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Leveraging Computer-Aided Design (CAD) and Manufacturing (CAM) tools with
advanced Industry 4.0 (I4.0) technologies presents numerous opportunities for
industries to optimize processes, improve efficiency, and reduce costs. While
certain sectors have achieved success in this effort, others, including agriculture,
are still in the early stages of implementation. The focus of this research paper is to
explore the potential of I4.0 technologies and CAD/CAM tools in the development
of pick and place solutions for harvesting produce. Key technologies driving this
include Internet of Things (IoT), machine learning (ML), deep learning (DL),
robotics, additive manufacturing (AM), and simulation. Robots are often utilized
as the main mechanism for harvesting operations. AM rapid prototyping strategies
assist with designing specialty end-effectors and grippers. ML and DL algorithms
allow for real-time object and obstacle detection. A comprehensive review of the
literature is presented with a summary of the recent state-of-the-art I4.0 solutions
in agricultural harvesting and current challenges/barriers to I4.0 adoption and
integration with CAD/CAM tools and processes. A framework has also been
developed to facilitate future CAD/CAM research and development for
agricultural harvesting in the era of I4.0.
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1 Introduction

Industry 4.0 technologies are revolutionizing the agricultural sector into a new era of data-
driven practices that are transforming the way crops are produced, harvested, and distributed.
This transformation is paramount given that by 2050 the world’s population is estimated to
reach 10 billion, necessitating a 70% increase in food production (De Clercq et al., 2018).
Internet of Things (IoT), artificial intelligence (AI), advanced robotics, simulation, machine
learning (ML), deep learning (DL), and additive manufacturing (AM) are examples of the
transformative technologies driving this shift. Their implementation across the sector’s value
chain has the potential to enhance competitiveness by increasing yields, improving input
efficiency, and reducing financial and time expenses from humanmistakes (Javaid et al., 2022).

A representative value chain for agriculture consisting of pre-production, production,
processing, distribution, retail, and final consumption stages is shown in Figure 1. The pre-
production process involves suppliers of seeds, fertilizers, pesticides, and other inputs or
services (Paunov and Satorra, 2019). Activities within the production process include
sowing, irrigation, pest management, fertilization, and harvesting. Following this, the
processing stage converts the crops into consumer ready states by means of cleaning,
sorting, grading, and or slicing. The final product is then packaged or canned, stored, and
distributed to retail stores, grocery markets, and supermarkets. Lastly, it is purchased by the
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consumer for end use. The primary subject of this review is on the
application of I4.0 technologies within the production stage, with a
particular focus on harvesting.

Harvesting is a labour-intensive task, and the agricultural
industry is currently experiencing a severe labour crisis. In a
2019 report from the Government of Canada, an estimated 13%
of fruits and vegetables grown are either left unharvested or
discarded post harvest from being picked past their prime
(Canada, 2019; VCMI, 2019). Other countries are facing similar
labour struggles, such as Japan, New-Zealand, Netherlands, Ireland,
Spain, and The United States (Ryan, 2023). Recent research efforts
have aimed at addressing these issues by exploring automation
strategies and new methods for smart farming using
I4.0 technologies. The development of IoT-based monitoring

systems, robotic harvesting solutions, and advanced object-
recognition algorithms are promoting new ways to avoid produce
loss, increase crop yields, and optimize resources (Liu et al., 2021).

Computer-aided design (CAD) and manufacturing (CAM) play
a vital role in the success and optimization of this emerging
agricultural era. The complexity of the harvesting environment
poses unique challenges for automation which prevents the direct
translation of solutions from other domains. This stems from the
variability of the produce (size, shape, colour), crop objects (leaves,
stems), and the crop environment (Bac et al., 2014). Leveraging
advanced CAD and CAM tools presents opportunities to reverse
engineer agricultural environments to effectively work with this
variability. For instance, CAD tools support the design of specialty
compliant end-of-arm tooling (EOAT) to grasp and manipulate

FIGURE 1
Representative agriculture value chain.

FIGURE 2
Actuation methods of compliant mechanisms (A) contact-driven from © 2018 Shintake et al. (2018). Published by WILEY-VCH Verlag GmbH & Co.
KGaA, Weinheim. Licensed under CC BY-NC-ND 4.0. doi: 10.1002/adma.201707035 (B) cable-driven from © 2018 Shintake et al. (2018). Published by
WILEY-VCH Verlag GmbH&Co. KGaA, Weinheim. Licensed under CC BY-NC-ND 4.0. doi: 10.1002/adma.201707035 (C) fluid-driven from© 2018 by Hu
et al. (2018). Licensee MDPI, Basel, Switzerland. Licensed under CC BY. doi: 10.3390/robotics7020024.
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different crop types. Additive manufacturing (AM) enables rapid
prototyping for testing and validation of EOAT and promotes
complexity within their designs. Compliant mechanisms mitigate
uncertainty by conforming to objects of various geometries via
compliant materials and structures (Rus and Tolley, 2015).
Elastomers are an extensively used compliant material due to
their ability to sustain large strains without permanent
deformation (Shintake et al., 2018). Common actuation methods
for compliant mechanisms (Figure 2) include contact-driven, cable-
driven, and fluid-driven. These solutions can be readily realized
using AM processes to build the EOAT directly, or by exploiting
rapid tooling strategies to fabricate molds, and using over-molding
strategies to embed elements (Odhner et al., 2014).

Further, CAD facilitates the design of robotic rigid-body
structures and other auxiliary components to ensure safe
navigation in the specified crop environment. Robust simulation
models capable of capturing the environmental variability can assist
with testing, validation, and optimization of solutions prior to
commercialization. Moreover, integrating IoT networks and
robotic harvesters presents opportunities for improved harvest
decisions, trajectory planning, and ideal time to harvest, all of
which represent methods leveraged by CAM systems.

There are several CAD modeling approaches that can be
explored to effectively represent the objects within a complex
crop environment. The classic contemporary approach is to use
boundary rep (B-rep) models (Figure 3A) with a constructive solid
geometry history tree. Euler’s operators, rules for identifying loops,
and parametric curves and surfaces (spline, Bézier, nonuniform
rational B-splines (NURBS)) are standard to provide sophisticated
design solutions (Figure 3B).

The present tools allow for effective design of mechanical
components and complex surfaces or solid models but for
complex ‘random’ shapes, decomposition models are applied.
Volumetric representation techniques offer realistic 3D depictions
of objects, incorporating depth and other geometric features that are
difficult to capture in 2D-based representations. Common
approaches include point clouds (Figure 4), voxel grids, octrees,
and signed distance fields (SDFs). 3D point clouds, when sampled
uniformly, offer the ability to preserve original geometric
information without any discretization (Guo et al., 2021).

3D point cloud crop models have been generated directly from
Light Detection and Ranging (LiDAR) systems or obtained from
Unmanned Aerial Vehicles (UAVs), multispectral, and thermal
imagery using photogrammetry software or other computer
vision algorithms (Khanna et al., 2015; Comba et al., 2019). Point
cloud to mesh to surface modeling is a standard approach for reverse
engineering (Várady et al., 1997). Point cloud to solid model
activities have occurred for reverse engineering (Urbanic and
Elmaraghy, 2008) and developing bio-medical models (Kokab
and Urbanic, 2019).

Irregular 3D point cloud data is often transformed into regular
data formats, such as 3D voxel grids, for downstream analysis in
deep learning architectures (Charles et al., 2017) and other analytical
techniques. Voxelization of point clouds discretizes the data,
forming grids in 3D space where each voxel defines individual
values. Christiansen et al. (2017) developed a model of this type
for a winter wheat field to assist with crop height estimations
(Figure 5). However, large voxel grids can require significant
computational and memory resources. Octrees offer improved
memory efficiency with their hierarchal structure. With this
method, each voxel can be divided up to eight times and only
voxels that are occupied are initialized whereas uninitialized voxels
may represent an empty or unknown space (Hornung et al., 2013).

SDFs are also a more efficient form of voxel-based
representation that specifies the distance from any point in 3D
space to the boundary of an object (Frisken and Perry, 2006). A sign
is designated to each point relative to the boundary, where a negative
sign is attributed to points within the boundary and a positive sign to
points outside of the boundary (Jones et al., 2006). Two common
specialized forms include Euclidean Signed Distance Fields (ESDFs)
and Truncated Signed Distance Fields (TSDFs). ESDFs (Figure 6)
contain the Euclidean distance to the nearest occupied voxel for
every voxel, whereas TSDFs incorporate a short truncation radius
surrounding the boundary, allowing for more efficient construction
and noise filtering (Oleynikova et al., 2017). These model types have
been applied in agriculture. For example, an octree-based map in the
form of TSDF for a sweet pepper environment was developed by
Marangoz et al. (2022) to estimate produce shapes.

Volumetric representations of crops and their environment can
become large and complex. Simplified representations can be

FIGURE 3
(A) B-rep model which is constructed from vertices, edges, and faces, and (B) NURBs surface with UV flow lines and selected control points.
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achieved by skeletonizing volumetric data. Voronoi skeleton models
(VSKs) based on the Voronoi diagrams (VDs) from boundary line
segments of a shape preserve both it is geometrical and topical
information (Langer et al., 2019). Ogniewicz and Ilg (1992) applied
this approach with thresholding to assign residual values to each VD
boundary that indicated its important to the overall skeleton of 2D
shapes. This is useful for complex objects that exhibit a large number
of skeleton branches. The concept of VSKs have also been exercised

for 3D shapes (Näf et al., 1997; Hisada et al., 2001). Modelling
agricultural environments and crop objects using VSKs has not been
extensively researched. Considering clustered crops with relatively
simple geometries, such as mushrooms, blueberries, or grapes, VSK
representation models have potential to infer boundaries between
the individual clustered objects. Solutions that incorporate this
representation type should be developed in the agricultural
domain to validate its applicability.

FIGURE 4
(A) Point cloud data for a lung, (B) slicing interval used to select points to extract a spline curve, and (C) an editable CADmodel. (Kokab and Urbanic,
2019).

FIGURE 5
Winter wheat field (A) experimental representation and (B) voxel-grid representation. From © 2017 Christiansen et al. (2017). Licensee MDPI, Basel,
Switzerland. Licensed under CC BY. doi: 10.3390/s17122703.

FIGURE 6
Explicit boundary representation (left) and implicit boundary representation via Euclidean SDF (right). Reproduced with permission. Peelar et al.
(2019). Copyright 2019, CAD Solutions.
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This review presents the current state of the art for the major
I4.0 technologies employed in agricultural harvesting applications
from studies published between 2019 to the present day.
Technologies include Internet of Things, artificial intelligence,
machine learning, deep learning, and advanced robotics.
Applications of CAD/CAM tools and their integration with I4.0-
based solutions will also be discussed.

2 Internet of Things

Internet of Things (IoT) is a network of physical devices and
technologies that facilitate data collection, communication, and remote
sensing and control (McKinsey and Company, 2022). As described by
Elijah et al. (2018), its architecture can be classified into four general
components: (1) IoT devices; (2) communication technology; (3)
Internet; and (4) data storage and processing. The IoT devices are
responsible for collecting data in real-time and include sensors,
unmanned aerial vehicles (UAVs), ground robotics, and other
appliances. Communication technologies enable data exchange
between the IoT devices and the data storage and analytics. These
are either wired or wireless mediums. In agriculture, the most
commonly used wireless communication devices include Cellular,
6LoWPAN (IPv6 over Low power Wireless Personal Area
Network), ZigBee, Bluetooth, RFID (Radio Frequency Identification),
Wi-Fi and LoRaWAN (Shafi et al., 2019). An experimental comparison
study demonstrated that LoRaWAN systems would be most ideal for
agricultural applications since it demonstrated greater longevity
compared to Zigbee and Wi-Fi systems (Sadowski and Spachos,
2020). The internet serves as the connective foundation of IoT
systems and facilitates remote access to the data. Extensive data
collection requires the use of storage methodologies, such as clouds,
and advanced algorithms for processing (Elijah et al., 2018). Forms of
big data analytics are often employed.

The four components can be further broken down into layers to
promote communication, management, and analytical capabilities.
For example, Shi et al. (2019) presented a 5-layer IoT structure in
agriculture containing a perception (physical devices), network
(wired or wireless communication mediums), middleware (data
aggregation), common platform (data storage and analytics), and
application layer (management platforms and systems).

Agricultural crop growth and ideal harvest times are significantly
influenced by environmental parameters, such as temperature,
humidity, CO2 levels, sunlight, and water levels (Sishodia et al.,
2020; Rodríguez et al., 2021). IoT-based systems enable real-time
monitoring of these parameters to assist farm management and
operation. Several studies have focused on the development of
complete IoT-based systems for protected and open-field crop
environments. Many indicated more efficient use of inputs
(Zamora-Izquierdo et al., 2019; Rodríguez-Robles et al., 2020), the
potential to remotely control environmental conditions
(Thilakarathne et al., 2023) and the ability to enhance farm
management practices (Mekala and Viswanathan, 2019; Rodríguez
et al., 2021) based on the system’s data-driven reports. Limitations
concerning power supply, stable connections, and extensibility were
highlighted by Thilakarathne et al. (2023). Currently, all these systems
are in a prototype phase. However, other sources have presented IoT-
based systems that have achieved a commercial product stage. For

instance, Croptracker (Croptracker, 2023), CropX (CropX inc, 2022)
and Semios (Semios, 2023), are commercially available solutions.

Monitoring individual crop characteristics throughout growth
can support the subsequent planning of actions performed by
autonomous robotic solutions (Kierdorf et al., 2023), including
establishing harvest priorities. Real-time machine learning
classification and growth prediction models are methods that
provide robotic solutions with knowledge regarding the current
and future state of a crop. Several studies have utilized IoT devices
to create time-series datasets that can be used as input to growth
prediction models. For example, Kierdorf et al. (2023) created a time
series UAV-based image dataset of cauliflower growth characteristics
including developmental stage and size. Weyler et al. (2021) collected
images of beet plants throughout a cultivation period via ground robot
and monitored phenotypic traits for growth stage classification.

Both time-series datasets were recorded in open-field
environments for crops where a top-down view is sufficient for
capturing the necessary phenotypic data. However, this collection
method may be impractical for crops grown in protected
environments given the space constraints and direction of growth.
Thus, different strategies will need to be explored to ensure valid data
is collected in these situations. CAD/CAM tools have the potential to
assist with exploring new strategies for many harvesting applications.
Modelling IoT devices and the crop structure in CAD will allow for
testing various collection strategies within a simulated environment
prior to fabrication. A study by Iqbal et al. (2020) demonstrated this
approach by creating 3D CAD models of cotton crops and their
LiDAR based robot designed to collect phenotypic data. They created
a Gazebo simulation environment of the cotton field to test the
identification capabilities of multiple LiDAR configurations from
3D point cloud data, which was converted into voxel grids, for
navigation in the crop rows. Another study used Gazebo to model
a sweet pepper environment with a UR5e robot arm to evaluate the
accuracy of their fruit shape estimation approach based on super
ellipsoids (Marangoz et al., 2022). Their simulation was integrated
with an octree-based truncated signed distance field to map the
images collected by the robot’s RGB camera.

3 Artificial intelligence

IoT-based systems involve data collection at high velocity,
volume, value, variety, and veracity, which are the 5 V’s that
define Big Data. To effectively process and analyze this data in
agriculture, a variety of tools and techniques have been explored.
Artificial intelligence-based tools, such as Machine Learning (ML)
and Deep Learning (DL) are among the most used. Other methods
include cloud computing and edge computing. ML and DL play a
vital role in object detection and localization and crop yield
mapping. Integrating IoT networks with these algorithms allows
for data-driven performance and decision-making.

3.1 Machine learning

Machine learning techniques are categorized into three core
learning methods: supervised learning, un-supervised learning, and
reinforcement learning (Jordan and Mitchell, 2015). In supervised
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learning systems, a model is trained using a labelled dataset and
forms predictions from learned mapping. Forms of this approach
include decision trees (DT), random forest (RF), support vector
machines (SVM), artificial neural networks (ANN), and Bayesian
classifiers (Praveen Kumar et al., 2019). DTs are very sensitive to
changes in input data and are prone to overfitting. RF models
(Figure 7A), offer more robust solutions in comparison. Random
subsets of input data are used to form multiple DTs where the
combined final prediction follows a majority rule or takes an average
of the individual predictions. A representative feed-forward back
propagation ANN structure is presented in Figure 7B), consisting of
three hidden layers between the input and output layers. The back
propagation aspect of ANNs promotes feedback learning to improve
predictive performance of the model. This adaptive nature makes
themmore suitable for use in agricultural environments since recent
inputs can enhance model structure and performance.

Unsupervised learning models are trained using unlabeled data
and employ algorithms such as k-means clustering, hierarchical
clustering and fuzzy clustering. Clustering techniques are highly
sensitive to outliers in the input data. In comparison to supervised
learning approaches, these techniques are not as suitable for
agricultural environments since its inherent variability presents a
higher potential for outliers in the data. Reinforcement learning
algorithms, such as Q-learning and Markov decision processes,
take actions and learn from trial and error via training datasets
composed of supervised and unsupervised learning (Jordan and
Mitchell, 2015).

In agricultural harvesting applications, studies have utilized ML
algorithms for crop yield predictions, crop growth stage classification
and monitoring, optimal duration until harvest predictions and
weather prediction/forecasting as shown in Table 1. However, this
is not a mature area of research.

Supervised learning approaches are most employed and yield
prediction models are the most common use case. Estimating yield
prior to harvest allows for accurate and timely planning (Taşan et al.,
2022), which promotes efficient use of harvesting robots. Satellite and
UAV imagery combined with ML methods have created accurate and
detailed yield maps for crops grown in open fields (Maponya et al.,
2020). UAV imagery (Figure 8A) offers superior granularity when
compared to satellite imagery (Figure 8B),making it possible to estimate
yields at the per-plant level as demonstrated in the work by Tatsumi
et al. (2021). The majority of these models derived vegetive indices
(VIs), such as leaf area index (LAI), biomass, and evapo-transpiration
(ET) from the images since these are indicative parameters of crop
development (Kocian et al., 2020) that assist with determining crop
yields (Tesfaye et al., 2021). However, this presents significant
challenges for crops grown in open-field environments since poor
lighting conditions from cloud coverage and shadows decrease
image resolutions which can lead to critical growth stage gaps in the
datasets (Tesfaye et al., 2021). This is also a challenge for open-field crop
models that classify growth states and predict maturity levels or optimal
durations until harvest. Implementing cloud restoration algorithms to
restore data gaps was examined by Tesfaye et al. (2021), which
demonstrated an increased yield prediction accuracy.

Predicting growth stages, time of maturity and associated time of
harvest for a given crop enables efficient scheduling of automated
harvesters (Wise et al., 2022). As a result of the limitations for image
quality in open-field environments, these model types have been
developed for crops grown in protected environments, including
strawberries (Wise et al., 2022) and lettuce (Kocian et al., 2020;
Chang et al., 2021). Currently, all solutions in Table 1 are in a
prototype or conceptual phase.

There are no works that have combined the mapping feature
of yield models with the crop growth classification and maturity

FIGURE 7
(A) Random forest model structure and (B) feed-forward back propagation ANN structure.

Frontiers in Manufacturing Technology frontiersin.org06

Recchia and Urbanic 10.3389/fmtec.2023.1282843

https://www.frontiersin.org/journals/manufacturing-technology
https://www.frontiersin.org
https://doi.org/10.3389/fmtec.2023.1282843


prediction models. Future research should address this gap to
represent these two attributes in detailed CAD models. The
framework in Section 7 is designed to facilitate the development
of such models using CAD/CAM tools. It is also important
to consider the scale of the model and the corresponding
computational and memory resources required. With a model of
this nature, geometric traits of crops can be predicted and verified
throughout the growth cycle. Further, ideal harvest times can be
estimated, which will assist with scheduling robotic harvesters.

3.2 Deep learning

Deep learning computer vision algorithms are being used to
detect, localize, and classify crops in real time for robotic harvesting
applications. Crop environments present complex conditions for

these tasks, which stem from various crop geometries, orientations,
maturity levels, illumination, and occlusions. DL-based techniques
have demonstrated higher-level feature learning and detection
accuracies in comparison to traditional ML-based techniques,
which makes them more applicable in complex environments
(Badeka et al., 2021; Jia et al., 2021).

Current DL-based vision solutions for robotic harvesting are
summarized in Table 2. Versions of YOLO (You-Only-Look-Once)
were most commonly utilized as they demonstrate high detection
accuracy with quick processing times. However, these algorithms are
most successful in relatively simple environments where the crop
density is low, lighting is uniform, and there are few to no occlusions
(Badeka et al., 2021; Bazame et al., 2021). Other solutions have
developed unique algorithms to improve detection capabilities, such
as Dasnet (Kang et al., 2020a) for apples, and FoveaMask (Jia et al.,
2021) for green fruits.

TABLE 1 Summary of machine learning solutions for agricultural harvesting applications.

Source Crop Application Level of
granularity

Data source ML Method(s)

Wise et al.
(2022)

Strawberry Early prediction of optimal duration
until harvest, crop parameter prediction
(current-state and harvest-state), and
growth stage classification

Per-fruit RGB camera Linear regression (LR)

Vijayakumar
et al. (2021)

Citrus Yield prediction Per-tree and per-
block (100+ trees)

UAV multispectral imaging,
DL-based ground image fruit
count

LR, gradient boost regression (GBR),
random forest regression (RFR),
partial least squares regression (PLSR)

Torgbor et al.
(2023)

Mango Yield prediction (time-series) Per-block and per-
farm

Satellite imagery (Landsat
archive) and government
weather data (SILO)

random forest (RF), support vector
regression (SVR), eXtreme gradient
boosting (XGBOOST), PLSR, ridge
regression (RIDGE), least absolute
shrinkage and selection operator
regression (LASSO)

Tesfaye et al.
(2021)

Wheat Yield prediction Per-field Satellite imagery (Sentinel-2) LR, regularized regression
(GLMNET), generalized linear
regression (GLM), neural network
(NNET), k-nearest neighbours
(kNN), recursive partitioning and
regression trees (RPART), SVM, RF

Tatsumi et al.
(2021)

Tomato Yield prediction and crop parameter
prediction

Per-plant UAV multispectral imaging RF, ridge regression (RI), SVM

Taşan et al.
(2022)

Aubergine Yield prediction - Handheld spectroradiometer ANN, SVR, kNN, RF, adaptive
boosting (AB)

Maponya et al.
(2020)

Grain Crop classification Per-region Satellite imagery (Sentinel-2) SVM, DT, kNN, RF, machine
learning (ML)

Kocian et al.
(2020)

Lettuce
(greenhouse)

Growth prediction Per-plant Sensors Dynamic Bayseian Network (DBN)

Chang et al.
(2021)

Lettuce
(greenhouse)

Early prediction of optimal harvest day
and growth prediction

Per-plant Sensors, camera NN, fuzzy logic (FL)

Khalifeh et al.
(2022)

- Weather prediction - Sensors Social spider algorithm-least square-
support vector machine (SSA-
LS-SVM)

Goh et al. (2022) Wheat Growth monitoring Per-field Satellite imagery (Sentinel-2) PLS-R

Hassanzadeh
et al. (2020)

Snap bean Crop classification (growth stage and
maturity)

Per-plant Spectroradiometer Perceptron (Perc), linear regression
(LR), SVM, linear support vector
classifier (LSVM), kNN, naïve Bayes
(NB), stochastic gradient descent
(SGD), DT, RF
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Several advanced DL-based techniques have been explored to
limit the influence of occlusions from overlapping crops, leaves, stems,
and other objects. It is important to address this issue since retaking
images from various viewpoints will increase cycle times. General
instance segmentation models, such as Mask-RCNN (Mask Region-
Based Convolutional Neural Network) are common choices in
agricultural computer visions systems for addressing occlusions. In
Yu et al. (2019), ripe strawberry fruits were successfully detected and
picking points were localized with a 95.78% accuracy using Mask-
RCNN. The solution indicated effective detection in situations
with varying illumination, multi-fruit adhesion, overlapping fruits,
and occlusions. However, the processing time was slow and large
errors were observed in cases of unsymmetrical fruits. Amodal
segmentation, a one-stage model, was used by Kim et al. (2023) to
predict the blocked regions of cucumbers with an accuracy of 50.06%.
This model was significantly slower than Mask-RCNN models and
other general instance segmentation models. Liu et al. (2020)
developed YOLO-Tomato, a YOLOv3 and circular bounding box-
based model that is robust to illumination and occlusions conditions.
Performance loss was indicated in severe occlusion cases, however, the
authors stated that this is not a vital issue since harvesting robots

operate alternatively between detection and picking. Thus hidden
crops will appear after the front ones have been removed. Although
this ideology is not applicable in cases where ripe crops are hidden
behind unripe crops since removal will not occur. Hespeler et al.
(2021) utilized thermal imaging for the harvesting of chili peppers,
which improved the detection accuracy in environments with variant
lighting and heavy occlusion from leaves or overlapping peppers. This
method outperformed both YOLO and Mask-RCNN algorithms with
respect to detection accuracy.

It is important to note that all these computer vision solutions
for agricultural harvesting are based on real-time performance.
Their implementation in crop environments requires the ability
to accurately detect, localize, and classify crops despite occlusions
and varying illumination conditions. However, the solutions that
incorporated these parameters all demonstrated slower processing
times compared to traditional DL-methods. As a result of these
limitations, all are currently in a prototype phase. Thus, it is essential
to explore alternatives approaches to improve robotic harvesting
performance. Future research should focus on reverse engineering
the environment and utilizing CAD and CAM tools to create 3D
crop maps prior to harvest as this may offer better performance

FIGURE 8
Maps for yield estimation (A) Tomato green normalized difference vegetation index (GNDVI) from UAV multispectral imagery from Tatsumi et al.
(2021). Licensed under CC BY 4.0. doi: 10.1186/s13007-021-00761-2 and (B)winter wheat field green area indices (GAI) from Sentinel-2 satellite imagery
from Goh et al. (2022). Licensed under CC BY-NC-ND 4.0. doi: 10.1016/j.jag.2022.103124.
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in situations with occlusions from crop overlapping, other objects in
the environment, and with varying illumination conditions.

In the study by Kang et al. (2020b), an octrees-based 3D
representation of the crop environment for a robotic apple
harvester was created, which included the locations and
orientations of the fruit and obstacles (branches) in the scene.
The positional information from the model was integrated with a
central control algorithm to compute the proper grasping pose
during picking and the trajectory path. This reverse engineered
model operated in real-time and only incorporated objects within
the working view of the camera. There is potential to expand this
methodology to develop environmental models that incorporate
predictions for maturity levels, physical growth characteristics, and
other geometric properties for the entire working area. By leveraging
forms of in-process techniques and a-priori knowledge, the
influence from environmental complexities and dependency on
real-time performance can be reduced. Furthermore, integrating
DL-based 3D crop maps with ML growth prediction and maturity
models can support downstream robotic design, end-effector design,
trajectory planning, and optimal harvest time decisions.

4 Advanced robotics

Automated robotic solutions are being developed to perform
agricultural harvesting pick and place tasks (Figure 9). Recent

research efforts have focused on addressing particular technical
elements, including computer vision systems for object detection
and localization, motion and trajectory planning algorithms, and
EOAT design. An overview of current solutions that incorporate all
these aspects is shown in Table 3.

Notably, a considerable number of studies have concentrated on
crops grown in protected environments (tomatoes, strawberries, sweet
peppers). Protected environments offer diffused lighting, shelter from
adverse weather, and level terrains, which are advantageous to
automated harvesting. However, difficulties with real-time mobile
navigation, and object detection, localization, and grasping remain a
barrier to commercial adoption. To date, many of these solutions are in
the prototype stage with very few stating near commercial readiness.
Other companies have presented solutions that have achieved
commercial product trials, including strawberry harvesting robots
(Advanced Farm Technologies, 2023; Agrobot, n.d.), apple
harvesting robots (Advanced Farm Technologies, 2023), and tomato
harvesting robots (Ridder and MetoMotion, n.d.; Panasonic, 2018).

Few solutions have incorporated a form of autonomous navigation
in the harvesting environment. Simultaneous Localization and
Mapping (SLAM) is the most applied algorithm, allowing the
harvesting units to map out their environment and localize in real
time. SLAM maps are constructed using point cloud data (Yin et al.,
2023). Solutions for crops grown in unprotected environments were
more likely to incorporate this element than those in protected
environments. For example, a robot designed for citrus fruits (Yin

TABLE 2 Deep learning computer vision systems for agricultural harvesting operations.

Source Crop Application Method(s) Accuracy (method)

Faisal et al.
(2020)

Date Fruit Maturity level classification VGG-19, Inception-v3, NASNet 99.4% (VGG-19)

Bazame et al.
(2021)

Coffee Fruits Object detection, maturity level
classification and mapping

YOLO-v3-tiny 84%

Zhu et al.
(2022)

Sugarcane Object detection and localization YOLO-v4 94.40%

Badeka et al.
(2021)

Grapes Object detection Faster R-CNN, YOLOv3, YOLOv5,
EfficientDet-D0, RetinaNet,
MobilNet

77.9% (EfficientDet-D0) 77.2% (Faster R-CNN) 60.2%
(YOLOv3) 73.2% (YOLOv5) 72.54% (RetinaNet)
71.79% (MobileNet)

Hespeler et al.
(2021)

Chili peppers Object detection YOLOv3 (RGB and thermal) 100% (RGB) 97% (thermal)

Kim et al.
(2023)

Cucumbers Object detection Amodal segmentaion 50.06%

Miragaia et al.
(2021)

Plums Ripeness classification AlexNet 95.50%

Benavides et al.
(2020)

Tomatoes (beef and
cluster varieties)

Object detection and localization
(ripe tomatoes and their peduncles)

Sobel 80.8% [beef]

87.5% [cluster]

Wang et al.
(2021)

Grapes Object detection SwinGD 70%

Yu et al. (2019) Strawberries Object detection and localization Mask-RCNN 95.78%

Liu et al. (2020) Tomatoes Detection YOLO-Tomato (YOLO-v3 + NN) 96.40%

Kang et al.
(2020a)

Apples Object detection Dasnet 87%

Jia et al. (2021) Green Fruits Object detection and localization FoveaMask 75%
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et al., 2023) was tested in a large field environment with a multisensory
fusion SLAM algorithm and demonstrated a localization and sensing
performance suitable for harvest. Similarly, a plum harvesting robot
(Brown and Sukkarieh, 2021) used a SLAM camera for global robot
tracking to assist with creating crop density maps.

Variations of the YOLO algorithm were most used for object
detection and localization across robotic solutions. YOLO is one-
stage CNN (Convolutional Neural Network) that has fast detection
and high accuracy performance in real-time, but struggles with
detecting small objects (Badeka et al., 2021). As mentioned in the
previous section, occlusions in the natural growing environment are
one of the largest limitations to the accuracy of object detection and
localization in computer vision algorithms. Occlusions not only
lower detection accuracy but can also increase the harvesting cycle
time from algorithm processing or the need for additional image
viewpoints. Many solutions leveraged modified crop environments
during testing, where obstacles causing occlusions, such as leaves,
stems, or overlapping crops, were removed prior to harvest. This
demonstrated much higher harvesting success rates for sweet
peppers (Arad et al., 2020). As mentioned previously, efforts to
create algorithms that predict object position and orientation, such
as Mask-RCNN have been developed to address this issue.
Furthermore, dual arm robotic solutions have also been explored
to reduce the challenges that arise from occlusions. In the work by
SepúLveda et al. (2020), one robotic arm was dedicated to removing
the objects causing occlusions while the other proceeded with the
harvesting actions of aubergines. This method demonstrated longer
cycle times but had higher productivity in terms of the number of
fruits harvested over a given period.

A specialty end-effector was designed for each robotic
solution since the crops varied with respect to their shape,
size, and environment. When working with crops in dense
environments or highly clustered crops, the design of the end-
effector becomes more difficult due to the increased risk of
damage to the crop itself or the surrounding objects during
picking. Many of the end-effector designs demonstrated high
success rates when the crops were accurately detected and
localized. Most challenges for end-effector performance arose

due to incorrect positioning from neighbouring crops or
obstacles, inability to access the crop due to rigid and large
designs, and slow cycle times from heavy weight. For example,
in Miao et al. (2023), the gripper design was too rigid and large,
which made picking tomato stems challenging if they were either
angled or short. A similar issue was noted by Brown and
Sukkarieh (2021), where the oversized soft gripper design
caused issues with plum picking and concerns with longevity
resulting from damage of the silicon material. Difficulties in
positioning were observed by Arad et al. (2020) and Yin et al.
(2023) when obstacles and neighbouring fruit blocked the end-
effector from reaching its intended picking position. Weight is
also a crucial factor as it can significantly impact the cycle time
and risk damaging the crop during harvest, which was highlighted
in a solution for lettuce (Birrell et al., 2020). The heavy weight of
the end effector caused picking to be the rate limiting step and a
high damage rate was also observed.

CAD/CAM tools play a critical role in the design and
development of specialty end-effectors for robotic harvesting.
Simulations allow for testing and validating grasping and picking
strategies, material selection, and mechanical design. For example,
Fan et al. (2021) investigated multiple apple grasping principles and
picking patterns by developing 3D branch-stem-fruit models and
conducting finite element simulations in ABAQUS to compute and
compare separation forces. An underactuated broccoli gripper
design was validated using ADAMS (Automatic Dynamic
Analysis of Mechanical Systems) software that measured applied
contact forces (Xu et al., 2023). ADAMS software was also used by
Mu et al. (2020) to validate trajectory motions of the bionic fingers in
a kiwifruit robotic end-effector design. Simulation is also being used
to explore best practices for robotic harvesting solutions (Van De
Walker et al., 2021) with software such as V-REP, Gazebo, ArGOS,
and Webots (Iqbal et al., 2020).

Future works should focus on compliant mechanism design for
robotic harvesting end-of-arm-tooling for crops that are harvested
by gripping. Contact-driven, cable-driven, and fluid-driven
actuation methods are suitable for use in agricultural
environments. Silicon rubbers are common choices for gripper

FIGURE 9
(A) Automated robotic harvesting solution for strawberries from Xiong et al. (2019). Licensed under CC BY-NC-ND 4.0. doi: 10.1002/rob.21889. (B)
schematic of automated harvesting solutions.
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fabrication in this domain, but are limited by their susceptibility to
damage from surrounding objects in crop environments. Leveraging
AM to fabricate compliant structures allows for rapid prototyping
and customization. For example, novel fluid-driven soft robotic
fingers for apple harvesting were designed and realized via 3D
printing (Wang et al., 2023). Coupling designs with sensor
technologies can provide feedback necessary for subsequent
optimization and should also be further explored.

5 Summary

I4.0 technologies and CAD/CAM tools have been shown to
support automated data-driven solutions for harvesting agricultural
crops, but this is not a mature field. IoT networks coupled with
machine learning algorithms are indicating that improved yields,
growth predictability, and weather forecasting can be implemented,
providing new ways of seeing related to designing and managing the

TABLE 3 Summary of recent robotic crop harvesting solutions.

Source Crop Environment Robotic arm
(commercial

name)

Mobile
navigation

Computer
vision

algorithm
(camera)

Harvest success
rate

(unmodified real
environment
scenario)

Cycle
time (s)

Stage of
development

Miao et al.
(2023)

Tomato Protected 6 DOF SLAM YOLOv5 (Intel
RealSense D435i)

90% 9 Prototype

Stepanova
et al. (2023)

Tomato Protected 6 DOF (UR5) - YOLO (Intel
RealSense D435i
and Zivid Two
Industrial 3D)

- 16 Prototype

Chen et al.
(2023)

Pitaya
(Dragon
fruit)

Open-field 3 DOF 2D SLAM YOLOv3-tiny
(1080p Webcam)

97% ~104 Prototype

Yin et al.
(2023)

Citrus Orchard 6 DOF SLAM YOLOv4 tiny (Intel
RealSense D435i)

(87.20%) 10.9 Prototype

Brown and
Sukkarieh
(2021)

Plum Orchard 6 DOF (UR5) SLAM YOLOv3 and HSV
(Intel RealSense

D43i)

(42%) 12 [from
previous
lab testing]

Prototype

Lehnert
et al. (2020)

Sweet
pepper

Protected 6 DOF (UR5) - HSV colour
segmentation,
PFG-SVM and
MiniInception

(RGB-D)

76.5% (47%) 36.9 Prototype

Arad et al.
(2020)

Sweet
pepper

Protected 6 DOF (Fanuc LR
Mate 200iD)

Arduino-
based PLC

Shape and colour
based detection

(RGB-D)

61% (29%) 24 Prototype

Birrell et al.
(2020)

Lettuce Open-field 6 DOF (UR10) - YOLOv3 and
DOCN (USB
webcam)

(88.20%) 31.7 Prototype

SepúLveda
et al. (2020)

Aubergine Open-field 2 × 6 DOF (Kinova
MICO)

- Image
segmentation

algorithm [SVM]
(Prosilica

GC2450C and
Mesa SwissRanger

SR4000)

91.67% 26.2 Prototype

Yu et al.
(2021)

Apple Orchard 2 × 6 DOF
(custom)

- SIFT (binocular) 72% 14.6 Prototype

Xiong et al.
(2019)

Strawberry Protected 5 DOF Joystick Shape and colour
based detection

(RGB-D)

(53.6%) 10.6 Prototype

Williams
et al. (2019)

Kiwi Orchard 4 × 3 DOF
(custom)

- FCN-8s [adapted
form of VGG-
net16] (Baslar ac

1920-40uc
USB 3.0]

(51%) 5.5 Prototype

Kang et al.
(2020b)

Apple Orchard 6 DOF (UR5) - Mobile-DasNet
(Intel RealSense D-

435 RGB-D)

80% 6.5 Prototype
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agricultural space. However, it is clear that most solutions are
either in a prototype or conceptual phase as there are several
challenges and barriers preventing successful operation in real
crop environments (Section 6).

CAD/CAM tools have been leveraged using the standard design
packages available. Future research should be directed at
implementing novel CAD/CAM design tools (such as voxelized
representations and developing simulation solutions that include the
mechanical and physical properties of plants, leaves, etc.) with
existing I4.0-based solutions to form a completely integrated
solution targeting the unique challenges in the agricultural
domain. These can facilitate harvest decisions at the granular and
systems level, as discussed in the presented framework in Section 7.

6 Challenges and barriers to the
adoption of I4.0 technologies andCAD/
CAM tools

For widespread implementation of advanced I4.0 technologies
and CAD/CAM tools across agricultural harvesting operations, there
are several challenges and barriers that first need to be addressed.
These originate from the several uncertainties within the dynamic
crop environment, data sufficiency, and other technical aspects.

Throughout growth, crop parameters such as size, shape, colour,
position, and orientation can change considerably. Additionally, these
parameters are significantly different between crop types. This product
variability creates difficulties for computer vision system operation, tool
design and implementation, process standardization, and CAD
modelling and simulation. For example, fruits and vegetables that
are green in colour when mature often share a resemblance in hue to
surrounding plant objects, such as vines, leaves, and stems. These
scenarios hinder the ability for computer vision algorithms to detect
and localize the product. Neighbouring objects and overlapping crops
also influence vision system performance as well as end-effector design
and implementation. These obstacles can cause damage to end-
effectors and limit their ability to access the product. Non-
homogenous properties of crops pose a challenge for capturing the
true mechanical characteristics in 3D models and simulations. For
instance, sections of a tomato crop vine may be more rigid than others,
although current finite element analysis methods would represent a 3D
model of this as a uniform rigid body.

It is also important to note the extent of data required in adopting
these advanced technologies may be difficult to consolidate. As
mentioned previously, crop environments are dynamic and
variable. To develop representative and robust computerized
models, the inherent unpredictability needs to be captured. This
will require sufficient data for continuous model updating and

TABLE 4 Framework for future CAD/CAM research and development in agricultural harvesting.

IoT layer (Shi
et al., 2019)

Layer Description CAD Application

Open-field
environment

Protected
environment

Data Perception Physical devices Point clouds, images, videos, physical
measurements

Group processing (per-
field, per-block)

Individual processing (per-
plant, per-produce)

Network Wired or wireless
communications

N/A N/A N/A

Knowledge Middleware Data aggregation Standardized representation (B-rep
voxel-grid, octree, or VSK) and tools

Establish common standard using produce classification
scheme (see Table 5) and develop a materials properties
knowledge base for produce/plants

Common platform Data storage and
analytics

Generate in-process model instances Jack, process flows, yield maps, V-REP, Gazebo, etc.

Design
space

Application Management platforms
and systems

Design, build, simulate, test, use End-of-arm-tooling, harvest planning, grasping and
manipulation strategies, ergonomics, monitoring, etc.

TABLE 5 Classification scheme for produce.

Parameter Shape Growth location Growth pattern Harvest contact points Harvest method Stem Mechanics

Classification Round (RO) Gound (G) Cluster (C) Body (BD) Hand (H) Rigid (R)

Oblong (O) Bush (B) Individual (I) Base (BA) Shears (S) Flexible (F)

Oblate (OBL) Tree (TR) Stem (ST) Brittle (B)

Ovoid (OV) Trellis (TRL)

Elliptic (E)

Conic (C)

Lobe (L)
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processing. As a result, model history tree structures will become large
and complicated and will likely require significant memory capacity
and computational resources. Another challenge is ensuring the
compatibility of the models with downstream analytical algorithms.
Depending on the representation type, conversions may be necessary.
For instance, 3D point clouds are not effective inputs to deep learning
algorithms and must be translated into other volumetric forms, such
as voxel grids. Methods to convert between data types for deep
learning have been developed. One example is NVIDIA’s Kaolin
library which provides a PyTorch API to work with several forms of
3D representations (NVIDIA Corporation, 2020). This library
includes an expanding collection of GPU-optimized operations for
quick conversions between CAD representation types, data loading,
volumetric acceleration data structures, and many other techniques.

7 Framework

A framework based on the IoT structure from Shi et al. (2019)
has been developed to facilitate future CAD/CAM research and

development for agricultural harvesting in the era of I4.0
(Table 4, 5).

At the perception layer, data collected from physical IoT devices
exhibit various forms of CAD representations. In agricultural
systems, 3D point clouds from LiDAR systems, images from
UAVs, or physical measurements from sensor networks are all
examples of data that can be collected in real-time. The
granularity of this data is dependent on the environment type.
Obtaining data per-produce will be difficult in open-field
environments since the operational scale is significantly larger in
comparison to protected environments. It is recommended that a
group-processing methodology (per-field or per-block) is applied to
collect data in these environments and can be achieved using satellite
imagery or UAVs.

To develop effective models for agricultural harvesting activities,
it is important to aggregate this data into a standardized CAD
representation. This is similar to the function of the middleware
layer in an IoT system. By classifying produce according to key
parameters (Table 5), appropriate representations can be
established. For example, produce that are round, have a cluster

TABLE 6 Application of the framework to preliminary research in the mushroom industry.

IoT layer Layer Description CAD (Figure 10A-E) Application

Data Perception Physical devices • Images: Protected environment: mushroom
farm

o Mushrooms

o Infrastructure

o Static posture

o Markers for motion analyses (Figure 10A)

• Videos:
o Harvesting, trimming, and placement (REB#22–205)

• Physical measurements:
o Specialty glove for motion (Figure 10B) and force over
time data

o Mushroom size, shape, mass, age

o Mushroom bed size, shape

Network Wired or wireless
communications

N/A Mushroom classification:

Knowledge Middleware Data aggregation • Mushroom CAD modelsa (Figure 10C) • Shape–(RO)

• Frame CAD models • Growth location–(G)

• Anthropometric models of the human harvesters • Growth pattern–(C)

• Time, force, and motion graphs • Harvest contact points–(BA)

• Maximum picking force and bruising force data • Harvest method–(H)

Common
platform

Data storage and analytics • Siemens NX and Jack • Stem mechanics–(B)

Design
space

Application Management platforms and
systems

• Specialty gripper designb, test, and simulation activities
(Figure 10D)

• Ergonomics assessment (Figure 10E)

• ‘What if’ studies for bed redesign

• Feasibility assessment for robotic harvesting

aFuture work → Voronoi representation templates for mushroom models.
bFuture work → embedded sensors.
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growth pattern, and are harvested by contacting the body, such as
mushrooms and blueberries, may be best represented using VSKs or
SDFs to conserve the individual object boundaries in the cases of
overlap. Whereas produce that grow individually and are harvested

by cutting a rigid stem, such as sweet peppers or citrus fruits, may be
best represented using 3D voxel-grids or octrees since their
respective object boundaries are more easily identifiable. The
representation type will also depend on the growth location of

FIGURE 10
(A)markers for mushroom picking motion analysis (B) force measurement glove (C) CADmodel of mushroom (D) CADmodels of specialty gripper
design (E) Siemens Jack anthropometric model for ergonomic analysis.
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the produce and the associated objects that will be incorporated in
the model, such as branches, leaves, and vines.

The aggregated data from IoT systems are stored and analyzed
in a common platform. For CAD applications, the CAD software
represents this platform. Instance models can be developed and

applied for a variety of harvesting activities, such as Siemens Jack
(Siemens Industry Software, 2011) for ergonomic analysis, AnyLogic
(The AnyLogic Company, n. d.) for process flows, and Gazebo
(Open Source Robotics Foundation, Inc., n. d.) for robotic
harvesting strategies.

FIGURE 11
(A) ANN structure for training and validation for produce and plant features (B) AnyLogic model of mushroom harvesting at the systems level.
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Preliminary research in the mushroom industry has been
selected as a case study to highlight the CAD/CAM framework
and is demonstrated in Table 6.

Images, videos, and physical measurements were collected at the
per-produce level in a commercial farm environment (Figures 10A,
B). From this data, CAD models of mushrooms (Figure 10C) and
their growth environment (frames) were developed in Siemens NX
software (NX software Siemens Software, n.d.). Harvesting time,
force, and motion graphs were produced, and maximum picking
and bruising forces were established. Specialty grippers for
mushroom harvesting (Figure 10D) were designed, simulated,
and tested. These were also used to perform feasibility
assessments for robotic harvesting. Ergonomic assessments and
‘what if’ studies were conducted for various harvesting scenarios
using Siemens Jack software with anthropometric human harvester
models (Figure 10E). This conceptual model featured mushrooms
objects that are uniform in size, shape, location, and orientation. In
the real environment mushrooms have varying geometric and
physical parameters, and growth is clustered. Although useful for
analyzing ergonomics in select static harvesting situations, this
model is not a true representation of a growing mushroom
environment.

Future research should focus on establishing model instances
throughout a harvest cycle with standardized representations based
on real-time data collected by IoT devices. An ANN approach,
where image data is collected along with representative geometry
(Euclidean or Non-Euclidean) input data (Figure 11A) can be used
to develop accurate CADmodels (SDF or voxel based) from baseline
instances of different shapes. This would facilitate adaptable end-
effector designs. At the systems level, aggregate modeling that
considers discrete events in tandem with agent-based simulations
(The AnyLogic Company, n. d.) can be developed using more
realistic scenarios for crop management (Figure 11B) to detailed
harvesting activities such as robotic trajectories.

Responses to compression forces (deflection, bruising, etc.)
(Recchia et al., 2023) and other mechanical and physical
properties need to be determined experimentally to have a
baseline for effective downstream modeling simulations, whether
machining or finite element based. As the knowledge base develops
for a harvest type, design improvements throughout the growth
cycle for the automation can be implemented.

8 Conclusion

In order to ensure that food production will meet the demand
of a rapidly growing global population, agricultural harvesting
systems need to transform their existing practices.
I4.0 technologies are driving more efficient use of inputs,
remote environmental control in greenhouses, automated
harvesting, and enhanced farm management practices. Several

solutions that utilized these technologies, including Internet of
Things, machine learning, deep learning and advanced robotics,
were highlighted throughout this review. CAD and CAM tools
supported the development of 3D crop environment models to
simulate, test, and validate harvesting strategies, trajectory plans,
and grasping poses. CAD tools also facilitated the design of robotic
end-of-arm tooling, rigid-body, and other auxiliary components.
Very few solutions have achieved a commercial product state.
Complexities within crop environments, data sufficiency, and
memory and computational demands are barriers to their
successful operation in actual farming systems. CAD models
that represent in-process crop states throughout a harvesting
cycle should be explored. Integrating this model type with
I4.0 technologies can promote data-driven harvesting practices
to improve system performance.
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