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Introduction:Markov chains are a powerful tool for modeling systems in various
scientific domains, including queueing theory. Thesemodels are characterized by
their ability to maintain complexity at a low level due to a property known as the
Markov property, which enables the connection between states and transition
probabilities. The transition matrices of Markov chains are represented by graphs,
which show the properties and characteristics that help analyze the
underlying processes.

Method: The graph representing the transitionmatrix of a Markov chain is formed
from the transition state diagram, with weights representing the mean transition
rates. A probability space is thus created, containing all the spanning trees of the
graph that end up in the states of the Markov chain (anti-arborescences). A
successive examination of the graph’s vertices is initiated to form monomials as
products of the weights of the edges forming the symbolic solution.

Results: A general algorithm that commences with the Markov chain transition
matrix as an input element and forms the state transition diagram. Subsequently,
each vertex within the graph is examined, followed by a rearrangement of the
vertices according to a depth-first search strategy. In the context of an inverted
graph, implementing a suitable algorithm for forming spanning trees, such as the
Gabow and Myers algorithm, is imperative. This algorithm is applied sequentially,
resulting in the formation of monomials, polynomials for each vertex, and,
ultimately, the set of polynomials of the graph. Utilizing these polynomials
facilitates the calculation of the stationary probabilities of the Markov chain
and the performance metrics.

Discussion: The proposed method provides a positive response to the inquiry
regarding the feasibility of expressing the performance metrics of a system
modeled by a Markov chain through closed-form equations. The study further
posits that these specific equations are of considerable magnitude. The intricacy
of their formulation enables their implementation in smaller systems, which can
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serve as building blocks for other methodologies. The correlation between Markov
chains and graphs has the potential to catalyze novel research directions in both
discrete mathematics and artificial intelligence.

KEYWORDS

graph theory, Markov chains, anti-arborescence, closed form formulas, stationary
probabilities, spanning trees

1 Introduction

Since their introduction, Markov processes have been applied in
many disciplines, e.g., physics (Dunkel and Hänggi, 2009),
economics (Battaglini, 2005), sociology (Loughran et al., 2017),
computational biology (Reinert et al., 2000), information theory
(Shannon, 1948), and internet applications (Ching et al., 2013),
among many others. Wide-range applications of ‘Markov processes’
includes operations research with queueing theory (Papadopoulos
and Heavey, 1996), production lines (Papadopoulos et al., 2019),
maintenance (Tijms and van der Duyn Schouten, 1985) and supply
chains (Topan et al., 2020). This prevalence is due to the possibility
of improving statistical modeling while keeping complexity low
through the Markov property (Privault, 2018). The latter is
characterized as memoryless and makes the current state
independent of past states by linking to transition probabilities.

At the beginning of the twentieth century, graphs were
developed in parallel with the development of probability
theory. After the 1950s and computer development, researchers
began associating stochastic processes with graphs (Lyons and
Peres, 2016). As a result, algorithms were developed to solve
problems in graph theory and stochastic processes (Faurre,
1976; Bruell and Balbo, 1980; Sedgewick, 2001), and many
problems were solved using numerical methods. For example,
complex network problems began to be solved using graphs by
identifying and utilizing their internal structures, such as Euler
paths (Uehara and vanCleemput, 1979) or Hamilton paths [see the
work of Itai et al. (1982) on grid graphs]. The spanning tree is an
essential structure of graphs of this type, and it is of particular
interest because it can be used to solve problems such as networks
and circuit design (Wu and Chao, 2004), artificial intelligence,
where spanning trees are the main structure of genetic
programming (Koza, 1992), and primarily because of their
relation to probabilities (Lyons and Peres, 2016).

The mathematical basis of graphs as sets of vertices and edges
establishes a connection to probabilities, which are also based on
the enumeration of elements of a set. Spanning trees are geometric
structures within graphs and form subsets of edges in a graph
depending on how they are viewed. Therefore, it is possible to
distinguish between an arborescent spanning tree, which starts at a
specific node of the graph, the tree’s root (Thulasiraman et al.,
2016), and an anti-arborescent spanning tree, which ultimately
ends at a graph node (Korte and Vygen, 2018). A directed graph
can represent the matrix of transition probabilities of a Markov
process by connecting one state to another by a weighted edge or
arc, where the weight corresponds to the transition probability
from state i to state j (Lyons and Peres, 2016). The probability of
the sequence of transitions between the states of a Markov chain is
equal to the product of the probabilities of the individual

transitions that make up this sequence (Kolmogorov, 1956).
Suppose a spanning tree follows a sequence of transitions from
the root to all nodes of the graph, i.e., the states of the Markov
chain. In that case, the probability of occurrence of this spanning
tree is equal to the product of the transition probabilities of the
individual edges of the spanning tree normalized to the set of all
spanning trees in the graph. The probability of occurrence of a set
of spanning trees rooted in a particular node of the graph is equal
to the sum of the probabilities of the individual nodes according to
the Markov chain tree theorem (Evans, 2008). Moreover, it forms
the stationary probability of the node, i.e., the state of the
Markov chain.

A systematic workflow must be found to find all spanning trees
of a graph, form the sets of spanning trees, and extract the
probabilities of interest. The number of spanning trees in a graph
increases tremendously fast as the number of nodes and edges
increases, as shown by the Cayley formula for a complete graph
(Lyons and Peres, 2016). Therefore, efficiently finding the set of
spanning trees in a graph is an open field of research. Several
algorithms exist to find all possible spanning trees (Chakraborty
et al., 2019). The algorithm of Gabow and Myers (1978) is optimal
for finding all spanning trees that are explicitly rooted in a node of a
directed graph (Matsui, 1997).

In operations research, different models can often be
represented by formulas; therefore, several publications deal with
the search for formulas (Mariani et al., 2019; Ewald and Zou, 2021).
Models based on Markov chains have also attracted the attention of
researchers as formulas can express them. These include the work of
(Papadopoulos, 1996; Li and Cao, 2013; Cui et al., 2018). Formulas
convey the intuition of the underlying phenomenon while being
more accessible to handle as fewer resources are needed. Therefore,
practitioners use them more frequently when they are available.

In the present work, the dynamic geometry of the graphs
representing the transition matrices of the Markov processes, as
expressed by all the anti-arborescences present in them, is combined
with the comprehensive information of the transition probabilities
from one state to another of the Markov process to obtain its
stationary probabilities in symbolic form as formulas of
rational functions.

The rest of the paper continues as follows. Section 2 presents the
Algorithm (the Algorithm with capitalized A refers to the Algorithm
proposed in the present work) based on the problem formulation,
the algorithm, and its complexity. Section 3 contains two examples
of serial production line domain solved using the proposed
Algorithm to exemplify some aspects of the Algorithm and to
obtain the exact solutions of the stationary probabilities in
symbolic form. Section 4 discusses the topic, while the
conclusions and ideas for future research are given in the
last Section 5.
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2 The algorithm for extracting formulas
from underlying graphs

In the present section the Algorithm is presented. The
methodology for extracting the stationary probabilities starting
from the transition matrix of the Markov chain through graphs
is followed by the Algorithm presentation, the Algorithm
complexity and the presentation of a presentation of
Relabeling procedure.

2.1 Description of the methodology

Consider a system modeled as an irreducible Markov process
characterized by continuous parameters and discrete states,
represented by a transition matrix P with N states and an
associated network depicted in a state transition diagram, see
Figure 1A; Equation 11 for its corresponding transition matrix Q.
When the system reaches a steady state, it occupies state j with a
constant probability, independent of time, known as the steady-state
probability πj. The stochastic process continues to transition
between states by following the edges of the graph that indicate
these transitions. The probability of moving from state i to state j is
represented as pij. Over extended periods, analyses of the system
reveal that it is statistically in state j with a probability of πj, despite
the ongoing transitions among states. The associated network can be
formally represented as a graph G, which is constituted by two
distinct sets, V and E. This representation is denoted as G = (V, E),
where V is the set of vertices or nodes that symbolize the states of a
Markov process, specifically defined as V = {1,. . .,N}. The set E
comprises the edges of the graph, represented as E = {e1, e2. . ., em},
which indicate the transitions between the various states. It is
important to note that the graph G is entirely characterized by
its adjacency matrix, thereby establishing a significant correlation
with the transition matrix of the corresponding Markov chain.

The type of graph represents Markov chains, namely directed
graphs, where the edge (u,v) is also called an arc and is orientated
(directed), where the vertex u is the origin and the vertex v is the
target. The flow in orientated graphs can, therefore, only follow the
specified direction, and in production systems, the flow leads the
system to the next state immediately after a process that causes
changes in the system. If G = (V, E) is a directed graph, then we

define the inverse (inverted or transposed) graph G-1= {V, E-1} of G,
for which E-1= {(v,u)|(u,v)∈E} and v,u∈V. The weight w of each edge
in the directed graphs distinguishes one edge from another. In
Markov chains, it models the rate of transition from one state of the
system to another. A path P= (v0, v1, . . ., vn) of length n is denoted as
the sequence of arcs from a vertex v0 to a vertex vn following the
directions of the arcs, where the total number of vertices of the graph
on the path is n + 1, starting at vertex v0 and ending at vertex vn. The
arcs of the graph on the path are unique.

A tree is called a connected graph without cycles, i.e., acyclic. An
origin tree is a tree whose vertex r is called the origin or root of the
tree, see Figure 1B. Alternatively, the tree can be rooted at vertex r. A
graphG’s spanning tree (arborescence) is called a subgraph T if it is a
tree and contains all vertices of G. A graph G can only have a
spanning tree if it is connected. In particular, for a directed graph G,
a spanning tree rooted at vertex r is a subgraph that has a unique
directed path from r to each vertex ofG. By reversing the direction of
all the edges of a spanning tree rooted at a vertex r so that they all
point towards the root and not away from it, we get a different
spanning tree, called an anti-arborescence.

Suppose the system modeled by a Markov Chain is represented
by a directed graph G (V, E), where V is the set of vertices (the
cardinal number of V is Ν) and E is the set of edges of the graph. In
this case, one can construct the anti-arborescence of the system
leading to node j (v nodes of the graph G), see Figure 1C. The anti-
arborescence is the reverse spanning tree rooted at node v (Korte and
Vygen, 2018), and it is defined in a directed graph G as the in-tree
that ends in a single node (here, node v) of the graph. An in-tree is
the subgraph Cv that represents a single tree that ends at node v and
follows some edges of graph G but includes all nodes of graph
G only once.

The anti-arborescence tree structure describes the successive
transitions from an arbitrary initial state of the graph, k, to a final
state, j. Furthermore, anti-arborescence can represent and
enumerate all combinations of all possible transitions from any
initial or transition node of graph G to the final state j.

The anti-arborescence contains all nodes of the graph, i.e., all
Ν-states of the system corresponding to the states of the Markov
chain, and it always has Ν-1 edges connecting the nodes of the
graph. Each edge connecting two states (let us assume it starts in
state i and ends in state k) is labeled eik and has a weight
corresponding to the probability of transition from state i to state

FIGURE 1
The graph (A) is based in Muth (1984) and it has the transition matrix Q, Equation 11. An arborescence rooted in state 100 (B) and an anti-
arborescence ending in the same state 100 (C). The edges weights represent the mean service rates.
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k, pik, and is labeled w(eik). Thus, each anti-arborescence forms a set
with Ν -1 unique transition edges that connect each system state to
the final state j and make it accessible from any other state within at
most Ν -1 transitions.

Consider a graph G that represents the Markov chain that
models a system in a stable state like, a model of a serial
production line (Papadopoulos et al., 2009). The transition from
one state to another is time-independent and corresponds to the
transition rate from one state of the Markov chain to the next. Thus,
if the system is in state i and transitions to state j and then to state k,
the transition probabilities are determined by Equation 1
(Kolmogorov, 1956). The latter is expressed using the transition
probabilities from one state to another from the transition
probability matrix P and can be generalized for system
transitions to several successive states of the Markov chain. From
now on, these transition probabilities, i.e., the transition rates from
one state to another, are assigned to the weights of the arcs of graph
G to express the steady-state probabilities symbolically using the
graph structure, starting from outer vertices and moving towards the
end of the graph’s anti-arborescences, exploiting Equation 1.

pik � pij · pjk, i< j< k (1)

An anti-arborescence C in the direction of one of the N states of
graph G occurs according to the probability with which the Markov
chain moves from any state k of graph G to the final state. The
transitions are independent events along the edges that form the
anti-arborescence C. Due to independence, the probability of anti-
arborescence C is given by the product of the probabilities of each
edge of C, see Equation 2, which has N-1 terms, where w (e)
expresses the probabilities of transition from one state to
another. According to the Markov Chain Tree Theorem, these
probabilities are the edge weights of the graph G (Evans, 2008).

PMarkov C( ) � ∏
e∈C

w e( ) (2)

The PMarkov(C) probability should be normalized to express the
probability of anti-arborescence C, P(C). The sum of all probabilities
of the anti-arborescences of graph G, denoted CG, must equal one,
i.e., P(CG) = 1. The ratio of the probability of the anti-arborescences
for the state v divided by the probability of all anti-arborescences of
the graph is the probability that the system is in the state v.

Any two anti-arborescences A, B, represent two different events
CA, CB of the space Ω, and it holds P(CA∪CB) = P(CA) + P(CB),
generalized in Equation 3. The union of all anti-arborescences of
graph G is the complete set of all anti-arborescences of graph G,
i.e., Ω � CG � ⋃ C∈CG

C. The probability of set Ω in combination
with Equations 2, 3, therefore results from Equation 4.

P ⋃
n

i�1
Ci( ) � ∑n

i�1
P Ci( ) (3)

P Ω( ) � P CG( ) � P ⋃
C∈CG

C( ) � ∑
C∈CG

P C( ) � ∑
C∈CG

∏
e∈C

w e( ) � 1 (4)

Thus, the probability of any anti-arborescence Ci is equal to the
probability of the transition of the Markov chain following the edges
of Ci divided by the sum of the corresponding probabilities for each
of the anti-arborescences in the graph G, given by Equation 5.

P Ci( ) � PMarkov Ci( )
P CG( ) � ∏e∈Ciw e( )∑C∈CG

∏e∈Cw e( ) (5)

The three elements (Ω, A, P) form a probability space defined by
the set of anti-arborescences of the graph G, a finite Markov chain,
with a σ-field of subsets of Ω and a probability measure P
defined in A.

Equation 6 gives the set Cj of all anti-arborescences that lead the
system to state j, with a probability equal to the stationary probability πj

of the underlying Markov chain modeling the system. All that remains
is to find a way to identify all the anti-arborescences of graph G.

πj � P Cj( ) � ∑Ci∈Cj
P Ci( )

P CG( ) � ∑Ci∈Cj
∏e∈Ciw e( )∑C∈CG
∏e∈Cw e( )

� ∑Ci∈Cj
∏e∈Ciw e( )

∑N
k�1∑C∈Ck

∏e∈Cw e( ) (6)

The product ∏
e∈C

w(e) forms the main terms of a monomial
and is referred to below as the spanning monomial. Accordingly, the
stationary probability πj is a ratio of two polynomials. The
numerator is called the spanning polynomial of state j, denoted
as spj, and consists of the sum of the spanning monomials. If the
transitions between the states have identical weights, i.e., transition
rates, the monomials sum up and give a monomial coefficient in the
spanning polynomial. All stationary probabilities have a common
denominator called the spanning polynomial of the graph, denoted
as spG. This denominator can be expressed as Equation 7, and
following this symbolism, any stationary probability of the state j, πj
can be obtained in analytic or numerical form, as Equation 8
describes by the ratio of two polynomials.

spG � ∑
j∈G

spj (7)

πj � spj

spG
, j ∈ G (8)

Computing the steady-state probability of Equation 8 requires
extracting all spanning polynomials using any appropriate method
for each graph state to form the spG polynomial, the denominator of
each steady-state probability of the system state. Thus, the
Algorithm can automatically provide the stationary probabilities
of a Markov chain from its transition matrix in analytic form. The
only requirement is that all anti-arborescences of the state transition
graph be enumerated, and no further processing is required, such as
solving systems of linear algebraic equations or solving differential
equations. The solutions provided by the Algorithm are the exact
closed-form solutions since all transition probabilities are included
in the final solution, which is ultimately a ratio of two polynomials.
Depending on the form of the weights on the edges of the graph G or
the matrix P, i.e., whether they are in symbolic or numerical form,
the stationary probability πj that the system remains in the given
state j is given symbolically as a mathematical formula or as a
number respectively.

2.2 Description of the proposed algorithm

Given the transition matrix P for a system withΝ states modeled
as a Markov process, the goal is to express stationary probabilities as
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mathematical relations in analytic form with closed-form equations.
The sum of its elements equals one in each row of the matrix P. The
matrix P can be rewritten into the corresponding graph G (V, E),
which forms the background for searching all anti-arborescences at
each vertex v∈V of the graph.

All transitions are written in the form of a list, and the arc,
i.e., weighted edge, of each transition from state i to state j is
supplemented by the weight w(eij), which corresponds to the
probability pij from the matrix P. The graph, therefore, shows as
many transitions as non-zero elements of the matrix P.

2.2.1 The Gabow and Myers’ algorithm
The first purpose of the Algorithm is to enumerate all anti-

arborescences ending at each vertex of the graph. For this
enumeration, is used any suitable algorithm, but in the present
work for systems with many spanning trees, the algorithm of Gabow
and Myers (1978) is adopted, which lists rooted trees at each vertex
of the graph. The algorithm finds all the spanning trees of a directed
graph rooted at a specific vertex, r, i.e., the state of the underlying
Markov chain. The algorithm finds all the spanning trees containing
a subtree T rooted at r. The process begins by selecting an edge e1
that is directed from T to a vertex, not in T. Next, the algorithm finds
all of the spanning trees containing T ∪ e1 and then deletes e1 from
the graph. This process is repeated for all edges e2 to ei that are
directed from T to a vertex, not in T. Finally, the algorithm stops
when the edge ek that has just been processed is a bridge of the
modified graph. This approach helps find a directed graph’s
spanning tree. All the spanning trees containing T appear to
have been found precisely once. If a spanning tree does not
contain any ej, j < k, then it must include the bridge Q, and the
work of Gabow and Myers uses a method based on the depth-first
search (see Sedgewick, 2001) to locate the bridgeQ, i.e., the edge that
if it is removed splits the graph into two separate graphs.

The algorithm selects edges e such that the treeT grows depth-first,
aiming to add the edge e to T, which originates at the most incredible
depth possible. The algorithm uses F, a list of all edges directed from
vertices in T to vertices not in T, for growing T depth-first. Enlarging T
is about invoking a procedure called GROW, which involves popping
an edge e from the front of F and adding it to T. ProcedureGROW also
pushes a new edge, for T ∪ e, onto the front of F. Additionally, when e
is added to T, some edges are removed from F, and when e is removed
from T, these edges are restored in F. The removal and restoration
operations must leave the order of edges unchanged in F, or T will not
grow depth-first. In addition to F, the algorithm uses lists FF. Every
recursive invocation of GROW has a local FF list, which is used to
reconstruct the original F list and managed as a stack. The algorithm
also employs data structures for T, the current tree growing, adding
new edges and vertices, and the spanning tree L, the output spanning
tree containing all the graph’s vertices.

2.2.2 The algorithm’s basic steps
The Gabow and Myers’ algorithm is executed Ν times, the

number of system states. However, Gabow and Myers’ algorithm is
not designed to detect anti-arborescences. The latter requires the
reversal of the direction of the graph edges, i.e., the edge eij and the
weight w(eij) become eji, while the same weight w(eij) is kept. After
this change, Gabow andMyers’ algorithm exhaustively finds all anti-
arborescences starting from a vertex v and locates all arborescences

rooted in this node of the reversed graph G. It also requires a record
of the weights (transition rates) of each rooted spanning tree
(arborescence) that match the original direction. In this way, the
process finally generates the products of Equation 2. If these
products have standard terms, algebraic operations can be
performed to convert the products into monomials, i.e., spanning
monomials, or polynomials, i.e., spanning polynomials.

The sum of all spanning monomials generated by the anti-
arborescences forms a polynomial at each vertex. This spanning
polynomial is the numerator of the stationary probability of the
state. The sum of the spanning polynomials in each final state of the
graph forms the spanning polynomial of the spG graph, which is the
denominator of each stationary probability.

Using the spanning polynomial in each state and the spanning
polynomial of the graph, the steady-state probabilities of each state j,
πj can be extracted as the ratio of these two polynomials according
to Equation 8.

To summarize, the five basic steps of the algorithm are as
follows, see Figure 2 for an overview of the Algorithm:

1. Using a suitable method, form the system transition matrix P
and invert it, PT, see Figure 2A.

2. Enumerate allN states of the table PT and construct the original
graph with N vertices and all information in a suitable data
structure, see Figure 2A.

3. For each vertex of the graph j, perform the following,
see Figure 2B:
a. Reorder the remaining vertices by first searching in depth

starting from vertex j.
b. Find all spanning trees that end at vertex j using the Gabow

and Myers algorithm.
c. For each spanning tree, form the corresponding monomial

by multiplying the weights of the edges of the spanning tree
and add all monomials that form the spanning polynomial
of vertex j.

4. Add the spanning polynomial of all vertices that form the
spanning polynomial of the graph, see Figure 2C.

5. Calculate the stationary probability for each state by dividing
the spanning polynomial of state j, j∈{1, . . . , N}, by the
spanning polynomial of the graph, see Figure 2C.

2.3 The detailed steps of the algorithm

The Algorithm, see Table 1 presents the automatic extraction of
the symbolic stationary probabilities from a Markov chain in
27 algorithmic lines, see Algorithm. The Algorithm takes the
transition matrix P of the system with N states as input with
numerical or symbolic elements. The Algorithm’s output is the
system’s stationary probabilities in numerical or symbolic form for
each of the N states.

As summarized above, the Algorithm’s steps are explained in
detail and grouped into five basic ones.

2.3.1 Basic step 1
The Algorithm reverses the direction of the edges in Step 1 by

transposing the matrix P, which has N states, so that Gabow and
Myers’ algorithm can enumerate all the graph’s anti-arborescences.
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This change of direction preserves the weights of the edges so that
the transition matrix and its transpose matrix have the same states
and weights but alternate between the start and end transition states.
For Gabow and Myers’ algorithm to work, each state must be
assigned a consecutive integer number, starting with zero for the
final state under consideration.

2.3.2 Basic step 2
Each state, therefore, has two attributes: a serial number, which

was specified in line 2, and the pair (state identifier from the matrix

P, expression of the state, e.g., state “s1”). Line 3 creates a list with
integer numbers of states from 1 to N-1 and their names with
character strings. These elements must remain unchanged to extract
the stationary probabilities at the end. The transition matrix graph is
constructed with these features, where each vertex is represented by
the pair (state id, state expression string), and each edge is
represented by the two nodes at the beginning and end of the
transition and the transition weight. This graph is created in line
4 and remains unchanged throughout the Algorithm as the
reference graph.

FIGURE 2
The flowchart of the proposed Algorithm. Basic steps 1 and 2 are depicted in (A). Basic steps 3a, 3b, and 3c are depicted in (B). Basic steps 4 and 5 are
depicted in (C). The sequence of steps follows the chart flow, and the different colors distinguish them.
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2.3.3 Basic step 3
That is followed by a loop executed N times, lines 5–22, in which

each state of the transition matrix P, i.e., a vertex of the graph G, is
considered the final state j and the spanning polynomial for this state
is extracted. At the end of the loop, all spanning polynomials for
each state have been extracted so that the spanning polynomial of
the graph, spG, can be determined as the sum of the spanning
polynomials of the individual states.

2.3.3.1 Basic step 3.a
The processing of each state begins with a procedure called

Relabeling (lines 6–14). During the Relabeling procedure, starting
from vertex j of the graph representing the considered state j∊{0,1,
. . . , N-1} in which the spanning polynomial is extracted, the vertices
of the graph are ordered based on the Depth-First Search (line 8).
The Algorithm temporarily renames vertices with this layout list
(lines 9 and 10). However, it retains the strings naming the states and
the transition weights regarding graph G, which acts as a reference
graph containing all the information about the structure of the
underlyingMarkov chain (lines 11 and 12). The new vertices create a
new temporary graph Gnew from which rooted spanning trees are
extracted whose root has a temporary ID from the Relabeling
process equal to zero (line 13). All other elements of the graph
Gnew, i.e., the edge weights and the names of the vertices, remain
unchanged. The procedure ends at line 14 when all N vertices have
been renamed.

It is crucial to leave the original graph unchanged to obtain a
consistent rendering of the spanning trees and extract the correct

formulas expressing the stationary probabilities, i.e., the solutions of
the equilibrium equations derived from the transitionmatrix P. That
is because, although the Gabow and Myers’ algorithm treats the
graph’s vertices as a label with an ascending number, this does not
work in the same way if the vertices and edges carry information,
i.e., states and transition rates between states. It is vital to obtain this
information to solve the equilibrium equations. Thus, if the
Relabeling procedure is used, the original graph is transformed
temporarily N times, as many times as the number of states in the
transition matrix P. So, preserving the original graph leads to the
correct monomials corresponding to the transition matrix P.
Otherwise, the Gabow and Myers algorithm provides all
spanning trees of the graph. However, these do not correspond
to the correct monomials that solve the equilibrium equations of
the matrix P.

2.3.3.2 Basic step 3.b
In line 15, the Algorithm forms all spanning trees rooted in state

j of the graph Gnew. For this purpose, the algorithm of Gabow and
Myers is executed on the graph Gnew, where vertex j is the root. That
means that all spanning trees that start from vertex j and include all
other vertices of the graph Gnew are recorded. These trees are the
arborescences of the graph Gnew, but with the direction reversed due
to line 1 of the Algorithm.

2.3.3.3 Basic step 3.c
That is followed by a loop executed as often as the number of

spanning trees identified for state j in line 15 of the Algorithm (lines

TABLE 1 The Algorithm for calculating the symbolic stationary probabilities.

Algorithm: Extraction of symbolic stationary probabilities from the transition probability matrix of a Markov irreducible
chain

Input: Transition matrix P with N states
Output: Stationary probabilities in symbolic or numerical form
1: P′←PT

2: enumerate the states Pstates
′ , with the serial number k, k∈{0,1, . . . ,N-1}

3: map j ←���������������
map

〈k, Q′ states〉 form the ordered pairs (state id k, state name Q′state)

4: Form graph G as weighted edges (arcs) G: (u, v,w(u, v)) ←���������������
map

((ju, jv), w(ju, jv)), where u is the starting vertex, v τthe ending vertex, and w(u,v) the edge weight.
5: for all j do
6: Procedure Relabeling: Create temporary graph Gnew from graph G:
7: begin procedure
8: Create the ordered set of vertices Vj starting from j using the Depth-First Search algorithm
9: enumerate Vj,m ∈ 0, 1, . . . ,N − 1}{
10: ∀j d, ine the 〈k,m〉

11: map jnew ←���������������map
j,∀j ∈ G

12: ∀jnew← 〈m,Q′ states〉 change k from 〈k,m〉
13: Create Gnew with weights w (u,v) and the states Qstates

′ without change Gnew: (unew, vnew,w(u, v)) ←���������������
map

((jnewu , jnewv ), w(ju, jv))
14: end procedure
15: Form the set Cj of all root spanning trees in j at jajnew〈0, Q statesj

′〉 using the Gabow and Myers algorithm with Gnew rooted in j
16: for all anti-arborescences i ∈ Cj of state j do
17: print Ci

j using the original transitions of transition matrix P
18: From Ci

j obtain the spanning monomial analytically (or numerically) smi
j � ∏

e∈Ci
j

w(e) Equation 2
19: end for
20: Obtain the spanning polynomial of state j, spj � ∑

i∈Cj

smi
j

21: delete Gnew

22: end for
23: spanning polynomial of graph G, spG � ∑

j∈Q
spj

24: for all j ∈ P do
25: Obtain the stationary probability πj � spj

spG

26: end for
27: Analyze Markov chain and obtain performance measures of interest
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16–19). The purpose of the loop is to convert each spanning tree into
a spanning monomial by taking the product of the weight, i.e., the
transition rate, of each edge of the spanning tree times the weights of
all other edges that form the spanning tree. If the weights are
symbols, the product is a string, and the spanning monomial is
treated as a symbolic mathematical term. If the weights are numbers,
the monomial is a number and is treated as such. All resulting
spanning trees are printed in line 17 in the correct order (anti-
arborescences) of the initial transition matrix P. In line 18, the
spanning monomials for each tree are extracted. The loop ends at
line 19 when all the temporary graph Gnew spanning trees have been
elaborated.

In line 20, the spanning polynomial of state j is extracted. The
loop that started in line 5 is completed for state jwith the destruction
of the temporary graph Gnew in line 21. The same procedure is
applied for state j+1 until the states of the Markov chain are
exhausted (line 22).

2.3.4 Basic step 4
Then, by summing all spanning polynomials for each vertex j,

the Algorithm proceeds to form the spanning polynomial spG of the
entire graph G (line 23). The spG is the denominator of every
stationary probability of the matrix P.

2.3.5 Basic step 5
There follows a loop that is executed N times (lines 24–26), in

which for each state j of the transition matrix P, i.e., a vertex of the
graph G, its stationary probability is extracted as the ratio of the
spanning polynomial of state j divided by the spanning polynomial
spG of the graphG. After the extraction of the stationary probabilities
in symbolic or numerical form, they can be used to analyze the
Markov chain to obtain performance measures of interest (line 27).

2.4 The complexity of the algorithm and the
number of spanning trees

The Algorithm’s complexity is equal to the complexity of the
Gabow andMyers’ algorithm. That is because the Relabeling process
(a Depth-First Search) occurs only once for each state. At the same
time, the “bridge search” (the stopping criterion for the Gabow and
Myers algorithm) is performed millions of times as the graph is
enlarged. Therefore, the Gabow andMyers’ algorithm dominates the
extraction of anti-arborescences.

The algorithm of Gabow andMyers was presented in the work of
Gabow and Myers (1978). Its complexity is given as O(V + E + EN’),
where V is the number of vertices, E is the number of edges, andN’ is
the number of all spanning trees in a graph. Thus, the Algorithm’s
time complexity isO(V + E + EN’) and space complexity isO(V + E).
For the worst case of a fully connected directed graph, let n be the
number of vertices. In this case, E � n(n − 1) andN’ � nnn−2. Then
the time complexity of the method is O(n + n(n + 1) +
n2(n − 1)nn−2) or O(nn). Working the same way the memory
complexity is O(n2). In the case of serial production lines
without intermediate buffers, it is asymptotically true that the
number of states is a function of the number of stages K and n �
2.618K/2.236 (Muth, 1984). Therefore, the time complexity for such
systems is O(2.618K2.618K ) and memory complexity is O(6.854K).

However, due to the assumptions of Markovian models, the real
values of transitions are smaller than the theoretical ones. For
example, in the case of K = 10 stages, our team analyzed the
underlying graph and found 6,765 states and 32,960 transitions
between states, a number significantly smaller than the theoretical
45,758,460 that applies to the fully connected graph. However, the
hyper-exponential increase in complexity limits the method to small
graphs and thus to production systems with few stages, which are
used as structural elements for other numerical methods.

That means that the complexity of the analytical solution of
stationary probabilities is significantly higher than that of the
numerical solution of stationary probabilities, where the
complexity measure is the number of states of the Markov chain.
In the numerical solution, the probability constantly shrinks to a
number in the calculations; in contrast to the analytical solution, the
probability is expressed as the ratio of two ever-increasing
polynomials. However, once the stationary probabilities are
available in symbolic form, the output results are significantly
faster than numerical methods without special software
requirements.

Another parameter related to the nature of the problem and the
size of the exact mathematical relations in systems modeled with
Markov chains is the total number of spanning trees present in a
graph. That affects the polynomials’ and the formulas’ final sizes.
There is an upper bound on the number of spanning trees that
results from the case of a complete graph where all vertices are
connected. Cayley’s formula gives this (Takács, 1990), which states
that the number of anti-arborescences Nsp for each vertex equals Nsp

= nn−2 where n is the vertices number.
Generally, the number of spanning trees in a directed graph for

the frequent case in some transitions between states or exchangeable
edges that do not exist is estimated by a variation of the matrix-tree
theorem, see the book Van Lint and Wilson (2001). The number of
spanning trees κ(G) in a directed graph G= (V, E) is equal to the
determinant of a suitable matrix, the Laplacian matrix L of the graph
G. L is defined by L = D-A, whereD is the following matrix given by
Equation 9:

D �
d1 . . . 0
“ 1 “
0 . . . dn

⎛⎜⎝ ⎞⎟⎠ (9)

Where, di = d+(vi)= #{j∈V|(i, j) ∈ E}, the outer degree of vertex vi
and n is the number of system states, and the symbol # denotes the
number of output edges from vertex i. The matrixA is the adjacency
matrix of G without weights, defined as A=(αij) where, aij is given in
Equation 10.

aij � 0 if vi, vj( ) ∉ E

1 if vi, vj( ) ∈ E

⎧⎨⎩ (10)

The number of directed spanning trees rooted in the node r of
the graph G, κ(G, r) is: κ(G, r) = det-Lr where Lr is the Laplacian
matrix L from which the row r and column r have been removed.
The sum of the spanning trees for all vertices of the graph is the
number of all spanning trees equal to the number of anti-
arborescences of the graph. Even if the transition matrix of the
Markov chain is sparse, applying the method based on the matrix-
tree theorem to calculate the number of spanning trees yields a
colossal number of spanning trees.
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2.5 The Relabeling procedure

In Figure 3A, we see graph G, formed in line 4 of the Algorithm.
Each vertex is the corresponding number of the state from the
matrix P, and the string refers to the specific problem (it is useful
when considering a system with many states). Above each vertex is
the serial number of the vertex from line 2 of the Algorithm,
see Table 1.

Figure 3 shows the graph presented in Muth (1984) with the
direction of the edges reversed and the information that is stored in
data structure of the Algorithm. It is noted that the graph is the same
as the graph in Figure 1A which preserves the original edge
direction. The purpose of the figure is to show the change that
the Relabeling procedure has on the structure of the graph, as well as
the amount of information that should be stored for the Algorithm’s
execution. The Relabeling procedure is applied to Figure 3B, where
the vertices are given an ascending numbering based on the Depth-
First Search, forming the graph Gnew, of the Algorithm. The other
graph elements, such as states, strings, edges, and edge weights,
remain unchanged.

The difference between the two diagrams is in the numbering
above the vertices, represented by circles. This numbering is done
using the Depth-First Search algorithm, while all other information
remains the same. Each circle contains the original numbering of the
graph, i.e., the string describing the state of the Markov chain. The
edges are labeled with weights of the form w (start, end), where the
start is the start vertex of the arrow, and the end is the end vertex,
i.e., the initial state of the Markov chain and the final state,
respectively, where the arrow represents the transition. The value
of the weight w of the arrow indicates the transition rate from the
initial state to the final state. If w is a character string, the Algorithm
results in a symbolic formula. If w is a numeric value, the operations

can be performed with a numeric result. All values of the graph,
i.e., vertex contents and edge weights, are derived from the
initialization of the original graph, and the use of a suitable data
structure to store these values along with the numbering from the
Depth-First Search algorithm should be considered when
implementing the Algorithm with the desired
programming language.

The Relabeling procedure does not affect the Algorithm’s output
(the result), but the time it takes to execute it. This practical
observation emerged from experiments with transition matrices
corresponding to relatively large graphs. The algorithm of Gabow
and Myers enumerates all spanning trees that have their root in a
state, i.e., in a vertex, and relies on a Depth-First Search procedure, a
well-known algorithm (see Sedgewick, 2001), to find a bridge in the
graph (Gabow and Myers, 1978). In the experiments conducted,
each time when the root of the graph changes, there is a possibility
that the number of iterations of the Depth-First Search increases or
decreases. Since the graph’s vertices are examined according to their
ascending number, Relabeling reduces the number of manipulations
required by the Algorithm to identify the edge that forms the bridge.
This reduction in manipulations reduces the execution time of the
Algorithm when enumerating the spanning trees in the graph set.
The Relabeling procedure does not significantly affect small graphs
but should be used when considering large graphs in more
complex systems.

3 Examples of the proposed algorithm

In this section, two examples are given to help understand the
functionality of the proposed Algorithm for deriving stationary
probabilities in symbolic form. An example based on serial

FIGURE 3
Relabeling a graph G (A) on the left to form the graph Gnew (B) on the right, where the state 0 is considered final. The graph is based on the one in
Muth (1984).
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production lines, which generates a polynomial part of the
throughput formula of Hunt (1956) iconic work, is given in
Section 3.1. In Section 3.2, the proposed Algorithm is applied to
a two-stage line with one slot buffer, which provides performance
measures in symbolic form.

3.1 General example of short serial
production lines

The example presented in this Section comes from Operations
Research and was introduced by Hunt (1956), where the objective
was, among other things, to find the throughput of a systemwith three
machines without intermediate buffers. Hunt gave an exact solution of
the system in symbolic form that satisfies the equilibrium equations of
the underlyingMarkov chain. This example was chosen because Hunt
provided the equations for maximum system utilization and
throughput in a ratio of two polynomials with particular
characteristics. After the publication of his work, a question that
has occupied the research community for seven decades is whether
other performance measures of serial production lines modeled with
Markov chains can be expressed with closed-form equations. The
proposed algorithm explains the structure of Hunt’s polynomials and
provides an affirmative answer to whether there are closed-form
equations that describe all performance metrics of systems
computed using numerical methods, mainly from linear algebra.
The example in the present work is given to present and explain
some technicalities of the proposed algorithm and how to formulate
Hunt’s polynomial through the analysis of transition rate diagrams.

The modeling of the system is presented in Papadopoulos et al.
(2009). The workpieces are picked sequentially by the three
machines. When the parts are finished processing on each
machine, they move on to the next one until they become
finished products. Each machine can be in three possible states:
0: idle, 1: working, and 2: blocked. The system’s state consists of
three digits, i.e., the composition of the states of the individual
machines following the above indicators. Here, the spanning
monomial for system state 121 will be given, which state is
interpreted as the first machine working, the second machine
blocked, and the third machine working.

According to the model, the state space S contains eight states,
S � 100, 101, 110, 111, 121, 210, 211, 221{ }. The transition matrix of
the system is the Q in Equation 11, where the states are in the same
order as given in S. The elements are the mean service rates of the
machines where their service time are exponentially distributed
random variables, i.e., μi, i = 1,2,3. The elements of the prime
diagonal indicate that the system remains in the same state. For
instance, when the system is in state 101, transit to state 100 by a rate
μ3 or to state 111 by a rate μ1 and remains in state 101 by a rate equal
to the sum (μ1+μ3).

Q �

−μ1 0 μ1 0 0 0 0 0
μ3 − μ1 + μ3( ) 0 μ1 0 0 0 0
0 μ2 − μ1 + μ2( ) 0 0 μ1 0 0
0 0 μ3 − μ1 + μ2 + μ3( ) μ2 0 μ1 0
0 μ3 0 0 − μ1 + μ3( ) 0 0 μ1
0 0 0 μ2 0 −μ2 0 0
0 0 0 0 0 μ3 − μ2 + μ3( ) μ2
0 0 0 μ3 0 0 0 −μ3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(11)

A graph is an abstract construct based on set theory and can be
expressed in various forms. The shapes are not as important as the
connections between vertices and the weights of those connections.
Thus, Figure 4 shows the graph where all transitions are written in
list form. Therefore, 14 transitions between two states are
recorded, forming the edges or arcs of the graph of the Markov
chain. The corresponding transition rate is recorded for each
transition, which is the weight of the transition edge from one
state to another. The list of the 14 edges is shown on the left in
Figure 4A, with the direction of the graph’s edges shown in the
center in Figure 4B. Finally, on the right if Figure 4C, the graph is
displayed. Colors are used to remain unchanged to facilitate the
reading of the shapes. It is noted that Figure 4C is the same
with Figure 1A.

The Algorithm aims to list all the anti-arborescences at each
vertex of the graph. For this purpose, the algorithm of Gabow and
Myers will be used, which enumerates the rooted trees at a vertex of
the graph. This algorithm is used as many times as the number of the
system states. However, the Gabow and Myers algorithm is not
designed to identify the spanning trees ending in a specific vertex.
Therefore, the direction of the graph’s edges must be reversed, i.e., a
transition’s initial and final states must be reversed, as shown in
Figure 5A. The resulting graph Figure 5B is the graph of the inverse
matrix of the Markov chain transitions. Then, the Gabow andMyers
algorithm can be applied, and exhaustively, it will correctly identify
all the anti-arborescences starting from each vertex of the graph
individually.

Thus, the Gabow and Myers algorithm is executed as many
times as the vertices of the graph, i.e., the states of the Markov chain.
The resulting anti-arborescences should be inverted to form the
spanning trees ending in a vertex, as shown in Figure 6, where all
spanning trees ending in vertex 121 are shown
i.e., sp1

121, sp
2
121, sp

3
121, sp

4
121, sp

5
121, sp

6
121 in Figures 6A–F

respectively. Note that for this graph, this vertex has six spanning
trees, which is the least number of spanning trees compared to any
other vertex in the graph. The product of the weights of the edges of
a spanning tree in Figure 7A is the same as the product of the
corresponding anti-arborescence that created it in Figure 7B and can
be written as a monomial, as shown in Figure 7C which corresponds
to sp4 121 depicted in Figure 6D. All the monomials obtained in this
way are summed. In the presented case, i.e., all the monomials
correspond to the six spanning trees of Figure 6, then the spanning
polynomial of Equation 12 is formed. Note that this polynomial is
included in the formula that Hunt published because the stationary
probability of state 121 participates in the equilibrium equations.
The 121-state stationary probability can be estimated when all the
spanning polynomials of the graph are formed, i.e., for all states of
the graph or Markov chain, so it is possible to create the stationary
probabilities of Equation 6.

sp121 � μ21μ
4
2μ3 + μ31μ

3
2μ3 + 2μ21μ

3
2μ

2
3 + μ31μ

2
2μ

2
3 + μ21μ

2
2μ

3
3 (12)

The illustration of the computation tree (Gabow and Myers,
1978; Griffor, 1999) in Figure 8 is of great interest. There, the
operation, the evolution, and the implementation of the Gabow and
Myers algorithm are presented. The algorithm starts from the root,
i.e., state 121, and systematically finds all the graph’s spanning trees
(anti-arborescences due to edge reverse). The GROW function of the
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Gabow and Myers algorithm is triggered at each node of the
computation tree, and a new vertex is inserted into the spanning
tree. Each node has a branching list; the list that records the
algorithm’s path creates a recursive call of the function GROW
to record all spanning trees. The spanning tree formation starts from
the T1 path and ends at the T6 path. Thus, the generated
computational tree describes a non-deterministic Touring
machine, for each graph vertex, corresponding to a
computational tree. The computational trees form a forest

containing every possible transition and state in the underlying
Markov chain that models the system.

3.2 Example of short serial production line

The example of this Section presents a serial production line of
two stages with one slot intermediate buffer, i.e., intermediate
storage spaces of a specific capacity located between machines.

FIGURE 4
The state-to-state transition diagram for theQmatrix of Equation 11. (A)On the left is thematrix in edge-list form; (B) the original transition direction
for each average service rate μi and (C) the graph of the system without the self-loops of occupation in the same state.

FIGURE 5
The graph of Figure 4 shows the edges in the reverse direction. (A) The reversed transition direction for each average service rate μi and (B) the graph
of the system. It corresponds to the transpose matrix QT and is used to find all the anti-arborescences of the Q matrix using the Gabow and Myers’
algorithms.
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The production line layout is shown in Figure 9A. Buffers
temporarily store semi-finished products when the next machine
is working, thus preventing the previous machine from blocking.
Blocking occurs when the semi-finished products in the buffer have
reached their capacity limit, and there is no space to accept the last
piece processed by the previous machine. The previous machine is
blocked until space is freed up in the buffer by moving a piece to the
next machine. The piece from the previous machine is then fed into
the buffer, and the machine starts working again if a piece is
available. In front of the first machine in the system, there is a

continuous supply of raw materials, so the first machine is never
starved. Similarly, after the second machine, there is ample space for
storing the final products of the line, so the last machine in the
system is never blocked.

The states of the machines are S = {0: starved, 1: working, 2:
blocked} and the buffers are B = {0: empty, 1: 1 position occupied, all
positions occupied, equal to the buffer capacity}. The state of the
system will be M1B2M2, where Mi, i = 1,2 is the state of machine i
and Bi, i = 2 is the state of buffer B of machine i. The machines work
under an exponential distribution with mean service rates equal to

FIGURE 6
The six spanning trees (A–F) end in state 121. The exponents numbered one through six correspond to the paths of the computation tree in Figure 8.

FIGURE 7
The spanning tree of state 121 (A) on the left and the corresponding anti-arborescence (B) on the right are accompanied by the product of the edges
that form the spanning monomial. sp4

121 (C).
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μ1 and μ2, respectively. The system is modeled as a Markov chain
with Q1 transition rate matrix, Equation 13. The transition rate
diagram is depicted in Figure 9B, and the four anti-arborescences are
depicted in Figure 9C. It is noted that although the Algorithm solves
the system, it is easy to obtain the spanning trees by hand due to the
simplicity of the transition rate diagram. For every state, the

spanning polynomial is equal to the spanning monomial
spj, j ∈ 100, 101, 111, 211{ }, i.e., the product of arcs weighs equals
the mean service rates of the machines, see Equation 14, and the
spanning polynomial spG of the graph is the summation of the
spanning monomials, see Equation 14.

Q1 �
−μ1 μ1
μ2 − μ1 + μ2( ) μ1

μ2 − μ1 + μ2( ) μ1
μ2 −μ2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (13)

sp100 � μ32
sp101 � μ1μ

2
2

sp111 � μ21μ2
sp211 � μ31

spG � sp100 + sp101 + sp111 + sp211 � μ32 + μ1μ
2
2 + μ21μ2 + μ31 (14)

The maximum utilization of the system is the stationary
probability of the system where the first machine is in work
state, Equation 15.

ρmax �
∑j∈G− s{ p211}spj

spG
� μ32 + μ1μ

2
2 + μ21μ2

μ32 + μ1μ
2
2 + μ2 + μ31

(15)

Hunt provided a general formula for maximum utilization of a
serial production line with intermediate buffers in (Hunt, 1956).

Hunt (1956) provided a general formula for maximizing the
utilization, ρmax of a serial production line with intermediate buffers
and expressed it as a function of the buffer capacity q, wherein the
present example is q = 2. He distinguished two cases:

The first case is when μ1 = μ2 and the ρmax is given by Equation
16. It is easy to show that for μ1 = μ2, Equation 15 becomes 3/4, equal
to the equation of Hunt for q = 2, i.e., buffer capacity equal to 1.

ρmax �
q + 1
q + 2

(16)

The second general case is when μ1≠μ2 where the maximum
utilization is given by Equation 17, where in this example q = 2.
Again, with some algebra, it can be shown that Equations 15, 17 are
equivalent proving the correctness of Algorithm results.

ρmax �
μ2 μq+11 − μq+12( )
μq+21 − μq+22

(17)

Equation 18 gives the throughput of the system of two machines
with one intermediate buffer of one slot, X1

2, where it is noticeable
the sum of the exponents of the numerator is equal to four. The sum
of the exponents of the denominator is equal to three due to the state
transition diagram structure and the throughput definition, which is
produced by the product of the first machine’s mean service rate and
the stationary probability of the first in-state work. i.e., non-blocked.

X1
2 � μ1ρmax � μ1

∑j∈G− 211{ }spj

spG
� μ1μ

3
2 + μ21μ

2
2 + μ31μ2

μ32 + μ1μ
2
2 + μ21μ2 + μ31

(18)

The results of Equation 18 were compared with the results of the
MARKOV algorithm contained in the software Prodline
(Papadopoulos et al., 2009) and for 196 cases of systems derived
from the Cartesian product of the average service rates μ1, μ2 ∊ {0.2,
0.3, . . ., 1.5}. These configurations include balanced and unbalanced
production lines. The results were run on the same computer, with

FIGURE 8
The computation tree of the anti-arborescences is rooted in
state 121. Each path from root to leaf of the tree corresponds to the
same numbered spanning tree in Figure 6.
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Equation 15 results estimated in fractions of a second, while with
Prodline, the same results took 6 min and 44 s for the estimation.
This fact shows the usefulness of equations as building blocks in
other methods for estimating the performance of larger production
systems, regardless of the time required to find the equation since it
can be used quickly and with low software requirements. The
comparison of the results of the two methods gave a Mean
Absolute Error of 2.82 10−7. That error is due to the rounding
done by the exact MARKOV algorithm to six decimal places. At the
same time, the equation reaches the limits of computational
accuracy, with the results in the comparison given to 17 decimal
places using Python programming language. The Mean Squared
Error of the results is 2.73 10−13, theMean Absolute Percentage Error
is 5.86 10−7, and the Pearson Product-moment Correlation
Coefficient is 0.999999, see Figure 10 where the plot of the
results for the throughput X1

2 of Equation 18, denoted as
X1

2Formula versus the results of the MARKOV algorithm
throughput X1

2 estimation denoted as X1
2MARKOV is shown.

Extending Hunt’s work, some equations of interest and metrics
can potentially be used for system design, simulation, or
development of decomposition methods and can easily be
obtained since the spanning polynomials are available. For
example, the probability that the first machine is blocked Bl1 is
given by Equation 19, the probability that the buffer of the second
machine is full B1

f is given by Equation 20, and the work in the
process of the system, WIP is given by Equation 21. The more
complex the system under consideration, i.e., the transition matrix P
has more N states, the more equations can be used depending on the
desired result.

Bl1 � sp211

spG
� μ31
μ32 + μ1μ

2
2 + μ21μ2 + μ31

(19)

B1
f � sp111

spG
� μ21μ2
μ32 + μ1μ

2
2 + μ21μ2 + μ31

(20)

WIP � sp100 + 2sp101 + 3sp111 + 3sp211

spG
� μ32 + 2μ1μ

2
2 + 3μ21μ2 + 3μ31

μ32 + μ1μ
2
2 + μ21μ2 + μ31

(21)

4 Discussion

Markov processes have long been used to model systems. The
proposedmethod uses graphs representing these processes to extract
mathematical models based on the Markov property. That is done
by transforming the graphs from an illustration tool into a powerful
computing tool. A spanning tree can represent the stationary
probability of a state in the form of anti-arborescence ending in
a graph vertex. The spanning tree holds information in weights that
encode transition probabilities or rates at its edges.

The methodology uses anti-arborescences to extract symbolic
formulas for systems. Previous works have achieved this using linear
algebra or methods of symbolic regression, like genetic
programming, which uses spanning trees in another context, or
genetic algorithms (Boulas et al., 2021). The resulting formulas are
ratios of two sets - the anti-arborescences ending in a graph vertex
and all anti-arborescences in the graph explaining the terms in Hunt
(1956). If simple variables are used, polynomial ratios are formed
with the sum of exponents equal to the number of states minus one.
Similar graphs for different systems with simple variables result in
similar formulas.

Many papers in the past have addressed the problem of finding
suitable closed-form mathematical formulas that can express the
performance metrics of systems trying to address key points for the

FIGURE 9
Serial production line (A). The state-to-state transition diagram of system (B), and the four anti-arborescences (C) each for each state of Q1 of
Equation 13.
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efficient operation of production lines. It is especially crucial to do so
during the design or reprogramming phase of a production line.
Researchers have devoted significant effort to producing simple
functions expressing the production line’s throughput. Simple
equations empower the designer or directors of the production
line. There have been parallel efforts to find exact mathematical
relationships that address the same problem. The present method
for complex systems derives mathematical relationships that require
a lot of computing time. However, once a mathematical relation is
found, its use is superior in execution speed to numerical methods,
which also is helpful when training data are produced for use in AI
methods. The proposed method solves the system and expresses all
stationary probabilities in symbolic form and all performance
metrics. These can be used in the design and testing of
simulations or the development of decomposition methods. This
paper shows that closed-form functions can express all performance
metrics of systems modeled by Markov chains. Future research
efforts through graph theory will undoubtedly result in more
straightforward relations in terms of accuracy and size.
Numerical methods are not so appropriate for developing
empathy in production line operations or for handling difficult,
unbalanced production lines.

The method can be used in small systems to discover symbolic
formulas in various problems like production lines, supply chains, or
inventory problems. These formulas can contribute to decision-
making, and recursive use can help solve larger systems. Graph
theory results can be added to the arsenal of researchers working on
such issues. As the number of states of the Markov processes
increases, the number of graph-spanning trees increases
tremendously, making the method intractable for practitioners,
leaving this task to other approaches, such as intelligent methods.
However, the method brings new possibilities for understanding
various stochastic processes in a way that ultimately reduces to an
enumerative process within the widely studied field of graphs. That
creates great potential for further research and statistical

investigation of phenomena to obtain approximate but highly
accurate relationships that provide adequate intuition and
understanding of phenomena. For example, the fact that the
actual transitions between states are significantly smaller than
those of a fully connected directed graph suggests a topology and
internal structure in the graph that should be analyzed to explain
better production problems, such as the bowl phenomenon, which
significantly affects production lines and has a significant
economic impact.

This method could create future benchmarking tests for robust
computing systems, including quantum computers. Combining
exact numerical answers about stationary probabilities of
production lines using algorithms such as MARKOV
(Papadopoulos et al., 2009) and the analytic solution could be
attractive for creating benchmarking problems or algorithms that
can test computational systems such as quantum computers (Steane,
1998). It compares the time it takes to find the anti-arborescences
and the accuracy of the results. The present work’s examples show
that the size of the exact closed formulas increases rapidly, making it
a computational challenge for computers that may not have been
invented yet.

Thanks to Gabow and Myers’ algorithm, the proposed
algorithmic approach is based on automata theory, which
combines Markov chains and data structures such as trees and
graphs. This aspect is worth exploring. The computation tree in
Figure 6 refers to a non-deterministic Turing machine; see, for
instance Griffor (1999). From this point of view, the proposed
algorithm’s results, i.e., the spanning polynomials, are detailed
operating instructions for a production line describing the
transitions along the anti-arborescences.

The size of the exact closed-form formulas expressing the
stationary probabilities and performance measures is enormous,
making AI-oriented methods attractive for forming approximate
solutions for performance measurement in problems of interest.
Better sampling into a graph’s enormous population of spanning

FIGURE 10
The plot of the196 cases results of Equation 18 formula against the MARKOV algorithm (Papadopoulos et al., 2009) for the throughput X1

2 of a
production line of two stages with one slot intermediate buffer. The results accumulate in 45° diagonal, showing equivalence.
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trees is also interesting for artificial intelligence techniques, as it is
relevant for building training sets and extracting better results,
i.e., formulas or other predictive models.

5 Conclusion and further research

An Algorithm has been developed to express the stationary
probabilities of a Markov process in either analytical or numerical
form. The Algorithm is based on recording all the anti-arborescences
present in the graph, representing the Markov process’s transition
matrix. To do this, the edges whose weights represent the transition
probabilities from one state to another are inverted. Then, all the
spanning trees rooted in the considered state are identified using the
Gabow and Myers’ algorithm. The weights of each spanning tree or
anti-arborescence in the original graph form a product that gives the
probability of transition from any vertex to the considered state, i.e., the
last vertex of the anti-arborescence. The sum of the probabilities in a
final state gives the corresponding stationary probability. Finally, all
probabilities are normalized based on the sum of all anti-arborescences
of the graph. When each weight is specified as a variable, the stationary
probabilities are obtained in symbolic form.

Some well-known examples from the operations research
literature have shown that the Algorithm provides the exact
solutions for the systems of equations that solve the Markov
process. The exact solutions are closed-form formulas, usually
polynomial ratios (depending on the form of the variables),
which increase in size at an exponential rate as the number of
states of the Markov process increases. For this reason, a series of
small examples have been used to demonstrate the application of the
method. The Algorithm generates the analytic formulas that express
the probabilities in a graph, including the stationary probabilities of
the states of the underlying Markov process. This formation of the
probabilities is done by enumerating anti-arborescences without
using other mathematical tools such as differential or
integral calculus.

The paper Boulas et al. (2024), corresponds to Part II of this
work and demonstrates the efficacy of the proposed method in
finding the formulas partially introduced in Hunt (1956). The
present method treats these formulas as compositions of stationary
probabilities in symbolic form for each system state. Hunt’s
formulas for maximum utilization and throughput will be
demonstrated and extended to find any other metric for the
three-station system without buffers for the first time in the
literature. That provides a positive answer to the seven-decade-
old question of whether there are closed-form formulas for the
remaining performance metrics of a production system that can be
modeled as a Markov chain. The same publication will provide a
solution to the four-station system without buffers for all
stationary probabilities in symbolic form, thereby extending the
current knowledge base to encompass such systems and their
associated symbolic form formulas. It is demonstrated that the
size of the formulas increases exponentially. That addresses why,
seven decades after Hunt’s work, the exact symbolic determination
of quantities such as throughput had not yet been achieved in a
four-stage system.

Future research should investigate the role of spanning trees
rooted in the vertices of a graph in the transitional conditions of a
Markov process. Additionally, topics such as Markov absorption
processes, first passage time probabilities, and graph decomposition
should be explored. In terms of applications, our team applies the
Algorithm to production lines, supply chains, and queueing
networks to obtain mathematical formulas that express the
performance metrics of these systems.
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