. Moreover, the open source alternative
should be fast and agile in order to instigate easy implementation
of open source ML and RL algorithms. In this paper, a Unity
implementation is presented and the data and models are shared
with the research community.

3 Methodology

The conventional product development process (PDP) is a
structured approach for creating and launching new products.
This process typically begins with the concept development stage
and culminates in the launch or production of the new product as
shown in Figure 1. In a virtual setting, humanoids and robots can
play a critical role in evaluating this process, specifically in the design
and testing stages. The use of a humanoid mannequin, for example,
can begin in the early stages of the PDP, such as the preliminary
design stage. The mannequin can be used for visualization and
validation purposes, including worker accessibility and ergonomics
evaluations. On the other hand, the application of a path-finding
mobile robot typically comes later in the PDP, mainly during the
detailed design stage and process planning procedures.

In order to effectively train RL agents, it is important to utilize
dynamic digital environments that offer flexibility and versatility.
Unity game engine is utilized to create an unstructured production
environment for two use cases. This allows the use of an open-source
project called Unity machine learning agents toolkit (ML-Agents) to
train and interact with the agents in the virtual environment (Unity-
Technologies, 2019). For RL, it is required to define three entities
called the observations, actions, and reward signals in an
environment. Observations in Unity can either be numeric or
visual, where the numeric observations as the name suggests are
numbers like the coordinates of objects, distance between objects,
force, velocity, etc. While the visual observations are the images from
the camera sensors attached to the agent. Similar to observations,
actions are also divided into continuous and discrete. The reward
signals are scalar values used to define the performance of an agent
with positive and negative values for reward and punishment
respectively. However, the training of neural networks is not
done by Unity, as it is only a platform to observe and simulate
the environment while data is transferred to python trainers by
using a communicator. This communicator connects the
environment in the Unity scene with the python low-level API
which serves as an interface between the python trainer and the
learning environment. The necessary RL algorithms are stored in the
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python trainers as a python package. The training cycle of the RL
method is shown in Figure 2, depicting the flow of information
between an environment and an agent. This method is utilized to
control the movement of a mannequin’s hands and torso during
assembly operations, as well as for path-finding and trajectory
planning on a mobile robot in combination with the Robot
Operating System (ROS).

3.1 Mobile robot control

In this test case, Niryo one robot running on full Niryo One ROS
stack is used to perform a pick and place operation on a sample
fixture. An URDF model of the robot is imported into the Unity
scene and a two-way communication is set up with ROS for
trajectory planning. Along with the robot, the part required for
pick up and a fixture designed in CATIA is imported into the scene.
The Niryo one robot is placed on a platform as its child game object.
While the robot and fixture are at either end of a plane, there are
multiple dynamic obstacle walls in the scene as shown in Figure 3.
The main objective in this test case is for the robot to find a path
towards the fixture without any collisions and perform a pick-and-
place operation. While the trajectory of the robot is planned using
ROS, the path-finding of the robot is achieved by using RL. While

training, the robot and fixtures are spawned at random positions at
either end of the plane. To replicate a dynamic production
environment, four obstacle walls are instantiated between the
robot platform and the fixture table. Similar to the robot the
walls are also moved to a different position along one axis. Since
Unity allows simultaneous training of multiple agents, 120 agents
(robot platform) is set up in the scene training parallelly while
sharing a single brain.

3.1.1 Observation space
For the agent to behave properly, it should be able to form a

relation between the observations recorded and the reward signals
for each action taken. Unity has the flexibility to use vector
observation, ray-cast sensors and camera observations to record
the state of the agent at each time step. In this environment, a single
ray-perception sensor is used to detect the dynamic obstacles. Along
with the ray cast, the distance between the robot and both the fixture
and pick-up object is taken as observations. The velocity of the robot
platform is also added as an observation to make sure the platform
does not fall off the plane. The ray perception sensors script in the
Unity has the provision to add the number of rays, and the angle
between them along with the detectable tags. The tags of the walls are
added as input to the ray-perception sensor. A total of four vector
observations along with a ray cast observation as shown in Figure 4
is used to generate the actions for the agent.

3.1.2 Action space
The platform of the robot is considered a rigid body and the

motion of this object is achieved by using force vectors. Since we are
considering the plane as a flat surface, only themotion in theX and Z
direction is taken into account. Y is not taken into account because
the table height is fixed. A force vector of (X, 0, Z) with X and Z as
continuous vector action is used to move the mobile robot platform
along the plane.

3.1.3 Reward function
The PPO RL method optimizes an agent’s decisions so that the

agent obtains the maximum cumulative reward over time. The more
effective your incentive mechanism, the more effectively your agent
will learn. The rewards signals used in themobile robot environment
are shown in Table 1.

FIGURE 1
Possible application of trained mannequin and mobile robot using RL in a product development process.

FIGURE 2
Basic structure of a RL training cycle.
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3.2 Mannequin control

The second test case is to control the hand and torso of a
mannequin, which is an asset from the Unity asset store. The

main objective is to train the mannequin’s right hand and torso to
pick a sheet metal and place it on a fixture. The environment
setup for the training of this mannequin is as shown in Figure 5,
where the black sheet metal on the table is the pick-up object

FIGURE 3
Multiple environment created with random element positions for parallel training.

FIGURE 4
Observation sensors (ray perception sensors) detecting obstacles around the platform (left) and close up view of the robot along with pick-up
object.

TABLE 1 Rewards signals and its description for mobile robot training environment.

Reward Description

+1.0f The maximum reward when the agent reaches near the fixture and pick-up object such that both the objects are within the robot’s working
envelop. The episode ends after this reward function

−1.0f The maximum negative reward when the robot falls over the floor. The episode ends after this reward function

−0.1f Collision with obstacle walls, but training continues without ending the episode

−1.0f/MaxStep An increment at each step to promote faster or shorter episode (MaxStep = 5,000)
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which needs to be placed near the top part of the B-pillar. The
approach presented involves the implementation of inverse
kinematics (IK) and animation controllers. An animator
controller is connected to the mannequin in order to assign a
rig and Fast IK Fabric constraint. The Fast IK Fabric constraint in
Unity controls the hierarchy of simple game objects, by specifying
the chain length/number of limbs. The wrist, forearm, upper-arm,
shoulder and rib are assigned as chain elements and a source

game object to specify the location of the palm/tip (arm-mover_
target).

The application of IK allows a human-like motion for heuristic
control. However, to control the motion using a force vector similar
to the previous test case, a rigid body is required. But Unity does not
allow the elements connected using Fast IK Fabric constraints to be
manipulated by physical forces. Hence a dummy game object with a
rigid body component is created and it is connected to the arm-
mover_target by equalising their transform position and rotation,
allowing the wrist to follow the dummy game object. Afterwards, the
agent tries to control the motion of this dummy game object. The
environment is created such that the agent is intended to perform
three operations sequentially.

• Reach the target by moving the hand and create a fixed joint.
• Move the hand along with the connected sheet metal to the
position right on top of the fixture (drop-off location)

• Align the sheet metal in the correct position at the drop-off
location.

3.2.1 Observation space
Unlike the first case of mobile robot path-finding, a mannequin’s

hand have multiple degrees of freedom and observations recorded
must be robust enough to track all these motions. Adding a camera
sensor as the source of observation will have a high resemblance to a
real-life situation. However, when it comes to spaces where, there is
no direct line of sight for the mannequin, this method for collecting
observation fails. Hence a set of five ray-perception sensors are
attached to the dummy game object as seen in Figure 6. The radius of
the rays, ray length, and the vertical offset is set in such a way that it
is possible to detect every object within the mannequin’s arm’s
length. The colliders of the sheet metal, fixture and table are given
different tags and layers to make it possible for the ray cast to
identify individual elements separately.

In addition to observations of ray-casts, one conditional
observation of distance and a Boolean value are added to the
collection. In each episode, the distance between the palm and
the sheet metal is recorded as an observation until the pick-up
operation is completed. Afterwards, the distance between the sheet
metal and the drop-off location is added. The Boolean observation
will be set to false before the pick-up and true afterwards.

3.2.2 Action space
In this test case, the actions taken are discrete values which are

used to create a force vector to apply force to the rigid body. Usage of
discrete actions allows the agents to explicitly avoid actions that
would result in a negative reward. The range of discrete actions
varies from 1 to 6 (for 6 degrees of freedom) for each step. These
actions specify the direction of motion of the palm, and the velocity
of 0.1 is adjusted in that particular vector. Since the hand is
connected to the dummy game object, this velocity change is
applied to the rigid body of the dummy object. Additionally, the
motion of the dummy game object can also be controlled using
manual heuristics.

3.2.3 Reward function
The reward signals used for the training of mannequin’s hand is

presented in Table 2. As pointed out earlier, the agent has three

FIGURE 5
Virtual environment created in Unity with fixture and sheet metal
for the training of mannequin’s hand and torso control.

FIGURE 6
Multiple ray-perception sensors detecting obstacles, fixture,
sheet metal and drop-off location.
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objectives in a single episode hence an increment in the magnitude
of the reward signals are required for the second and third task.
Balancing positive and negative rewards is important for consistent
training because, like in this case, if an agent receives several
rewards, the cumulative sum of all rewards is applied for that step.

3.3 Training configuration

Figures 7, 8 show the training configuration file of the mobile
robot and mannequin control respectively. Two main trainer
type provided in the ML-agent package is Proximal policy
optimization (PPO) and Soft actor-critic (SAC). SAC
instigates an experience replay mechanism which will result in
confusing behaviour as both environments have non-stationary
dynamic objects. Hence a policy gradient method for RL called
proximal policy optimization (PPO) trainer is used for both of
the environments. Compared to the mobile robot environment,
the mannequin control environment has a higher number of
observations and multiple rewards within an episode. So, a higher

buffer size is used to collect all the experiences before updating
the policy. The mobile robot have only one objective, hence a
smaller training step of 2.55 million is used, while the mannequin
has three sequential objectives to finish an episode and the
training is done for 30 million iterations.

4 Result

4.1 Mobile robot control

The navigation system in Unity supports the creation of
navigation meshes on the scene elements and plans a path
depending on the dynamic obstacles according to the designed
environment. This method is sufficient when the only objective is
to reach a known target location. However, in the case of a complex
environment with multiple obstacles and elevations, the generated
mesh creates many non-walkable areas. When iterating between
environments, the mesh generated for Navmesh agent needs to be
baked separately for each case. The agent is trained to perform a task

TABLE 2 Rewards signals and its description for mannequin hand and torso control for assembly operation.

Reward Description

+2.0f Adds the reward when the hand touches the sheet metal on the table

+2.5f Adds a reward when the sheet metal is at the drop-off location. The episode ends after this reward function with a maximum cumulative reward

−1.0f Too much force added to the hands causing the Inverse Kinematics connection element to break. The episode ends after this reward function

−0.1f Collision of hand with anything other than the target

−5.0f/MaxStep An increment at each step to promote faster or shorter episode (MaxStep = 5,000)

FIGURE 7
Hyper parameters for mobile robot path-finding training.

FIGURE 8
Hyper parameters for mannequin hand and torso control
training.
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in an unknown dynamic environment making it more independent
compared to the navmesh approach in Unity.

Following the environment setup as shown in Figure 3, the
trained model with a trail renderer for two different
environments are presented in Figure 9A. Since we are
considering the location of the targets (Fixture and pick-up

object) unknown, the platform is required to search the design
space and move towards the table with the correct orientation
such that the pick-up and drop-off locations are within the
working envelope of the robot. The cumulative rewards and
episode length of the training process are shown in Figure 10.
From the graph, the convergence is visible after 1.5 million steps

FIGURE 9
Path-finding of mobile platform using RL in a dynamic environment (A) and trajectory planned by ROS and executed in Unity after path-finding
sequence (B).

FIGURE 10
Cumulative reward and episode length of the training of mobile robot for path-finding.
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accompanied by a reduced episode length. Manually iterating the
training configurations improved the total training time (~ 1 h)
and faster convergence in the cumulative rewards. Once the
model is trained in the dynamic environment, it is possible to
use the trained neural network (brain) on agents in environments
with topographical or morphological changes.

The Unity have a version of ROS melodic that is available in a
docker image. This version has all the necessary packages and
modules to set up a ROS workspace. A ROSConnection
component in Unity provides the functionality required to
publish, subscribe, or execute a service utilizing the TCP
endpoint ROS node. Once the robot reaches close enough
(within the working envelope) to the target, the location of the
pick-up and drop-off location along with joint configurations is
passed as input to ROS. An array of trajectory coordinates for a pre-
grasp pose, grasp pose, pick pose and place pose is sent back from the
ROS side to a trajectory-planner script. This array of trajectories is
executed to perform a pick-and-place operation on a fixture as
shown in Figure 9B.

4.2 Mannequin control

With the help of the animation rigging feature in Unity, it is
possible to rig the limbs of the mannequin and apply predefined
constraint components to these limbs. One bone is created for
each body part of the mannequin and is displayed as red bones in
Figure 5. In this test case, the Fast IK Fabric constraint is applied,
which controls the forward kinematic hierarchy of five bones into
an IK expression. This expression is attached to an empty game
object, and the manipulation of its transform values created
human-like motion. Since the transform values of this empty
object are changed to move the right hand and torso, it is

impossible to move it using rigid-body forces. As specified in
the methodology, attaching this empty game object to another
rigid body and controlling the motion of the rigid body resulted
in a smooth human-like motion.

Training the hand of a mannequin to reach a location is a
relatively easy task for the agent. The presented test case
comprised multiple objectives however, each of which had to
be completed sequentially. Hence training the hand to move
towards the correct location after picking up increased the
complexity and required calibration of the training
parameters. The cumulative reward and the episode length of
the training process of the mannequin’s right hand are shown in
Figure 11. A convergence is reached for the cumulative rewards
after 20 million iterations. However, the episode length kept
decreasing until 28 million iterations. Even though 100 agents are
trained in parallel, the entire training process is comparatively
more time consuming than the previous test case because of
multiple objectives. On average, it takes approximately 5.5 h for
the training to complete on a computer with 16 GB of RAM and a
RTX3080 graphics card.

The trained agent in an episode performs a sequence of
actions: target detection, approach, pick-up, and drop-off.
This is shown in Figure 12. The agent is trained in a dynamic
environment where the location of the sheet metal changes.
However, the performance of the agent is not optimal in
terms of the number of steps taken per episode. To improve
performance, the model was retrained in a static environment,
where the sheet metals position is fixed. This resulted in shorter,
faster episodes. The improvement was demonstrated through
comparison of the dynamic and retrained static models, using
three test cases as shown in Figure 13. The step count for
20 episodes was recorded for both models. The re-
initialization of the static models took less than 10 min.

FIGURE 11
Cumulative reward and episode length of the training of mannequin’s right hand and torso for assembly operation.
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FIGURE 12
Sequence of operations performed by a trained mannequin, including approaching an object, picking it up, transporting it to a designated drop-off
location, positioning itself at the drop-off location, and finally releasing the object at the final location.

FIGURE 13
Comparison of steps taken in each episode for model trained in dynamic environment and re-trainedmodel for static environment in three different
test cases.
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5 Discussion

This paper presents two RL test cases utilizing a physics-based
game engine. Using Unity it is possible to train multiple agents
simultaneously in a virtual environment. Unlike legacy CAD
software, a game engine is fast and agile in for the proposed RL
applications. Time taken for training the models depends on the
complexity of the environment and objectives. But increased
processing/computing power is reducing this negative aspect of
data-intensive methods.

One of the most challenging parts in the application of RL is that
the agent becomes reward greedy and finds a shortcut in acquiring
more reward rather than performing the desired task. To counter
this effect, with higher punishments/negative rewards, also has
downsides since the agent ceases to explore the design space and
settles for less optimal episodes and with the least punishment. To
effectively address this challenge, an appropriately weighted reward
system must be implemented to nudge the agent towards a desired
behavior. Along with a logical reward system, the training
parameters are required to be calibrated depending on the
environment for the training results to converge in a reasonable
time. With these two components adjusted, the agent is promoted to
take risks and explore the design space. The observations regarding
two industrial test cases showcased in this paper are discussed in the
following sections.

5.1 Mobile robot control

Unlike conventional methods of automating a robot’s motion/
operation using legacy software andmethods, the RL approach using
a game engine proves effective in dynamic and unstructured
environments. To perform a path-finding operation, the
traditional approach using algorithms like A* and the Dijkstra
algorithm works elegantly in static and less complex
environments. Most of these approaches convert the working
environment into a graph and estimate the shortest distance
between two coordinates. While for a production environment
with automated guided vehicles, humans and other dynamic
entities working synchronously, the algorithms need to be
adaptive. In this paper, the approach using RL for path-finding
requires an initial setup time which will be compensated by a net
gain in efficiency over time during application in different design
concepts. Currently, mobile robot systems rely on explicit domain
knowledge which are based on rules, ontologies, and decision trees.
RL algorithms, on the other hand, learn from experiences without
prior knowledge of the domain, increasing the reusability and
flexibility of the models. This approach can greatly reduce the
amount of manual model calibration when deploying it in
different environments. Since the pick and place operation in the
test case is done by integrating ROS with Unity, the possibility of
singularity in the robot is not prioritized. In spite of that, the
singularity problem was never encountered while testing the
trained neural network.

The ROS integration successfully generates a trajectory between
the pick-up and drop-off location using the robot’s coordinate
system. However, it does not account for obstacles in the
environment. To overcome this limitation, two solutions can be

explored: 1) incorporating multiple way-points within the working
envelope to generate a more robust trajectory, or 2) using RL to
control the robot arm as an agent, resulting in a more flexible pick-
and-drop operation without relying solely on ROS. The trained
neural network demonstrates robustness in handling dynamic
components within the environment. However, the addition of
new obstacles or elements may affect its success rate. To address
this limitation, re-training the neural network with updated
environmental parameters can lead to improved performance and
a higher success rate. The developed framework will be useful to
validate the performance of a new product or a production line
depending on the existing observations and experiences.
Implementing RL to control the motion of the robot arm by
avoiding obstacles in the working envelope will be a valuable
extension of this framework.

5.2 Mannequin control

Mannequin control is critical in the manufacturing industry
because of human participation in the process/production line.
Manual exploration and validation of a production line including
ergonomic assessments, human-robot collaboration, and other
elements are today performed utilizing software where extensive
manual manipulation is required. RL implementation for
mannequin control can have several applications, such as
increasing worker efficiency by optimizing processes, determining
optimal workstation placements in a production setting and
simulating worker interactions in a dynamic environment. In RL,
the agents can adapt to changes such as addition of new equipment
or alterations to the workspace layout. Legacy simulation-based
models require either manual input or pre-defined rules for specific
pre-set environments. This setup necessitates significant calibration
for any environment change. Multiple non-public in-house software
has been developed over the years to automate and optimize this
process. The methodology presented in this paper uses Unity and RL
approach to control a mannequin’s right hand and torso to perform
an assembly operation. Instead of managing the joint values in each
of the mannequin’s limbs, the IK package provided by Unity allows
the mimicking of human motion. The aforementioned method is
effective in the digital simulation of a human in an unstructured
environment using RL. The same approach can be applied to
perform a virtual simulation of a humanoid.

The definition of observation sensors and the balancing of
reward signals are the most difficult aspects of this test case. In a
production environment, humans mainly rely on visual inputs from
the eyes. Fixing a camera sensor in the eyes of the mannequin model
will have a close resemblance to a real-life scenario. In this case, the
motion control of the limbs, depending on the observation from it is
head was inconsistent. Moreover, this method fails when the
objective/target is outside the field of vision of the camera sensor.
Using a ray perception sensor attached to the hand instead of the
head overcame the shortcomings of camera sensors. If the targets are
smaller than the diameter of the rays, then there is a high possibility
for the targets to be undetectable for the agent.

Evaluating the effectiveness of this framework for a complex
environment is crucial. The approach entails incrementally adding
more detail and re-initializing the training from the previous neural
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network. A solution to overcome this limitation could be to
repeatedly implement this method to enhance complexity and
ultimately apply it in a real-world scenario. Even though the
intended outcome of this framework is to perform an ergonomic
evaluation on a mannequin, the ergonomic calculation is not
performed on the presented work. To perform a RULA
assessment on the mannequin, it is possible in Unity to extract
the adjustments made in the limbs relative to the force acting on the
palm/wrist. Taking the cumulative score from the RULA assessment
and adding it as a reward function to the currently trained
mannequin model is the main factor in the future development
of this framework.

One of the shortcomings of the current model is its inability to
coordinate the use of both hands for tasks such as picking up objects.
To address this limitation, a potential solution is to treat both hands
as separate entities/agents and develop an algorithm to determine
the optimal hand combination (i.e., left hand only, right hand only,
or both hands together) based on factors such as the weight of the
object, its position relative to the center of gravity of the mannequin,
etc. The current framework has a limitation in terms of lower body
control below the hips, which limits its use for Rapid Entire Body
Assessment (REBA). Although the model can be used for RULA
evaluation in the future, the inability to control the lower body
hinders the ability to assess the risks associated with certain job
operations. A potential solution to this limitation is to link an IK
model for the lower body to the torso and hands, thus enabling a
comprehensive assessment. The use of an agent that can mimic
appropriate posture and motion in a production setting can
significantly reduce the time required for traditional ergonomic
assessments through repetitive actions.

6 Conclusion

This paper presents two applications of RL setup in a lightweight
game engine; 1. A Mobile Robot application which is used to plan
and control a robot in an unstructured industrial environment and
2. a Mannequin application used as a support tool for automated
simulation of unstructured assembly processes. The presented work
is an initial study but still manages to show that RL is a promising
approach to be used in a dynamic and unstructured product
development and production.

The RL approach of training an agent does not require a pre-
training dataset and only requires the agent’s starting state as
input. This improves the possibility of automation in
unstructured and dynamic production environments, enabling
faster product/process line generation and evaluation. A
lightweight game engine is used as a platform to setup a

virtual environment and to perform the training. The
applications are shared with the research community.

For future work, the Mobile Robot application needs to be
applied in a complex industrial environment with exhaustive test
series to achieve validation. The Mannequin application can be
improved with, e.g., integrated ergonomic calculations and validated
by implementing it inside a design process to test usability and
benefits over existing approaches.
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