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Introduction: Over the past seven decades, a significant volume of research has
been dedicated to manufacturing systems due to their importance in the
worldwide economy. Much of this research has focused on using Markov
stochastic modeling to formulate manufacturing systems problems. During
the research effort, numerous numerical methods have been developed for
solving such systems; however, relatively few formulas have been proposed.
That is because even small systems are characterized by the well-known state
explosion problem.

Methods: In short serial production lines, the underlyingMarkov chain is depicted
as a graph of the transition diagram, which is constructed by implementing an
algorithm. The steady-state probabilities are extracted in the symbolic form of
two polynomial ratios. That is accomplished by employing a recently introduced
method that assigns probabilities in symbolic form on the graph anti-
arborescences. Finally, the performance metrics of the short production line
can be obtained in exact closed-form expressions via its known definition from
extant literature using straightforward algebraic operations.

Results: The closed-form formulae for the performance metrics of short serial
production lines (e.g., throughput, maximum utilization, work in process,
blocking probability for the second station, probability of the third station
being idle, etc.) with two, three, and four stages, absent buffers, are presented
herein for the first time in the extant literature. The proposed algorithm results
shed light on the well-known phenomenon of production lines known as the
“bowl phenomenon”. Comprehending the formula structure enables the
formulation of a straightforward model for throughput estimation for fully
balanced short serial production lines using genetic programming for lines up
to thirteen stages.
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Discussion: The enormous size of the exact formulas highlights the need for more
computational support for production lines larger than four stages without buffers.
A comprehensive understanding of the underlying principles governing exact
formulas will facilitate the implementation of innovative mathematical
approaches to problem-solving. This understanding will also enable artificial
intelligence to derive precise mathematical relationships with reduced
complexity, thereby fostering intuition in production lines.

KEYWORDS

Short serial production lines, Performance measures, Closed form formulas, Throughput,
Bowl phenomenon, Spanning trees, Genetic programming

1 Introduction

A significant part of the world’s economic progress and
development after 1950 was based on manufacturing, where
specialization and the sharing of labor and resources led to the
growth of production lines. One consequence of the invention of the
assembly line was the scientific research that followed, leading to
the development of manufacturing systems in Industry 4.0. Areas
such as empirical studies, modeling, analysis, design, control,
optimization, and monitoring have become a fundamental part of
manufacturing research for seven decades, along with computing
and operational research advances. Thus, numerous scientific
studies, papers, monographs, and books have been devoted to the
problems and issues of manufacturing systems. All these works aim
to improve the efficiency of production lines by estimating their
productivity. Many performance metrics are of interest, but the most
valuable insights for a production line come from evaluating its
average throughput, i.e., the average number of finished parts
produced in the long term by the last machine of the system per
unit of time (Papadopoulos, 1996).

The efficient solution of production lines is a complex and
challenging task due to their configuration into composite
topologies and their size, which lead to internal interactions
between the line components, increasing the variability due to
stochastic factors. The modeling of production lines as a Markov
process aims to analyze the stochastic behavior of production lines
and to serve as a tool for their performance estimation. However,
these systems’ complexity prevents a broader development of exact
methods, i.e., closed formulas that express the throughput
symbolically and error-free or numerical methods whose only
flaw is the inaccuracy of digital computers.

The exact closed formulas are too few and refer to the
throughput and maximum utilization for short serial
production lines without intermediate buffers of two and
three stages presented in Hunt’s work (Hunt, 1956). Since
then, considerable efforts have been made, and remarkable

results have been achieved in many aspects of production line
problems. Still, the development of closed formulas was not one
of them due to the combinatorial explosion.

In this work, we use the results of the work presented in the
paper (Boulas et al., 2024a) to obtain not only the throughput but all
performance measures for short serial production lines for two to
four stages without intermediate buffers. It is shown that the size of
these formulas increases exponentially. Thus, the reasons that
prevent the scientific community from developing closed
formulas are explained, and it becomes understandable why
scientific research could not go beyond Hunt’s work for almost
seven decades.

The rest of the paper is organized as follows. Section 2 reviews
the literature, focusing primarily on the formulae literature for
evaluating the performance of production lines. The production
line model and its assumptions followed by the Algorithm (With
capitalized A refers to the Algorithm proposed in this work), which
constructs the transition state diagram for short serial production
lines under the model assumption, are presented in Section 3. The
exact results of the formulas for K = 2,3,4 stages and the complexity
for longer stages, the well-known bowl phenomenon by the aspect of
spanning trees, and a simple formula produced by Genetic
Programming are presented in Section 4. This is followed by the
Discussion, Summary, and Conclusion sections, which include
further research in Sections 5, 6, respectively.

2 Review of the literature on the
performance evaluation of
production lines

The literature on production systems presents a detailed study of
developing methods for evaluating the performance of production
lines. The extensive reviews summarize the primary research;
further details can be found in the comprehensive reviews by
Buzacott and Shanthikumar (1992) and by Dallery and Gershwin

FIGURE 1
A K-station production line with K single-machine stations and two warehouses of infinite capacity in front of the first station and after the
last station.
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(1992). The book (Buzacott and Shanthikumar, 1993) provides a
general description of production line performance measurement.

2.1 The use of markovian analysis and
numerical methods for performance
measurement

Research publications on estimating performance measures using
formulas are dominated by throughput estimation formulas based on
empirical studies, simulations, or Markovian analysis. Most Markovian
analysis studies assume processing times that follow exponential or
phase-type distributions (Papadopoulos et al., 2019). The steady-state
probabilities of these systems are determined by solving linear systems of
equations, as in the work of Hunt and Hatcher (Hunt, 1956; Hatcher,
1969), in which they analytically solved the system models under
investigation. Works in which the linear systems of equations are
solved numerically include the work of Hillier and Boling (Hillier
and Boling, 1966; Hillier and Boling, 1967). The main problem of
Markovian analysis is the vast state space, see Papadopoulos et al. (1990),
which overgrows and becomes an obstacle to implementing themethod.
However, various studies have significantly contributed to developing
methods for evaluating production lines, making significant progress
and evolution in the field.

The complexity problem leaves a more significant footprint
when developing formulas for expressing performance measures.
The exact solution of a system longer than 13 stages requires
sophisticated techniques such as Stochastic Automata Networks
(SAN) (see Fernandes et al., 2013b; Fernandes et al., 2013a).
Although numerical methods have been used to obtain exact
solutions for up to 13 stages using the MARKOV algorithm, see
the book by Papadopoulos et al. (2009), there are no exact closed-
form formulas of throughput for lines longer than three stages.

The book by Ghezzi et al. (2017) provides an account of the
changes that Industry 4.0 will bring to production systems. It
introduces the new concepts of production through a series of
examples of production systems and discusses the essential role
of mathematics in the competitiveness of manufacturing companies
and the most advanced mathematical models and simulation tools
for production optimization. But the role of human intuition despite
technological advancement is explored in Gershwin (2018), where
the human factor plays a central role in the design of high-
performance production systems. The paper shows how
analytical models enhance human intuition and help to achieve
optimal solutions. The human factor is discussed in Cañas et al.
(2021), where a classification of the principles of Industry 4.0 design
is made, taking into account a series of classification aspects. It also
analyzes a series of conceptual frameworks of reference that deal
with the definition of term Industry 4.0.

TABLE 1 The algorithm that forms the state transition diagram.

Algorithm: It forms the state transition diagram of a
serial production line without buffers

Input: Stage number K

Output: The transition edge set E

1: v1←[1,2] # represents the first machine that never starves

2: v2←[0,1,2] # represent the 2.3, . . . ,K-1 machine with states:0 starved, 1 working,
2 blocked

3: v3←[0,1] # represents the last Kth machine that never blocked

4: Ε←{ } # the edges list

5: C = v1×v2
Κ−2×v3 # the number of system states

6: for all states ∈ C

7: do remove the infeasible states from C

8: if (state [1] = = ‘0’ or state [K] = = ‘2’ or (state [i] = = ‘2’ and state
[i+1] = = ‘0’))

9: C=C-{state}

10: end if

11: end do

12: end for

13: States←C

14: for all state ∈ States

15: Astate← ‘2’+ state + ‘0’

16: for all i ∈ state, i∈{1, . . . ,K}

17: if state [i] = = ‘1’

18: if Astate [i+1]> ‘0’ then Astate [i]← ‘2’

19: Else:

20: Astate [i+1]← ‘1’

21: if Astate [i-1]<2 then Astate [i]← ‘0’

22: Else:

23: Astate [i]← ‘1’

24: j←i-1

25: while (Astate [j] = = 2)

26: Astate [j]← ‘1’

27: j←j-1

28: end while

29: end if

30: end if

31: finalState←Astate-{Astate [0], Astate [K+1]}

32: e←(state, finalState, w(e))

33: E = E+{e}

34: end if

35: end for

(Continued in next column)

TABLE 1 (Continued) The algorithm that forms the state transition diagram.

Algorithm: It forms the state transition diagram of a
serial production line without buffers

36: end for

37: return E
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2.2 Literature about formulas for throughput
estimation

Hunt, with his early work (Hunt, 1956) was the first to analyze
production lines with two and three stages without buffers, among
other cases of production line configurations, assuming processing
times that follow exponential distributions. He solved the system of
differential equations and obtained solutions in the form of a ratio of
two polynomials. The solutions were close to the maximum
utilization; thus, the exact throughput estimate of the Markov
process was obtained. Hunt’s model was slightly different because
the arrival of the workpieces at the front of the production line under
study was subject to a Poisson distribution. Hunt’s formula for the
three stages is very significant as it implicitly limits the size of the
system under study due to the complexity of the exact formulas
(Muth, 1984).

Hunt’s work motivated other researchers to address the problem
of throughput estimation, such as Hillier and Boling (Hillier and
Boling, 1967), who developed a method for the exact solution of a
short serial production line without buffers. This work also creates
an approximate recursive formula for longer lines and exponential
processing times, which is solved using numerical methods. In
Haydon (1973) and Scale (1972), the authors used approximate
solutions in their dissertations. They established approximate
formulas for the throughput of flow or production lines. Using
the concept of the “cyclic queue,” a simplified formula for
exponential service times was developed by Basu (1977) to
optimize buffer capacity given three cost parameters. A
prediction formula for the throughput of K-stage production
lines based on empirical results of other studies was presented by
Panwalkar and Smith (1979).

Muth introduced the stochastic model of the holding time to
analyze production lines (Muth, 1977; Muth, 1984). The method can

quantify the times taken by successive orders at each workstation on
the line by using integral equations. Both exponentially and
generally distributed processing times can be analyzed. The
author mentioned Hunt’s work at length and made a critical
observation (Muth, 1984, p. 65) of the paper: “It should be noted
that the state-transition rate diagram of an ergodic Markov process
is implicitly a representation of the equations defining the
equilibrium conditions.” For the case of three non-identical
stations based on service times with exponential distributions and
two-station Erlang distributions, the author derived a simple
analytical formula for the throughput. It was assumed that the
service time at each workstation follows a different stochastic
process. Muth’s work provided closed-form solutions for three
non-identical exponential stations and two Erlang stations.
Although the result for exponential servers is identical to Hunt’s,
it is characterized by a much simpler structure since it is a sum of
simple fractions rather than a ratio of two polynomials. Muth and
Alkaff extracted a general throughput estimation formula using the
first station’s holding time (Muth and Alkaff, 1987). The authors
solved the problem of a production line with three stations if the
service times of stations one and three follow phase-type
distributions. Still, the service time of station two follows a
Laplace-transformable distribution. Muth studied asynchronous
production lines with K-serial workstations (Muth, 1987), where
he analyzed transfer lines with stochastic service times subject to
failure and repair with no intermediate buffer between two
consecutive stations. The author solved the model using a
combination of theory and numerical curve fitting to extract the
throughput formula. Alkaff and Muth (1987) extended the analysis
of Muth’s holding time model (HTM) to longer production lines,
establishing exact throughput formulas for a balanced line. The
holding time concept of Muth’s method was also used in the work of
Rao (Rao, 1975a; Rao, 1975b; Rao, 1976a; Rao, 1976b), where

FIGURE 2
The state transition diagram (A) for K = 2, and the three anti-arborescences for the states (B) “10” (C) “11”, and (D) “21”.

FIGURE 3
(A) The state transition diagram of the K = 3 stations line, (B) The first spanning tree of the graph ending in state “100”, and (C) The respective anti-
arborescent rooted in state ‘100’, the equivalent of the computation tree T1 of Figure 4.
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integral equations were used to deal with specific problems of
production lines.

Mishra et al. (1985) determined two closed-form formulas for
the throughput of production lines with three stations, in which the
processing time of the first and third stations was exponentially
distributed. In contrast, the processing time of the second station
followed either a gamma or a hyper-exponential distribution. In
Hira and Pandey (1987) and Dar-El and Mazer (1989), multiple
regression was used to derive analytical mathematical formulas.
Blumenfeld extended Muth’s formula (Blumenfeld, 1990) to
approximate the throughput between two consecutive
workstations of the production line by introducing the buffer size
as a parameter. The proposed simple formula for throughput was a

function of four parameters: mean and standard deviation of service
or processing times, number of stations, and buffer size. Martin
(1993) investigated the problem of accurately predicting the
efficiency of a production line with an arbitrary number of
workstations and intermediate buffer capacities. The author
assumed realistic distributions of processing times. In Baker et al.
(1994), a line with three workstations and no intermediate buffers
was analyzed to obtain an approximation of throughput. The
authors developed a set of simple predictors using simple cases
of a general line to feed an algorithm for the general case. Their
methods utilized the exponential case for which exact throughput
values were known. In addition, the authors tested their results using
simulated data for two classes of uniform distributions and a

FIGURE 4
The computation tree of all spanning trees rooted on the state “100” for the line with K = 3 stations.
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lognormal distribution. The holding time model (HTM) was also
used to calculate the throughput of a K-station production line in
Papadopoulos (1996). Throughput was derived as an approximate
analytical formula for workstations with different mean processing

times. Also, a formula for the case of the balanced lines was
proposed. A formula for lines with identical workstations subject
to random failures and intermediate buffers of equal size between
workstations was obtained by Blumenfeld and Li (2005). In Dhouib

FIGURE 5
The state transition diagram of a production line with K = 4 stations. It has 21 vertices and 56 transitions, and the graph is the Algorithm’s outcome.
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et al. (2010), the authors proposed an analytical model to assess the
variance of the throughput of homogeneous transfer lines with no
intermediate buffers. Their model allowed machines to break down,
whereas service and repair times were assumed to follow the
exponential distribution.

Unpaced serial production lines with parallel machines at each
workstation were investigated by Magazine and Stecke (1996) to
improve performance. The authors gave the results of their formula
by a series of curves. Based on the decomposition method, see
Gershwin (1987), two analytical formulas for estimating the
throughput of a reliable production line with exponential service
times and finite intermediate buffers were developed by Li et al.
(2016). The case of a nearly balanced line with identical buffers or
almost optimal buffer allocations was investigated.

The problem of calculating throughput in a serial production
line is of considerable interest due to its impact on the cost of the
production process. In (Aboutaleb et al., 2017) an independent
closed-form formula for the throughput rate of normally
distributed asynchronous human-dependent serial flow lines
was derived using data mining and simulation modeling. In
Bai et al. (2021), a new aggregation-based iterative algorithm
is proposed to compute the performance metrics of a serial line
with multiple machines by representing it as a set of virtual lines
with two machines. Energy consumption is also of great interest.
A Markov chain model is set up to interpret the dynamics of
serial production lines with N-policy. The analytical formulas for
production rate and energy consumption are derived in Cui et al.
(2021). An energy-efficient control model is then formulated to

FIGURE 6
The spanning polynomial of the system state “1000” for a system of K = 4 stages without buffers.
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establish a balance between productivity and energy
consumption.

In the work (Magnanini and Tolio, 2023), a novel analytical
model for the performance evaluation of asynchronous, unreliable
production lines for manufacturing discrete parts with finite buffers
and deterministic processing times is presented. This approach is
based on continuous-timeMarkov chains with continuous flow. The
same work recognizes that performance evaluation models become
relevant as evaluation kernels within decision support tools that can
be used as synthetic, computationally effective models of the entire
multilevel system.

2.3 The use of intelligent techniques and
graph theory for obtaining
throughput formulas

The complexity of production systems makes it attractive to use
artificial intelligence to address a variety of problems in the
production process. A number of different aspects of the
problem are presented in (Kang and Bhatti, 2019; Arinez et al.,
2020; Sankhye and Hu, 2020; Ayvaz and Alpay, 2021; Subramaniyan
et al., 2021; Fragapane et al., 2022; Alkhalefah et al., 2023).

Symbolic regression is a method for obtaining formulas that
describe underlying processes using a set of values of independent
variables and their corresponding dependent variables. An essential
evolutionary technique for symbolic regression tasks is genetic
programming (GP) (Koza, 1992), which is classified as artificial
intelligence. A number of attempts to express throughput have been
made using GP and comparisons have been made with other
techniques showing the effectiveness of the method (Can and
Heavey, 2009; Can and Heavey, 2011; Can and Heavey, 2012).

In Papadopoulos et al. (2002) genetic programming was used,
along with decomposition techniques, to obtain throughput
formulas for short production lines with two, three, and four
machines and buffers.

The same evolutionary technique was used to obtain a set of
approximate formulas for throughput presented in the work by
Boulas et al. (2015), Boulas et al. (2017) by using DECO-2 and
MARKOV algorithms, see Papadopoulos et al. (2009) to build

training sets for GP. The same team found that satisfactory
approximate solutions with high accuracy can eventually be
expressed as a two-polynomial ratio. Boulas et al. (2018)
extended this observation for the studied case of two
workstations with parallel machines. The training set was formed
using the DECO-2 algorithm, which provides the exact results for
this production line type. Finally, the GP results presented in Boulas
et al. (2018) can be expressed in a two-polynomial relation. Thus, a
hybrid Genetic Programming (GP) and Genetic Algorithm (GA)
scheme (Holland, 1992) was proposed by Boulas et al. (2021), which
can obtain efficient formulas as a ratio of two polynomials with
integer coefficients and exponents, like Hunt’s formulas.

The same team developed a method to symbolically represent a
Markov chain’s stationary probabilities, given in Part I of this work
(Boulas et al., 2024a). With its practical application, this method
creates a probability space. It extracts all probabilities consistently
using the set of anti-arborescences of the state transition diagram,
thereby enhancing the usability of the research findings. In order to
obtain the exact formulas for the performance measurement of a
K-stage production line, a crucial step involves constructing the
graph representing the state transition rate diagram using an
appropriate method. Subsequently, the symbolic steady-state
probabilities are extracted from the anti-arborescences, following
the procedure developed in Part I, (Boulas et al., 2024a). Each anti-
arborescence represents a product of mean service rates that forms a
monomial. The sum of the monomials of a given graph vertex anti-
arborescence (or a system state) forms a polynomial. The latter,
divided by the sum of all polynomials of all graph vertices, is the
steady-state probability of the specific system state. The system
performance estimation is then reduced to algebraic operations of
polynomial ratios for each stationary probability available by the
method presented in Part I of this work (Boulas et al., 2024a),
thereby providing a clear understanding of the research
methodology.

3 Applying the methodology to extract
formulas using the underlying graphs
representing short serial
production lines

The production lines are complex and contain various
topologies to produce goods economically. On the way of the
product within the production line, there are branches and
connections or loops, parallel machines, control and inspection
stations, and processing and assembly or disassembly operations.
In addition, in practice, machines are always broken down. Even the
size of the lines varies, reaching a few hundred stations in industries
such as automotive. The flow of workpieces is carried out to increase
the added value, and the final products are their result. This work
uses a simplifiedmodel to study short serial production lines without
intermediate buffers between workstations. This type of production
line is simple to model but challenging to operate because the
absence of intermediate buffers leads to the vital phenomena of
blocking and starving, which increases variability and reduces line
throughput. This production line type is the fundamental structural
unit for understanding the deeper mechanisms governing these
complex production lines.

TABLE 2 The performance measures of the MARKOV algorithm were
compared against the exact formula for K = 4 station production lines
without intermediate buffers.

Performance measures of the
MARKOV algorithm

K = 4

XMARKOV
4

Average relative error 4.8946532850,041,24 ×
10−5%

Mean absolute error 2.506115112990255 × 10−7

Mean squared error 8.377923014817442 × 10−14

Normalized mean squared error 3.3644444039160085 × 10−10

Root mean squared error 2.894464201681797 × 10−7

Pearson’s R2 0.999999999831993

No of line configuration, μi∈[0.9, 1.1], i = 1,2,3,4 194,481
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3.1 Themodel of operation of the short serial
production lines

The assumptions of the model considered in this paper are given
below. For simplicity, we assume reliable workstations with
individual machines per workstation and the service or
processing times to be stochastic, following the negative
exponential distribution.

Figure 1 shows a production line with single machine
workstations indicated by the rectangles Mi, i = 1,2, . . . , K. The
jobs enter the production line from the first workstation via a
warehouse with an unlimited capacity of raw products. They are
routed sequentially from the first to the last workstation,MK. The K
machines pick the workpieces sequentially, with one machine per
stage. When the parts have completed their processing on each
machine, they move on to the next one until they become finished
products. Each machine state can be characterized as 0: idle, 1:
working, and 2: blocked. The system’s state consists of three digits,
i.e., the composition of the states of the individual machines
following the above indicators. When processing is complete,
they leave the system and are placed in a warehouse with
unlimited capacity. The assumptions of the model considered in
this study are similar to those in (Papadopoulos et al., 2009), which
are summarized below.

1. The first warehouse, Win, is assumed to have an infinite
capacity of raw parts to supply the first station, which is
never starved. That is called a saturated production line.

2. The last station, MK, is assumed to be never blocked, i.e., it is
assumed that there is enough space in the warehouse after the
last machine to accommodate the finished products.

3. It is assumed that all machines’ processing or service times
follow the negative exponential distribution with mean service
rates μi (i = 1, 2, . . . , K), which are generally not identical.

4. The machines are assumed to be perfectly reliable, i.e., never fail.
5. There are no intermediate buffers between the workstations.
6. The line is subject to the so-called blocking phenomenon.

When machine Mj has finished processing, and there is a part
in the downstream machine Mj+1, machine Mj cannot start
processing the next job because it is unavailable. So, machine
Mj blocks the processing of the following job until the next
downstream machine is empty.

The model described above was chosen for its simplicity. There are
algorithms to calculate the exact throughput of these simple systems
numerically. One of these, called MARKOV, was developed by Heavey
(see the papers by Papadopoulos, Heavey, and O’Kelly (Papadopoulos
et al., 1989; Papadopoulos et al., 1990) and Heavey, Papadopoulos, and
Browne (Heavey et al., 1993)). The MARKOV algorithm is available in

TABLE 3 The number of anti-arborescences for every state of K = 5 stages production line without intermediate buffers.

System state No of anti-
arborescences

System
state

No of anti-
arborescences

System
state

No of anti-
arborescences

10000 3.50 E+19 11110 1.77 E+20 21101 7.22 E+19

10001 3.50 E+19 11111 1.73 E+20 21110 7.33 E+19

10010 4.70 E+19 11121 6.89 E+19 21111 4.32 E+19

10011 4.60 E+19 11210 9.30 E+19 21121 3.74 E+19

10021 2.30 E+19 11211 4.95 E+19 21210 9.86 E+19

10100 4.80 E+19 11221 4.97 E+19 21211 3.09 E+19

10101 5.47 E+19 12100 8.93 E+19 21221 5.90 E+19

10110 8.03 E+19 12101 7.22 E+19 22100 3.21 E+20

10111 7.59 E+19 12110 7.33 E+19 22101 1.42 E+20

10121 3.60 E+19 12111 4.32 E+19 22110 8.77 E+19

10210 5.28 E+19 12121 3.74 E+19 22111 2.88 E+19

10211 2.53 E+19 12210 9.86 E+19 22121 5.18 E+19

10221 3.07 E+19 12211 3.09 E+19 22210 3.30 E+20

11000 4.13 E+19 12221 5.90 E+19 22211 4.53 E+19

11001 4.76 E+19 21000 1.65 E+20 22221 2.15 E+20

11010 7.57 E+19 21001 1.24 E+20

11011 7.37 E+19 21010 1.33 E+20

11021 3.22 E+19 21011 1.01 E+20

11100 1.06 E+20 21021 6.67 E+19

11101 1.06 E+20 21100 8.93 E+19 Total in graph G 4.50E+21

The total sum of the anti-arborescences of the graph of Figure 5, as analyzed in Table 3, is given in bold at the end of Table 3. The sum of the monomials corresponding to these anti-

arborescences is summed in spG for a five-stage serial production line for all system states.
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the book Papadopoulos et al. (2009). A similar algorithm was proposed
by Hillier and Boling (1967).

The above model ensures that the operation of the production line
can bemodeled as aMarkovian chain. The rate transitionmatrixQwith
the elements of transition rates from state i to state j, qij, is a powerful tool
for solving such systems to determine the vector of stationary
probabilities, π, from the solution of the Equation π·Q = 0,
(Gershwin, 1994; Altiok, 1997; Papadopoulos et al., 2009). Once the
vector of steady-state probabilities π has been extracted, it is easy to
obtain the system performance measures. For example, the maximum
utilization, ρmax, can be defined as the sum of stationary probabilities at
which the first workstation in the line is not blocked. The estimate of
throughput is obtained as the numerical product of the first machine’s
service rate μ1 multiplied by the maximum utilization rate, i.e., X =
μ1·ρmax. The work in process,WIP, of the system is the internal product
of the incomplete parts in the production line for every system state E,
multiplied by the vector of stationary probabilities π,WIP � π · E. One
can extract many other performance measures of interest using the
stationary probabilities vector. One example is the probability that the
second machine is blocked, Bl2. It is the stationary probability for which
Pr(MBl

2 ) � Bl2 � ∑i,whereM2�2πi, Moreover, the list continues for each
performance measure considered.

The ability to express the stationary probabilities accurately in
analytic form is the intermediate stage in developing the exact
formulas for evaluating the efficiency of the production lines. The
main objective of our study is to develop a set of formulas for
estimating the exact solutions for each performance measure of short
serial production lines with K = 2, 3, 4. The complexity of the problem
prevents further extraction of formulas for the case of 5 stations since the
combinatorial explosion leads to an enormous solution size of the exact
formulas, which is very difficult to obtain or even to represent.

3.2 The algorithm that constructs the graph
for short serial production lines
without buffers

For the numerical solution of the production lines, it is crucial to
form the transition rate matrix Q (Papadopoulos and O’Kelly, 1993;

Papadopoulos et al., 2009). In our case, where we solve the system
analytically, the transition rate diagram between the system states
may be formed instead of obtaining the anti-arborescences following
the Algorithm presented in Part I of this work (Boulas et al., 2024a).
That task, specifically for production lines without buffers, is done
using the Algorithm of the present work, see Table 1. The Algorithm,
consisting of the steps given below, forms the transition graph that
determines the transition between an initial and a final state
weighted by the mean service rate of the machine that causes
this transition after the completion of the processing of a
workpiece. Τhe methodology for solving small serial production
lines can be summarized in the following three basic steps, which are
briefly explained to understand the general application of the
solution approach.

Step 1: Definition of the system to be solved (number
of stations K).

Step 2: Determination of the graph describing the underlying
Markovian chain of the system. In this Step, a graph
from any source can be used. In this work, the
Algorithm is used. However, the graph can be manually
inserted into the Algorithm given in (Boulas et al., 2024a)
to extract the exact stationary probabilities. The graph
defines the system to be solved. For example, serial
production lines with buffers and parallel machines per
workstation are distinguished by the different graphs that
describe those systems.

Step 3: The Algorithm presented in (Boulas et al., 2024a) is
executed. This algorithm forms and assigns the
stationary probabilities in analytic form based on the
transition weights between the nodes of the graph w(u,
v). The Algorithm forms the spanning monomials,
spanning polynomials, and, finally, the ratios of the
stationary probabilities.

The Algorithm’s logic is to generate all feasible states of the
system under consideration and then generate all transitions to a
feasible final state for each initial feasible state. The transition from
one initial state to another final state will be based on the mean
service rate of a machine operating in the initial state according to
the model’s assumptions. That mean service rate will be the weight
of the graph’s edge for the transition from the initial to the final state.
An initial state will have as many final states as the number of
machines working. That is, for a system with four machines and a
state of 1011, we will expect three final states of 1111, 1021, and
1010 depending on the order of completion of machining on each
machine, i.e., first, third, and fourth machines, respectively.

The Algorithm receives the stage number K of the production
line as an argument and forms the transition graph as an edge list, E.
Each edge of the transition graph includes the initial state, the final
state, and the weight of the edge, i.e., the mean service rate of the
corresponding machine that causes the transition from one state to
another, according to the assumed model. The Algorithm uses an
auxiliary state called “Astate” to handle the model workflow, which
is dropped off when the final state of the transition is obtained.

Using the variables Vi, i = 1,2,3, all possible states of the
machines of each workstation of the line are determined under
the model assumptions. V1 and V3 are the possible states of the first

TABLE 4 The total number of anti-arborescences in the whole-state
transition diagrams of K = 1 to 8-stage serial production lines without
buffers.

No of stages (K) Total No of anti-arborescences in
graph G

1 1

2 3

3 78

4 4,502,592

5 4.502492927038422 E+21

6 4.6883876872410086 E+66

7 4.515968330808419 E+197

8 9.18449220551297 E+560,428
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TABLE 5 The number of mean service rates as the weight of the transitions in state transition diagrams of K = 1 to 15 serial production lines without intermediate buffers.

K Number of states μ1 μ2 μ3 μ4 μ5 μ6 μ7 μ8 μ9 μ10 μ11 μ12 μ13 μ14 μ15

1 1 1

2 3 2 2

3 8 5 4 5

4 21 13 10 10 13

5 55 34 26 25 26 34

6 144 89 68 65 65 68 89

7 377 233 178 170 169 170 178 233

8 987 610 466 445 442 442 445 466 610

9 2,584 1,597 1,220 1,165 1,157 1,156 1,157 1,165 1,220 1,597

10 6,765 4,181 3,194 3,050 3,029 3,026 3,026 3,029 3,050 3,194 4,181

11 17,711 10,946 8,362 7,985 7,930 7,922 7,921 7,922 7,930 7,985 8,362 10,946

12 46,368 28,657 21,892 20,905 20,761 20,740 20,737 20,737 20,740 20,761 20,905 21,892 28,657

13 121,393 75,025 57,314 54,730 54,353 54,298 54,290 54,289 54,290 54,298 54,353 54,730 57,314 75,025

14 317,811 196,418 150,050 143,285 142,298 142,154 142,133 142,130 142,130 142,133 142,154 142,298 143,285 150,050 196,418

15 832,040 514,229 392,836 375,125 372,541 372,164 372,109 372,101 372,100 372,101 372,109 372,164 372,541 375,125 392,836 514,229
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and Kth stations, respectively, while each of the machines in the
intermediate stations can assume the three possible states of variable
V2 (Steps 1–3). Since C has some infeasible system states as
members, i.e., like a blocked machine followed by an idle
machine, it must be freed from all these problematic states. The
line 4 initializes the edge list of the graph to an empty list. The
Cartesian product of line 5 contains the number of all possible states
of the system and the infeasible states, which should be subtracted
from the set of feasible states of the system. That is the task in the
“for loop” lines 6–12, where only feasible states are kept. The final
tidied set C contains all feasible system states, called States, i.e., the
nodes of the transition graph, line 13.

Next, for each initial system state, we need to extract the final
state where the system ends up in the considered system state after
the completion of the work of each initially busy machine. That is
the purpose of the “for loop” (lines 14–36), in which every feasible
system state is examined. Each system state is an ordered set of
elements according to the state of each machine, i.e., idle, working,
and blocked. The system state has K-ordered digits, each one for the
respective state of the machine. Each element represents the
corresponding state of the machine, i.e., idle: 0, busy: 1, and
blocked: 2. The state elements representing busy machines are
interesting because they cause the transitions from one system
state to another, i.e., each system state causes the same number
of transitions that are equal to the number of its busy machines. The
Algorithm aims to find all these elements corresponding to busy
machines to detect the next system state when the considered busy
machine has finished processing the workpiece.

The subsequent system state is reached via an edge (arc) with a
weight equal to the mean service rate of the machine. The Algorithm
uses the auxiliary state Astate, which is extended by two elements to
estimate the system’s transformation. The element ‘2′at the
beginning of the state simulates the infinite queue at the
beginning of the production line. At the end of the state, the
element ‘0′is added to represent the infinite capacity warehouse
that prevents the blocking of the Kth machine, line 15. All
transformations for the final state estimation occur on Astate,
which has K+2 elements. The Algorithm examines only the
machines that can make system transitions after finishing their
work in the ‘if statement’ of line 17. When the ithmachine is busy, a
transition occurs, i.e., a graph edge from the initial state under
consideration to a feasible final state that must be found.

In line 18, the state of the following production line machine, i.e
(i+1), is considered. If it is unavailable, the workpiece blocks the ith
machine until there is room to move on. If the next machine is free,
the workpiece is moved there, and processing starts immediately in
line 20. To get the system’s final state, it is necessary to check what

happens on the upstream side of the ithmachine (lines 21–29). If no
workpiece is available, the ith machine enters the idle state, line 21;
otherwise, the processing immediately enters the busy state, line 23,
and the subsequent upstream blocked machines immediately release
their parts and enter the busy state, as specified by the while loop of
the Algorithm.

All these changes occur in the auxiliary system state, the Estate,
from which the final system state is formed by truncating the front
queue and end-of-system store states, line 31. The initial system state
forms the transition edge e, the final system state, and the weight of
the edge, viz., the machine’s mean service rate that finishes its job,
causing the system’s transition to the next state, line 32. The
transition graph is formed by an edge list summarizing all the
initial state transitions, line 33. That list of edges E represents the
state transition diagram, which is the result of the Algorithm and is
returned at the end in line 37.

The state transition diagram in the edge list E is the input for
the automatic extraction of analytic stationary probabilities of
finite Markov chains using the method presented in Boulas
et al. (2024a). The edge list E reverses direction, and each
spanning tree rooted at each node is obtained. Reversing
direction again and going along each anti-arborescence, a
monomial is formed by multiplying each edge weight, i.e., mean
service rate. This monomial is called a spanning monomial. The
spanning monomials of all anti-arborescences ending on a given
vertex vi are summed up to form the vi vertex spanning
polynomial. spvi. All the spanning polynomials are summed up
to form the graph spanning polynomial spG, which normalizes all
probabilities to one. The spG is the denominator of the stationary
probabilities of each vertex, i.e., the system state. The
corresponding numerator is the vertex-spanning polynomial.
Since the stationary probabilities are in analytic form, the
estimation of the performance measures is a matter of algebra,
following the analysis mentioned above at the end of Section 3
about stationary probabilities formation.

4 Results for short serial
production lines

This Section presents the results of implementing the
methodology presented in Boulas et al. (2024a) of our research
for lines with K = 2, 3, and four stations using the graphs constructed
by the Algorithm of the present work. These results also serve as
examples of how the proposed methodology works. For lines with
K ≥ 5 stations, a presentation of the critical problem of the size of the
exact formulas using the results of the methodology follows.

TABLE 6 The mean service rate occurrences in all spanning trees of transition state diagrams for K = 1 to 4 serial production lines without intermediate
buffers.

K Number of states Number of spanning trees μ1 μ2 μ3 μ4

1 1 1 1

2 3 3 3 3

3 8 78 199 148 199

4 21 4,502,592 26,060,256 18,965,664 18,965,664 26,060,256
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4.1 Case K = 2

The two-station production line is the most straightforward,
non-trivial system of coupled machines for analysis and provides a
good starting point for generalizations and the development of
methods such as decomposition for performance estimation
(Gershwin, 1994). Moreover, under the assumptions of the model
adopted in this work, the two-station system provides an
opportunity to get an overview of the solution approach for
determining analytic probabilities without being burdened with
all the complications of combinatorial explosion, an inherent
feature for longer lines. Equation 1 shows the transition matrix Q
of the system, and Figure 2A shows the associated state transition
diagram with the three anti-arborescences shown in Figures 2B–D,
which are easily obtained. The edge weight product, i.e., the mean
service rates of the exponential distribution of each anti-
arborescence, forms the corresponding spanning monomial sp10 �
μ22, sp11 � μ1 · μ2, sp21 � μ21 for the states ‘10’, ‘11’, and ‘21’,
respectively. The spanning polynomial of the graph is the sum of
all monomials and is the denominator of the steady-state
probability, i.e., spG � sp10 + sp11 + sp21 � μ22 + μ1 · μ2 + μ21. Thus,
the steady-state probabilities vector π is presented in Equation 2 and
can be easily determined, which is the solution of the Equation
π · Q � 0, while it holds ∑

i∈S
πi � 1 where S � 10, 11, 21{ } is the set

of states.

Q �
−μ1 μ1 0
μ2 − μ1 + μ2( ) μ1
0 μ2 −μ2

⎛⎜⎝ ⎞⎟⎠ (1)

π � π10, π11, π21[ ] � sp10

spG
,
sp11

spG
,
sp21

spG
[ ]

� μ22
μ22 + μ1 · μ2 + μ21

,
μ1 · μ2

μ22 + μ1 · μ2 + μ21
,

μ21
μ22 + μ1 · μ2 + μ21

[ ] (2)

In his work, Hunt (Hunt, 1956) calculated the maximum
utilization for two stages without buffers, ρmax ,2 � μ2μ1+μ22

μ21+μ1μ2+μ22. The
maximum utilization is the sum of the steady-state probabilities at
which the first machine in the system is not blocked,
i.e., ρmax ,2 � π10 + π11, which amounts to the same formula as
Hunt’s Equation. In the same way, it is easy to express the other
performance measures using the steady-state probabilities in the
analytic form of Equation 2.

4.2 Case K = 3

Hunt analyzed the case of a system with K = 3 stations without
buffers (Hunt, 1956), where he gave the analytical solution for the
maximum utilization and throughput by extracting the equations
for the steady-state probabilities from a set of difference equations.
In this work, a different approach is followed using the state
transition diagram of the system and the methodology
introduced in (Boulas et al., 2024a) for extracting the steady-state
probabilities in the analytic form to extend Hunt’s work to other
performance measures. The Algorithm obtains the state transition
graph and corresponds to that presented in Muth’s work (Muth,
1984). The graph is shown in Figure 3A and Equation 3 represents
the corresponding state transition matrix used to show that the

analytic transition probabilities are the exact solutions of the
underlying Markov chain. The graph has eight vertices and
14 edges, making it tedious to detect anti-arborescences without
a computer, as in the case of K = 2 stations. Therefore, the Algorithm
given in (Boulas et al., 2024a) is used to overcome this difficulty and
find all 78 anti-arborescences of the graph of Figure 3A that form the
corresponding monomials. The state ‘100′will be used as an example
of the technique since it occurs in all production lines from K = 1
stations, i.e., the system state in which only the first machine is
working and all others are idle with no workpiece in them, i.e., the
states ‘1’, ‘10’,’100’, ‘1000’ and ‘10000’ for K = 1,2,3,4, and five
stations, respectively. This state can be used for comparison to
understand the growth of the size of the analytic steady-state
probabilities. For the considered case of K = 3 stations, there are
eight different and unique anti-arborescences for the ‘100’ state,
which have the opposite direction, as shown in the computation tree
in Figure 4. The first of the eight spanning trees is also the first of the
78 spanning trees of the whole graph, as shown in Figure 3B. On the
right side of Figure 3C, the spanning tree T1 of Figure 4 with the root
in the ‘100’ state is shown, which generates the anti-arborescent
from Figure 3B by reversing the edge direction. The edge direction
reversal step is necessary because the Algorithm of Gabow and
Myers (Gabow and Myers, 1978), a part of the methodology, can
only enumerate the rooted spanning trees. If the edge direction
inversion is not done, some spanning trees will not be formed
appropriately, so the exact solution cannot be found.

Q �

−μ1 0 μ1 0 0 0 0 0
μ3 − μ1 + μ3( ) 0 μ1 0 0 0 0
0 μ2 − μ1 + μ2( ) 0 0 μ1 0 0
0 0 μ3 − μ1 + μ2 + μ3( ) μ2 0 μ1 0
0 μ3 0 0 − μ1 + μ3( ) 0 0 μ1
0 0 0 μ2 0 −μ2 0 0
0 0 0 0 0 μ3 − μ2 + μ3( ) μ2
0 0 0 μ3 0 0 0 −μ3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(3)

Figure 4 shows the computation tree (Gabow and Myers, 1978)
for the system state ‘100’. The edges are shown in the opposite
direction from the original graph, as they are intended to use Gabow
and Myers’ Algorithm to generate anti-arborescences. The
computation tree shows how the spanning tree T grows. The
Algorithm of Gabow and Myers creates it and shows the steps to
form the spanning tree. The spanning tree is uniquely extracted
from the computation tree due to the simple rule that each edge
added to T must start inside T and end outside of T. The spanning
tree is a tree of edges and vertices. All edges and vertices belong to
the graph created by the Algorithm, as shown in Figure 3A. Thus,
applying the rules does not allowmisleading regarding which edge is
involved in each case. The spanning tree of T1 ending in state ‘100’ is
shown in Figure 3B, while the anti-arborescence rooted in state ‘100’
is shown in Figure 4C.

In Figure 4, each expansion of the subgraph Ti, i∊ {1.2,...8} is
represented by a node indicating the last system state introduced
into the spanning tree subgraph Ti, and an edge starting from Ti and
leading to a node outside of Ti so each Ti is growing up
progressively. Because of the model used, one edge can have the
same weight, i.e., mean service rate, as another without confusion
about which edge it is. The pair of edge and endpoint is unique in the
graph and uniquely defines the spanning tree in the original
direction (anti-arborescent in the reversed direction) that grows
along the path indicated by the transition rate graph. The Ti grows
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until it encompasses all nodes of the graph node and reaches a depth
equal to the number of states-1 levels (here, the states are eight, and
the depth is seven). The number of levels determines the sum of the
exponents of the individual monomials. When all graph nodes have
been included, Ti is an anti-arborescent of the graph in the reversed
direction (a spanning tree in the forward direction) and can be
obtained. The recursive procedure continues until all anti-
arborescences rooted in state ‘100’ have been obtained.

From the point of view of creating analytic stationary
probabilities, the product of the edge weights, i.e., the mean
service rates, that form the spanning monomial is of interest. For
example, when analyzing the leftmost path of the computation tree
(T1), form the product and the corresponding spanning monomial
as follows: μ3 · μ3 · μ2 · μ3 · μ2 · μ2 · μ1 � μ1μ

3
2μ

3
3. The sum of all

spanning monomials gives the spanning polynomial of the
considered state: the anti-arborescences root if the edges’
direction is reversed, or interchangeably the last vertex of the
spanning trees if the edges have their original direction. For the
system with K = 3 stations, the algorithmic approach introduced in
(Boulas et al., 2024a) forms the spanning polynomial for each of the
eight system states shown in Equations 4–11. The spanning
polynomial of the entire graph is the sum of all cross-state
polynomials and is the denominator of the stationary
probabilities normalized to one. Equation 12 shows the spanning
polynomial for the entire graph for the K = 3 stations line, and it is
the same as the denominator in Hunt’s Equation for maximum
utilization (Hunt, 1956).

sp100 � 2μ1μ
3
2μ

3
3 + 2μ1μ

2
2μ

4
3 + μ42μ

3
3 + 2μ32μ

4
3 + μ22μ

5
3 (4)

sp110 � μ31μ
2
2μ

2
3 + μ31μ2μ

3
3 + 2μ21μ

2
2μ

3
3 + 2μ21μ2μ

4
3 + μ1μ

3
2μ

3
3 + 2μ1μ

2
2μ

4
3

+ μ1μ2μ
5
3

(5)
sp210 � μ51μ
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3
3 + 2μ32μ

4
3 + μ22μ

5
3

(12)
Using the system’s transition matrix, Q, of Equation 3 shows

that the analytic state probabilities of Equations 4–12 are the system
solutions. The set of system states is S, where S �
100, 101, 110, 111, 121, 210, 211, 221{ } and the corresponding
vector of steady-state probabilities is π, where π �

(π100, π101, π110,π111, π121, π210, π211,π221) � [sp100

spG
, sp101

spG
, sp110

spG,
sp111
spG

,sp121spG
,
sp210
spG

,sp211spG
,

sp221

spG
]. For two states i, j belonging to S:

∑i,j∈Sπiqij � 0 and ∑i∈Sπi � 1 or π100 + π101 + π110 + π111 + π121 +
π210 + π211 + π221 � 1 according to the equilibrium condition π ·
Q � 0 which is expanded in Equation 13.

π100 · -μ1( ) + π101 · μ3 + π110 · 0 + π111 · 0 + π121 · 0 + π210 · 0 + π211 · 0
+ π221 · 0 � 0

π100 · 0 + π101 · -μ1-μ3( ) + π110 · μ2 + π111 · 0 + π121 · μ3 + π210
· 0 + π211 · 0 + π221 · 0 � 0

π100 · μ1 + π101 · 0 + π110 · -μ1-μ2( ) + π111 · μ3 + π121 · 0 + π210
· 0 + π211 + π221 · 0 � 0

π100 · 0 + π101 · μ1 + π110 · 0 + π111 · -μ1-μ2-μ3( ) + π121 · 0 + π210
· μ2 + π211 · 0 + π221 · μ3 � 0

π100 · 0 + π101 · 0 + π110 · 0 + π111 · μ2 + π121 · -μ1-μ3( )0 + π210
· 0 + π211 · 0 + π221 · 0 � 0

π100 · 0 + π101 · 0 + π110 · μ1 + π111 · 0 + π121 · 0 + π210 · -μ2( )
+ π211 · μ3 + π221 · 0 � 0

π100 · 0 + π101 · 0 + π110 · 0 + π111 · μ1 + π121 · 0 + π210 · 0 + π211
· -μ2-μ3( ) + π221 · 0 � 0

π100 · 0 + π101 · 0 + π110 · 0 + π111 · 0 + π121 · μ1 + π210 · 0 + π211
· μ2 + π221 · -μ3( ) � 0

(13)
To prove that the equations satisfy the equilibrium condition, we

replace them in Equation 13. For instance, the first row of Equation
13 gives:

π100 · −μ1( ) + π101 · μ3 + π110 · 0 + π111 · 0 + π121 · 0 + π210 · 0
+π211 · 0 + π221 · 0

� 0, or − μ1 · π100 + μ3 · π101

� 0, by replacing − μ1 ·
sp100

spG
+ μ3 ·

sp101

spG

� 0
−μ1 · sp100 + μ3 · sp101

spG
� 0, or − μ1 · sp100 + μ3 · sp101 � 0

by replacing Equations 4, 7 in the previous relation we obtain:

−μ1sp100 + μ3sp101

� −μ1 2μ1μ
3
2μ

3
3 + 2μ1μ

2
2μ

4
3 + μ42μ

3
3 + 2μ32μ

4
3 + μ22μ

5
3( ) + μ3

2μ21μ
3
2μ

2
3 + 2μ21μ

2
2μ

3
3 + μ1μ

4
2μ

2
3 + 2μ1μ

3
2μ

3
3 + μ1μ

2
2μ

4
3( )

� −2μ21μ32μ33 − 2μ21μ
2
2μ

4
3 − μ1μ

4
2μ

3
3 − 2μ1μ

3
2μ

4
3 − μ1μ

2
2μ

5
3 + 2μ21μ

3
2μ

3
3

+2μ21μ22μ43 + μ1μ
4
2μ

3
3 + 2μ1μ

3
2μ

4
3 + μ1μ

2
2μ

5
3

� 0

Following the same procedure, it can be proved that Equations
4–11 are the system solutions and that the other seven lines of
Equation 13 are verified. It should be noted that the same procedure
was used to verify the solution for the system with K = 4 stations
using the steady-state probabilities given in the
supplementary material.

When we have obtained the steady-state probabilities for the
system under consideration, the performance measures of interest
can be readily determined. The exact formulas for the performance
measures are given below as ratios of spanning polynomials where
the denominator is the spG of Equation 12 and relationships of mean
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service rates in the same Equation number. Equations 14, 15
represent the formulas for maximum utilization and throughput,
respectively. The numerator of Equation 15 has a symmetrical
structure that characterizes the throughput and is identifiable by
its reversibility property. Similar symmetry is also found in the case
of two stations, which is easy to understand. It is noted that these
formulas are identical to the formulas in Hunt’s work (Hunt, 1956).

Regarding the exact formula for the Work in Process WIP, we
need to have the vector E of workpieces presented in each state of S,
here E=(1, 2, 2, 3, 3, 2, 3, 3). Thus, the internal product of the two
vectors is the work in process of the system. The WIP Equation 16
presents the formula. Equation 17 provides the probability for the
second machine to be blocked, Bl2, while Equation 18 gives the
probability of the third machine being idle, I3. The spanning
polynomials can extract closed-form formulas for any system
performance measure the underlying Markov chain can obtain.

ρmax ,3 �
sp100 + sp101 + sp110 + sp111 + sp121

spG

�
μ2μ3 μ1 + μ2( ) μ2 + μ3( ) μ31 + μ21μ2 + 3μ21μ3

+μ1μ2μ3 + 3μ1μ
2
3 + μ2μ

2
3 + μ33

( )
μ51 μ22 + μ2μ3 + μ23( ) + μ41 2μ32 + 5μ22μ3 + 5μ2μ

2
3 + 3μ33( )

+μ31 μ42 + 5μ32μ3 + 8μ22μ
2
3 + 7μ2μ

3
3 + 3μ43( )

+μ21 μ42μ3 + 5μ32μ
2
3 + 8μ22μ

3
3 + 5μ2μ

4
3 + μ53( )

+μ1 μ42μ
2
3 + 5μ32μ

3
3 + 5μ22μ

4
3 + μ2μ

5
3( )

+μ42μ33 + 2μ32μ
4
3 + μ22μ

5
3

(14)
X3 � μ1 · ρmax ,3 � μ1 ·

sp100 + sp101 + sp110 + sp111 + sp121

spG

�

μ51μ
2
2μ3 + μ51μ2μ

2
3 + 2μ41μ

3
2μ3 + 5μ41μ

2
2μ

2
3 + 3μ41μ2μ

3
3+μ31μ42μ3 + 5μ31μ

3
2μ

2
3 + 7μ31μ

2
2μ

3
3 + 3μ31μ2μ

4
3 + μ21μ

4
2μ

2
3+5μ21μ32μ33 + 5μ21μ

2
2μ

4
3 + μ21μ2μ

5
3 + μ1μ

4
2μ

3
3 + 2μ1μ

3
2μ

4
3 + μ1μ

2
2μ

5
3

spG

(15)

WIP � E · π �
sp100 + 2 · sp101 + 2 · sp110 + 3 · sp111+3 · sp121 + 2 · sp210 + 3 · sp211 + 3 · sp221

spG

3μ51μ
2
2 + 3μ51μ2μ3 + 2μ51μ

2
3 + 6μ41μ

3
2 + 15μ41μ

2
2μ3 + 13μ41μ2μ

2
3

+6μ41μ33 + 3μ31μ
4
2 + 15μ31μ

3
2μ3 + 23μ31μ

2
2μ

2
3 + 17μ31μ2μ
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3
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4
2μ3 + 13μ21μ

3
2μ

2
3 + 19μ21μ
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2μ

3
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3

+2μ21μ53 + 2μ1μ
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2μ
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2μ
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2
2μ
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3
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3
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4
3 + μ22μ

5
3

spG

(16)

Bl2 � sp121 + sp221

spG
� μ21μ

2
2 μ1 + μ3( ) μ1 + μ2 + μ3( )2

spG
(17)

I3 � sp100 + sp110 + sp210

spG

�
μ23

μ51 + 2μ41μ2 + 3μ41μ3 + μ31μ
2
2 + 4μ31μ2μ3 + 3μ31μ

2
3

+3μ21μ22μ3 + 4μ21μ2μ
2
3 + μ21μ

3
3 + 3μ1μ

3
2μ3 + 4μ1μ

2
2μ

2
3+μ1μ2μ33 + μ42μ3 + 2μ32μ

2
3 + μ22μ

3
3

⎛⎜⎜⎝ ⎞⎟⎟⎠
spG

(18)

4.3 Case K = 4

The algorithmic approach of the analytic formula extraction for
stationary probabilities was used to obtain the system’s spanning
polynomials. For the case of K = 4 stations without buffers, the

system graph extracted by the Algorithm is shown as the state
transition diagram of the system in Figure 5. Due to their enormous
size, they are attached in the Supplementary Material, where they are
both available source-coded and the executable in C++ and Python
for any interested reader to be helpful. In addition, a PDF file
contains the twenty-one spanning polynomials corresponding to
system states. Also, the Latex code used to generate them is included
in the supplementary material. An Excel file contains all the
exponents and coefficients of the polynomials for each system
state. The graph has 4,502,592 anti-arborescences forming the
graph-spanning polynomial spG, the denominator of the
stationary probabilities. For comparison, the spanning
polynomial of the system state ‘10000’ is shown in Figure 6 i.e,
the stationary probability for the state ‘10000’ is π1000 � sp1000

spG
; while

all 21 spanning polynomials and their code can be found in the
supplementary material. It is formed from 130,752 spanning
monomials whose exponents have the constant sum of 20.
Equivalently, the same number of anti-arborescences ending in
state ‘1000’ where their number is equal to the sum of the
polynomial coefficients. The supplementary material also
contains a readme txt file with brief instructions.

The C++ code of the supplementary material was used to
compare the MARKOV algorithm and the exact solution using
the 194,481 line configurations used in Boulas et al. (2021) with
μi∈[0.9,1.1], i = 1,2,3,4. These data were used to develop some
Artificial Intelligence approaches, i.e., Genetic Programming and a
hybrid scheme of Genetic Programming and Genetic Algorithms, to
express the throughput by small size approximation formulas for
K = 4 stations, among others. Table 2 shows the performance of the
MARKOV algorithm, and our study shows that the highest
difference in 194,481-line configurations is 5.37 × 10−7, which
proves that the MARKOV algorithm gives accurate results. Any
deviation is due to rounding to six digits. The CPU time for
throughput estimation for all 194,481-line configurations was
1,141 s (19.02 min) for the exact formula, while by the
MARKOV algorithm as specified in the prodline software (see
(Papadopoulos et al., 2009) 692,302 s (8.01 days) using the same
computer, an i7 CPU 970 running at 2.67 GHz, with eight cores
and 16 GB RAM.

It should be noted that the exact throughput formula for lines
with K = 4 stations contains 2,317,824 monomials in the numerator
and 4,502,592 monomials in the denominator, whose exponents
sum to 20. To ensure that the 21 spanning polynomials, i.e., each for
each system state, are the exact solutions of the Equation π · Q � 0,
the procedure described for lines with K = 3 stations was followed
using Python’s SymPy module library, see Meurer et al. (2017).
Thus, using the spanning polynomials coded in the supplementary
material, one can access exact formulas and use them for any system
performance measure that can be extracted from the underlying
MARKOV chain.

4.4 Case K ≥ 5

For the case of a system of K = 5 stages, the Algorithm figures out
the state transition diagram, a graph with 55 vertices (system states)
and 145 edges (transition from one state to another). There are
34 edges for μ1 and μ5, 26 for μ2 and μ4, and 25 for μ3. For this kind of
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graph, the monomials exponent sum is equal to 54, and their
coefficients are relative to their number, which is a function of
the anti-arborescences number or equivalently to the number of
spanning trees when the direction edge is reversed.

A variation of the matrix-tree theorem is used to estimate the
number of spanning trees in a directed graph. See (Boulas et al.,
2024a) of our work for details. The number of spanning trees κ(Γ) in
a directed graph Γ=(V, E) is equal to the determinant of the
Laplacian matrix L of the graph Γ.

Table 3 presents the number of anti-arborescences for each of the
55 states of the line of K = 5 stages. The ‘10000’ state anti-arborescence
number denotes the tremendous growth of the spanning monomial
number. In our experiment, after 3 months of execution (when the
execution stopped), the Algorithm, coded in C++, enumerated one
million anti-arborescences of state ‘10000’ every 33 seconds. With that
rate, finding all anti-arborescences of state ‘10000’ requires
1.109.000 years, while the whole graph estimation requires
140.000.000 years. Also, the computer integer number for the
enumeration was exhausted many times through the execution;
someone must use special C++ libraries to handle huge integers.
That gives a sense of the size, which the exact formulas have even
for short serial production lines.

Following the same method for estimating spanning trees in a
graph, Table 4 has been compiled. It shows the total number of the
anti-arborescences for each stage, from one to eight.

4.5 Some insights into the bowl
phenomenon can be obtained by the
spanning tree’s structure

With the treatment of the Algorithm outcomes, Table 5 has been
created. It presents the number of occurrences of every mean service
rate for each machine in the corresponding graph, i.e., the state
transition diagram. Let us assume that the corresponding exponent
for every mean service rate μi, i∈{1.2, . . . , K} is xi, i∈{1.2, . . . , K},
i.e., x1 refers to μ1, x2 refers to μ2 and so on. The number of
occurrences of each mean service rate as an edge’s weight in the
transition rate diagram, let it be oi, i∈{1.2, . . . , K}, i.e., o1 refers to μ1,
o2 refers to μ2 and so on. The integer values xi can take are the
components of vector xi = [0.1, . . . , oi]. The number of every
possible combination that produces monomials is the Cartesian
product x1×x2×. . . × xK. If the number of system states is S, the
maximum feasible set of monomials,M, is produced by Equation 19.
The actual number of different monomials may be different. For K =
2 and K = 3, the feasible and actual number of monomials are the
same, 3 and 24, respectively. For K = 4, the actual number is
1,018 monomials, while the cardinality of M is 1,163 monomials.
For K = 5 and K = 6, the feasible number of monomials is
307,681 and 443889258, respectively, the upper limit of the
different monomials that can appear in the spG.

x1 × x2 × ... × xK � 0, 1, ..., o1[ ] × 0, 1, ..., o2[ ] × ....

× 0, 1, ..., oK[ ] constrained by∑K
i�1
xi � S − 1

(19)

Table 6 is the result of another observation obtained from the
Algorithm outcomes if we record the number of occurrences of each

mean service rate in all spanning trees of the graph for the number of
stages K = 1 to 4. Examining the data sets in Tables 5, 6 by the
number of stages in the production line shows a symmetric bowl
pattern, with the mean service rates of middle stages
underrepresented in the occurrences compared to the outlying
ones. That means not all stages are equally involved in the
spanning polynomial configuration and the exact formulas of
systems’ performance metrics. This fact can explain the well-
known bowl phenomenon; see about that in the book by
Papadopoulos et al. (2009).

4.6 The throughput estimation for the case
of K stages balanced lines using a new
genetic programming formula

This section introduces a new, straightforward formula for
estimating throughput in balanced lines with K stages, utilizing
genetic programming techniques. The formula takes advantage of
the formulas structural insights gained from this work.

With the knowledge we have obtained of the formulas derived
through the methodology of using spanning trees of state
transition diagrams, we know that the MARKOV algorithm, if
we use it for K stages and μi = 1 for i∊{1, 2, . . . , K}, will provide
the maximum utilization of the serial production line. That is
because we have the factorizations and simplifications in the
numerator and denominator of the same powers equal to the
number of system states minus 1. Despite the enormous size of
the operations, since the mean service rate μi = 1 for i∊{1, 2, . . . ,
K} is used, the result of the operations is identical to the result of
the MARKOV algorithm, which gives the throughput, however,
because μi = 1 for i∊{1, 2, . . . , K}, it is identical to the maximum
utilization ρmax, see Equation 21.

As shown in Section 4.3, the results of the MARKOV algorithm
are identical to the exact solutions of the system for four stages, with
only the rounding errors from the arithmetic operations. Previous
work (Heavey et al., 1993) has shown that the results of the
MARKOV algorithm provide the exact solutions under the
restriction of the rounding error. For this reason, the exact
MARKOV algorithm is used to construct a data set for training a
genetic programming system (Koza, 1992) implemented in
HeuristicLab software (Wagner et al., 2014). Moreover, algebraic
manipulations to generate a tractable formula that approximates the
throughput XK for perfectly balanced K-stage lines K = 1, 2, . . .
,13 and μi = μ, i = 1.2, . . . , K. We use the values for K = 1 to 12 stages
as the training set. For the 13th stage, we verify the value published
in (Fernandes et al. (2013b). The result shows that the formula
derived from GP presented in Equation 20 is accurate up to the sixth
decimal digit. Numerous tests performed showed convergence to the
sixth decimal place in throughput using theMARKOV algorithm for
different values of K = 1, 2, . . . ,13 and μi = μ, i = 1.2, . . . , K, which is
the case for perfectly balanced lines.

The Genetic Programming formula for maximum utilization for
perfectly balanced K-stage lines K = 1, 2, . . . ,13 is shown by
Equation 20 and the corresponding throughput for the
production line by Equation 21 where K = 1, 2, . . . ,13 and μi =
μ, i = 1.2, . . . , K.
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ρmax � 0.3724972 + 0.0186781
1.6617246K + 19.4375419

+ 0.0293145e2.0225831e
−0.6311543K + 0.5288344 + 0.0118095

K

K
(20)

XK � μ ρmax (21)

5 Discussion

This paper presents an implementation of the algorithmic
approach given in (Boulas et al., 2025) of our work, which
corresponds to a general procedure for extracting stationary
probabilities of an arbitrary irreducible Markov chain and uses
the proposed Algorithm to solve problems of performance
measures of short serial production lines without buffers. A new
algorithm is introduced to construct the state transition diagrams for
that system. We use the two algorithmic approaches to extend
Hunt’s work (Hunt, 1956) for all system performance measures
for a short line of three stages without buffers. The Algorithm solves
a system with K = 4 stages without buffers and gives its stationary
probabilities. This is the first time an accurate formula has appeared
in the literature for production lines with four stations without
intermediate buffers. The Algorithm can provide accurate analytic
formulas for all performance measures of small-size production
systems, throughput, maximum utilization, and all performance
measures obtained from the underlying Markov chain. The system
behavior is elaborated on the graph representing the state transition
diagram. The proposed Algorithm directly creates the system states
and the system’s state transition diagram under the model
assumption, providing the details of the transitions between the
system states. The latter is very informative about understanding the
complexity and operation of that kind of system. The overall
methodology solves a production line without intermediate
buffers for any number of stations by simply enumerating the
anti-arborescences of the graph. That is a tedious task in practice
due to the enormous number of anti-arborescences.

The exact formulas generated by the Algorithm are so extensive
that they modify the concept of closed-form formulas. For example,
for the system with K = 4 stations, until the coding in C++ of the
code in the supplementary material, the value of the formulas was
estimated with the help of a parser that passes through a matrix of
coefficients and exponents of the polynomials. In our experience
(Boulas et al., 2021), this parser operation was very similar to the
evaluation of genetic programming trees; the genetic programming
tree is a spanning tree. The difference in genetic programming is that
its solution is only one spanning tree of many, while the exact
solution consists of many spanning trees of the same size. The
enormous number of anti-arborescences in graphs for lines with K ≥
5 stations leads to solutions that require memory, computational
power, special libraries, and reliable computing systems. It is an
impressive and expected realization that the formula no longer gives
exact results (the equilibrium equations cannot be solved
analytically) when even a single digit changes from the existing
millions of spanning polynomials.

Because of the use of graphs and the concept of spanning trees,
the overall methodology is based on the top of the automata theory.
The computation tree in Figure 4, one of the eight that express the

system behavior, functions as an operation instructionmanual of the
system. It is noted that the number of these computation trees
increases following the number of the system state, see Table 5 and
their depth increases to the number of the state minus 1. Also, the
number of the branches Ti (Ti, i = 1, 2, . . . , 8 in Figure 4) increases
tremendously according to Table 3 to give a sense of it. The exact
solutions consider all these transitions instead of the approximate
ones, which somehow group them and relate them mathematically.

Conversely, simulation samples and builds a subset of these
transitions to obtain results for a reduced system. As sampling
improves, the results’ accuracy improves, and the simulation’s
quality improves. However, all this complexity and the size of the
possible transitions of the systems show that even with the more
detailed available method for elaborating that kind of system, the
simulation works statistically on a small part of the system’s
transition. That observation is critical and valuable when we
want to develop formulas of acceptable accuracy, but small size
based on a small but representative number of appropriately chosen
spanning trees.

The enormous size of exact formulas can be a problem. In this
work, we have treated the most straightforward production line.
More complicated lines, i.e., buffers, phase-type distributions, and
unreliable machines, can lead to more extensive and more
complicated formulas with a ratio of two polynomials. These
formulas may serve as structural components of methods like
decomposition (Gershwin, 1987). Moreover, graph theory may
help explain the most profound function of decomposition
methods. However, the enormous size of the exact formulas is
also an opportunity because obtaining exact formulas for longer
production lines is a computational challenge for computers that
may have yet to be invented. Combining numerical answers about
stationary probabilities of production lines using algorithms such as
MARKOV and the analytic solution could be attractive for creating
benchmarking problems or algorithms that can test computational
systems such as quantum computers (Steane, 1998), comparing the
time to find the anti-arborescences and the accuracy of the results.

Artificial intelligence methods, such as genetic programming,
remain attractive. Previous work has shown that genetic
programming offers a remarkable ability to recognize the deeper
structure of the solution, whether we know it or not. Artificial
intelligence and machine learning methods with appropriate
specifications for the output’s accuracy, scope, or usability in
estimating the performance of production lines may play an
essential role in this field for the following years.

6 Conclusions and further research

In this work, an Algorithm has been developed to express the
state transition diagram for the short serial production line to obtain
the stationary probabilities for K = 2,3,4 stages in symbolic form
using the method introduced in Part I in this work (Boulas et al.,
2024a). The solutions provided are exact as they verify the
equilibrium equations of the systems. To our knowledge, exact
analytic solutions for production lines with K = 3 and 4 stations
and no intermediate buffers are given for the first time in literature,
and the solution size for more extensive lines is also estimated. The
constant sum of their exponents characterizes the monomials due to
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the fixed number of anti-arborescence edges, which equals the
number of system states minus one, transforming the exact
solutions for K ≥ 5 stations to a vast size. The solution is a
closed-form formula of two polynomials ratio.

When enumerating the transitions in the state transition
diagram, some observations were made regarding the well-known
bowl phenomenon in production systems. These have to do with the
variation in the number of transitions, their symmetry, and their
reversibility. Finally, using genetic programming as an artificial
intelligence method, a simple formula specifies the throughput
for a fully balanced K-stage line where the mean service rates of
each stage are identical.

Future research might investigate other types of production
lines. In terms of applications, our team is working on production
lines, supply chains, and queueing networks to obtain mathematical
formulas expressing the performance metrics of these systems.
Production lines with buffers and other topologies are of interest.
Also, the quantification between the spanning trees and bowl
phenomenon is promising. Exploring the possibilities of parallel
running Gabow and Myers’ Algorithm is essential to finding the
spanning trees rooted from the same node. Finally, recursive
methods such as decomposition can be extended to other
performance measures using the exact formulas for their
estimation as structural elements (building blocks). Currently, the
focus of our research regarding the presented methodology is related
to systems of phase type distributions as well as to similar problems
existing in logistics systems and in systems containing
unreliable lines.

It should also be noted that the tremendous evolution of
computer technology provided tools that made calculations more
efficient and effective for finding solutions to previously unsolved
problems. In addition, through evolutionary computing and genetic
programming, modern computer science made it possible to obtain
approximate formulas of high accuracy for short serial production
lines. Accuracy can be further improved for more extensive lines if
more careful sampling of training data is used, embodying
information regarding the unique characteristics of formulas or
other predictive models. The present work shows the immense size
of the exact closed-form formulas expressing the stationary
probabilities and performance measures. This size makes the AI-
oriented methods attractive for forming approximate solutions for
performance measurement in problems of interest. A comparison of
the formulas for lines with K = 4 or K = 5 stations presented in
Boulas et al. (2021) with the exact formulas for thousands or millions
of monomials presented or mentioned in the present work makes
this claim credible. Conversely, production lines can provide helpful
benchmark paradigms for artificial intelligence. There is a
commonplace in research on assembly line work, computational

complexity, and artificial intelligence that will benefit all
disciplines involved.
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