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It is expected that climate change will have significant impacts on ecosystems. Most
model projections agree that the ocean will experience stronger stratification and less
nutrient supply from deep waters. These changes will likely affect marine phytoplankton
communities and will thus impact on the higher trophic levels of the oceanic food web.
The potential consequences of future climate change on marine microbial communities
can be investigated and predicted only with the help of mathematical models. Here
we present the application of a model that describes aggregate properties of marine
phytoplankton communities and captures the effects of a changing environment on their
composition and adaptive capacity. Specifically, the model describes the phytoplankton
community in terms of total biomass, mean cell size, and functional diversity. The model
is applied to two contrasting regions of the Atlantic Ocean (tropical and temperate) and is
tested under two emission scenarios: SRES A2 or “business as usual” and SRES B1
or “local utopia.” We find that all three macroecological properties will decline during
the next century in both regions, although this effect will be more pronounced in the
temperate region. Being consistent with previous model predictions, our results show
that a simple trait-based modeling framework represents a valuable tool for investigating
how phytoplankton communities may reorganize under a changing climate.
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1. INTRODUCTION
Scientists agree that Earth’s climate is changing at an unprece-
dented rate (Pachauri and Reisinger, 2007; Wolff et al., 2014). This
is expected to have an impact on all living organisms (Parmesan,
2006; Mooney et al., 2009). For example, some studies have
observed a declining trend in global phytoplankton biomass dur-
ing the last century (Falkowski and Wilson, 1992; Boyce et al.,
2010; Mackas, 2011; Rykaczewski and Dunne, 2011), while others
have proposed an increase in the abundance of marine pho-
toautotrophs (McQuatters-Gollop et al., 2011). Irrespective of
the direction of the change, it appears indisputable that any
shift in the abundance of marine primary producers will have
an impact on higher trophic levels (Parmesan, 2006). Scientists
therefore face the challenge of better comprehending the factors
and the mechanisms that will shape the marine phytoplankton
community in the decades to come.

Natural ecological communities are typically studied by gath-
ering information about, for example, physiological and morpho-
logical properties on a predefined taxon. This generally treats all
species as identical and neglects property variations within the
taxon (Violle et al., 2012). An alternative approach is to gather
information on the distribution of such properties within the
entire community (McGill et al., 2006). This is the so-called trait-
based approach (McGill et al., 2006), which provides a conceptual

framework for understanding how communities are organized
and adapted to given environmental conditions and how they will
reorganize under a changing climate. Fundamental constraints,
such as energy allocation, prevent organisms to invest equally in
all traits and lead to the emergence of trade-offs, which in turn
give rise to functionally diverse communities (Tilman, 2001).

By identifying key traits and trade-offs, the trait-based
approach has advanced our understanding of phytoplankton
community structure and functioning (Litchman et al., 2007;
Litchman and Klausmeier, 2008) and provided the basis for con-
structing mechanistic links between community composition and
environmental conditions (Follows and Dutkiewicz, 2011; Smith
et al., 2011). In addition, the distribution of traits reflects the
functional diversity of the community and hence its adaptive
capacity (Abrams et al., 1993). Cell size, for example, has been
proposed as the most characterizing morphological trait of phy-
toplankton organisms (Litchman and Klausmeier, 2008; Finkel
et al., 2009). It spans over several orders of magnitude only within
phytoplankton and influences many ecological and physiological
processes, such as nutrient uptake (Aksnes and Egge, 1991; Tang,
1995; Litchman et al., 2007; Marañón et al., 2013), light harvest-
ing (Ciotti et al., 2002; Finkel et al., 2004), respiration (Laws,
1975; López-Urrutia et al., 2006), sinking (Kiørboe, 1993), and
grazing (Kiørboe, 1993; Fuchs and Franks, 2010; Wirtz, 2012a,b).
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Therefore, investigating the dynamics of phytoplankton cell size
helps to better understand the adaptive capacity of this group of
organisms under a changing environment.

Size-based models of phytoplankton communities in combi-
nation with climate projections provide a useful tool for these
investigations. Models following the species-by-species approach
(e.g., Baird and Suthers, 2007; Banas, 2011) typically comprise
many state variables and parameters. While valuable, such mod-
els have been criticized for the high number of free parameters
required to adequately describe the observed macroecological
properties of planktonic communities (Anderson, 2005; Ward
et al., 2010). Alternatively, many scientists (e.g., Litchman and
Klausmeier, 2008; Follows and Dutkiewicz, 2011; Smith et al.,
2011; Edwards et al., 2013) have called for the use of trait-based
modeling approaches to investigate how phytoplankton commu-
nity structure and diversity may reorganize under a changing cli-
mate. No study to date has yet attempted to investigate the effects
of future climate on the combined dynamics of phytoplankton
biomass and trait distributions.

Here we use a novel size-based model of aggregate group
properties that mechanistically describes phytoplankton commu-
nity structure and functional diversity in two contrasting regions
of the Atlantic Ocean (i.e., temperate and tropical). The model
focuses on three macroecological properties, namely: total phy-
toplankton biomass, mean cell size, and size variance, the latter
reflecting the functional diversity of the community and therefore
its adaptive capacity. We run the model into the future using two
distinct projections of the IPCC emission scenarios (Nakićenović
et al., 2000), which are routinely used for studying the tran-
sitions of ecosystems. These are: the “a divided world” (SRES
A2) scenario (also known as “business as usual”), which assumes
emphasis on national identities, and the more optimistic “local
utopia” (SRES B1) scenario, which assumes a moderate reduc-
tion in material demand and a moderate use of clean and efficient
technologies but still with a pronounced regionalization of the
economies. With this model we investigate how the structure and
adaptive capacity of phytoplankton communities will respond to
changing environmental conditions.

2. METHODS
2.1. SIZE-BASED MODEL
We developed a size-based model of the upper mixed-layer to
study the future composition of phytoplankton communities
under different climate change scenarios. The model focuses on
the description of three macroecological properties: total phyto-
plankton biomass (P), phytoplankton cell size (S, expressed as
Equivalent Spherical Diameter (ESD)), and size variance (V). In
this type of models the trait variance reflects the functional diver-
sity of the community (Wirtz and Eckhardt, 1996; Norberg et al.,
2001; Merico et al., 2009) and quantifies the speed of the adaptive
process, i.e., the speed with which the mean trait changes (Abrams
et al., 1993). Given that adaptive responses are considered to
be more robust for more diverse communities (Visser, 2008),
the size variance captured by our model is also a representation
of the adaptive capacity of the phytoplankton community. This
means that the higher the trait variance, the higher the functional
diversity and the adaptive capacity of the system, and vice versa.

Instead of resolving the full spectrum of species or functional
types, this modeling approach centers on aggregate properties of
the entire planktonic community thus reducing model complex-
ity (Merico et al., 2009) and mechanistically linking community
structure with environmental conditions (Wirtz and Eckhardt,
1996; Norberg et al., 2001). In the model, the phytoplankton
communities self-assemble based on a trade-off emerging from
relationships between phytoplankton mean size and: (1) phy-
toplankton nutrient uptake, (2) zooplankton grazing, and (3)
phytoplankton sinking. Equations for nutrient (N), zooplankton
(Z), and detritus (D) complete the model system (see Appendix
for a detailed description of all model equations).

2.2. STUDIED REGIONS
The model is applied to two contrasting regions of the Atlantic
Ocean: temperate (45.5–49.5 ◦N, 10.5–20.5 ◦W) and tropical
(4.5–14.5 ◦N, 19.5–24.5 ◦W). The temperate region is character-
ized by seasonal changes of mixed layer depth (MLD), sea surface
temperature (SST), photosynthetic active radiation (PAR), and
concentration of nutrients below the mixed layer (N0), whereas
environmental conditions in the tropical region are relatively con-
stant. Note that the model parameterization is identical for the
two regions and that different results emerge only from the con-
trasting environmental forcing (see Table 1). Hereafter, we will

Table 1 | Model parameters (identical for both regions).

Name Symbol (Units) Value Source

P growth rate μP (d−1) 1.4 Edwards and
Brindley, 1996

P mortality rate mP (d−1) 0.05 Fasham et al.,
1990

P Immigration rate δI (d−1) 0.008 This study
Z growth rate μZ (d−1) 0.8 Edwards and

Brindley, 1996
Z mortality rate mZ (d−1) 0.3 Edwards and

Brindley, 1996
P assimilation
coefficient

δZ (-) 0.3 Edwards and
Brindley, 1996

P half-saturation KP (mmol N m−3

μm−1 ESD)
0.08 This study

Cross-thermocline
mixing

κ (m·d−1) 0.01 Fasham, 1993

Mineralization rate δD (d−1) 0.2 This study
Light attenuation
constant

kw (m−1) 0.1 Edwards and
Brindley, 1996

Optimum irradiance Is (W m−2) 100 This study
Intercept of the KN

allometric function
βU 0.14257 Litchman et al.,

2007
Slope of the KN

allometric function
αU 0.81 Litchman et al.,

2007
Intercept of the ν

allometric function
βν 0.01989 Kiørboe, 1993

Slope of the ν

allometric function
αν 1.17 Kiørboe, 1993

The parameters with source “this study" were considered as free parameters

and allowed to vary in order to obtain a better model to data fit.
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use the terminology “environmental variables,” to refer to all
variables that force the model (i.e., MLD, SST, PAR, N0).

2.3. ENVIRONMENTAL FORCING DATA
The environmental variables used to force the ecosystem model
are derived from simulations with the NCAR CSM1.4-carbon

model (Fung et al., 2005; Doney et al., 2006). The NCAR
model is one of the global Earth system models that are used
to study past and future impacts of anthropogenic emissions
on the environment (e.g., Steinacher et al., 2010) and con-
tributed to previous assessment reports of the IPCC. The NCAR
model was driven by historical CO2 emissions over the industrial

FIGURE 1 | Environmental forcing for temperate and tropical

regions under the SRES A2 and the SRES B1 emission

scenarios. MLD is the mixed layer depth, PAR is the

photosynthetically active radiation, SST is the sea surface
temperature, and N0 is the concentration of nutrients below the
upper mixed-layer.

FIGURE 2 | Time series of the state variables for the temperate and

tropical regions under the SRES A2 and the SRES B1 emission

scenarios. N is the nutrient concentration, P is the phytoplankton

concentration, Z is the zooplankton concentration, D is the detritus
concentration, S is the phytoplankton mean size, and V is the size variance or
functional diversity of phytoplankton.
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period, followed by two IPCC scenarios for the 21st century:
SRES A2, a “business-as-usual” scenario in which atmospheric
CO2 reaches 840 ppm by 2100 AD, and SRES B1, a conver-
gent world scenario in which CO2 concentrations stabilize at
about 540 ppm by 2100 AD (Nakićenović et al., 2000). A more
detailed description of the simulations is given by Steinacher et al.
(2009).

From the comprehensive NCAR model output, we use MLD,
SST, PAR, and N0, which are available at a monthly resolution
on a grid with a resolution of 3.6◦ in longitude and 0.8–1.8◦
in latitude. The gridded variables are then spatially averaged
within each region to obtain time series over the period of the
simulation for both scenarios. PAR (in W · m−2) is calculated
from the solar heat flux at the ocean surface (in K · cm · s−1)
by applying a conversion factor of 4.1 · 104 J · m−2 · cm−1 · K−1.
Since the biogeochemistry module of the NCAR model is
defined in units of phosphorus, we consider the Redfield N:P
ratio of 16:1 whenever a conversion to units of nitrogen is
needed.

2.4. ANALYSIS OF ANNUAL TRENDS OF P, S, AND V
We apply a Principal Component Analysis, PCA (Mantua, 2004)
to conduct an exploratory statistical analysis with annually
averaged variables of the size-based model and the environmental
forcing. With the PCA we identify the general patterns of vari-
ability from a number of time series by means of reducing the
dimensionality of the dataset into a small number of uncorrelated
principal components (von Storch and Zwiers, 2001). Typically,
the first principal component has the highest eigenvalue and, as
new orthogonal components are added, the eigenvalues of new
components decrease. These eigenvalues are interpreted as the
amount of variability explained by each principal component
(Supplementary Figure 1). Another important output of the PCA
is represented by the eigenvectors or loadings, which reflect the
relative importance of each variable on each principal compo-
nent. PCA has been widely used to explore multivariate time
series in particular with respect to the detection of regime shifts
(e.g., Hare and Mantua, 2000; Mantua, 2004; Weijerman et al.,
2005; Schlüter et al., 2012).

FIGURE 3 | Scores on the first principal component for temperate and tropical regions under the SRES A2 and SRES B1 emission scenarios.

FIGURE 4 | Loadings on the first principal component for temperate and tropical regions under the SRES A2 and SRES B1 emission scenarios.
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In addition, we use probabilistic models based on the gen-
eralized least squares method to analyse the long-term trends
of the state variables that describe structure and diversity of
the two phytoplankton communities (i.e., total biomass, mean
trait, and trait variance). We adopted this statistical approach,
because it allows us to correct the data for temporal correla-
tions and for unequal variances (Zuur et al., 2009). Each fit
is evaluated by a visual inspection of the residuals. To better
understand the long-term trends of phytoplankton community
structure and diversity under the two emission scenarios we sub-
divide the time series into three main periods: (1) past, which
corresponds to the period from 1850 to 2000 and is the same
for both scenarios, (2) future-A2, which corresponds to the
period from 2000 to 2100 of the business as usual scenario, and
(3) future-B1, which corresponds to the period from 2000 to
2100 of the convergent world scenario. First, the probabilistic
models are fitted to each of the three periods and two regions
using the variables P, S, and V as response variables and using
time as the explanatory variable. Second, we perform an anal-
ysis of variance (ANOVA) with the slopes of each probabilistic
model as response variables, and periods (past, future-A2, and
future-B1) and regions (temperate and tropical) as explanatory
variables.

3. RESULTS
Figure 1 summarizes all the environmental variables used to force
our size-based model. The emission scenarios are identical in the
period from 1850 to 2000, but differ from 2000 to 2100. The
strongest difference between the two scenarios is in SST, whereas
the other three environmental variables show similar variability
(Figure 1).

The resulting simulations reveal no major differences in phy-
toplankton community composition between emission scenar-
ios (Supplementary Figure 1). Strong differences are observed
between regions. Our results show that the variability is stronger
in the temperate region than in the tropical region (Figure 2).
In the temperate region, the projected increase in SST leads to
a more stratified ocean, which is expressed by the shoaling of
the MLD (Figure 1). The amplitude of the fluctuations in nutri-
ent concentration reduces after the year 2000. This long-term
decline in nutrient concentration reflects the change exhibited by
the MLD and drives the decreases in P, S, and V. The changes
in total phytoplankton biomass appear to cause a baseline shift
toward smaller concentrations of Z and D. In contrast, the trop-
ical region shows weaker or no trends in all state variables
(Figure 2).

The first principal component explains over 55 % of the
variation in the datasets (Supplementary Figure 1). The scores
on the first principal component of the PCA reveal the exis-
tence of two regimes, which are linked by a rather smooth
transition (Figure 3). While the first regime from 1850 to
approximately 2000 is dominated by negative scores on the
first principal component, the second regime from 2000 to
2100 is characterized by mostly positive scores on the first
principal component (Figure 3). This analysis also reveals that
the environmental drivers of the major mode of variability
represented by the first principal component are tempera-
ture (SST) and nutrient availability, the latter determined by
MLD and N0 (Figure 4). These variables, in fact, have the
highest positive and negative loadings on the first principal
component for both, the two scenarios and the two regions
(Figure 4).

FIGURE 5 | Probabilistic model fits of the annual trends of the

phytoplankton state variables for temperate and tropical regions and for

the three different time periods (i.e., past, future-A2, and future-B1). P is

the phytoplankton concentration, S is the phytoplankton mean size, and V is
the size variance or functional diversity of phytoplankton. The color lines
represent the generalized least square fits for temperate and tropical regions.
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All three periods (i.e., past, future-A2, and future-B1), show
declining trends in both regions (Figure 5). However, there
are no differences in the slopes of the trends (Supplementary
Figure 2), between periods (ANOVA, df: 2, F-value: 1.9542,
p-value: 0.1842) or between regions by periods (ANOVA,
df: 2, F-value: 0.2749, p-value: 0.7643). The only significant
difference in the slopes is between regions (ANOVA, df: 1,
F-value: 10.9999, p-value: 0.0061). The declining trends are
steepest in the future-A2 period (Supplementary Figure 2).
More specifically, the temperate Atlantic appears to be more
sensitive since it will experience the largest decline among
all scenarios in phytoplankton mean size (S) and functional
diversity (V), with approximately −1.8 (μm ESD century−1)
and −3.1 ([μm ESD]2 century−1) (Supplementary Figure 2).
Our results also suggest that the tropical region will be less
affected than the temperate region with less than 0.3 decline
in P (mmol N m−3century−1), S (μm ESD century−1), and V
([μm ESD]2 century−1) (Supplementary Figure 2).

In addition, we performed a sensitivity analysis in which we
varied all the model parameters by ± 25% and quantified the
effect of such change on the annual trends of the three periods
(Figures 6–8). The greatest effects arise in the parameters that
control phytoplankton grazing, i.e., μZ. A decrease in μZ by 25%
produces up to an 1.5-fold decrease in the declining trend of P

and also an increase in the slopes of S and V of, respectively,
6-fold and 3-fold (Figures 6–8). As expected, increasing μZ by
25% causes opposite effects on the slopes of P, S, and V, how-
ever, with a lower magnitude compared to the equivalent decrease
of μZ (Figures 6–8). Another sensitive parameter is the density-
dependent immigration rate (δI), which mainly affects V and S for
the tropical region under scenario B1 (Figures 6–8). Changes in
the light attenuation coefficient kw showed an impact only in the
temperate region under past conditions (Figure 6). This probably
reflects an overestimation of the effects of light attenuation in the
temperate region (see Appendix) due to the weaker stratification
in the past as compared to the future scenarios.

4. DISCUSSION
We used a size-based model to explore the composition of two
different phytoplankton communities (tropical and temperate)
under past environmental conditions and future climate change
scenarios. The model was previously calibrated and tested against
present day observations of nutrient concentrations and phyto-
plankton biomass (see Supplementary Figure 3).

Most projections of the future climate suggest that the world
oceans will become warmer and more stratified than present
(Pachauri and Reisinger, 2007; Steinacher et al., 2010; Reusch
and Boyd, 2013; Wolff et al., 2014). Such warming will likely

FIGURE 6 | Sensitivity analysis of the phytoplankton state variables (P, S,

and V) to ± 25% changes in the values of the model parameters for the

past period. The origin of each panel corresponds to the magnitude of the

slope quantified in Supplementary Figure 2, and the bars represent the effect
of the 25% alterations. For further details on the parameter values used see
Table 1.
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FIGURE 7 | Sensitivity analysis of the phytoplankton state variables (P, S,

and V) to ± 25% changes in values of the model parameters for the

future-A2 period. The origin of each panel corresponds to the magnitude of

the slope quantified in Supplementary Figure 2, and the bars represent the
effect of the 25% alterations. For further details of the parameters used see
Table 1.

lead to a shallower upper mixed-layer and thus to a reduced
nutrient supply from the deep ocean (Steinacher et al., 2010;
Reusch and Boyd, 2013). Our model experiments generally con-
firm this view, but further show that the expected changes will
differ considerably by ocean region. In contrast, the different
future scenarios produce minor changes in the model results
(Figure 1). In our simulations, the temperate region will expe-
rience strongest changes in MLD, SST, and N0 by the year
2100 (Figure 1). These changes will lead to a decline in average
phytoplankton biomass, mean cell size, and functional diver-
sity (i.e., adaptive capacity), see Figure 2. The tropical region
will experience comparatively less environmental changes than
the temperate region (Figure 1) and, consequently, less alter-
ations in phytoplankton community composition (Figure 2).
Contrasting differences in phytoplankton community structure
between tropical and temperate regions are well known biogeo-
graphical features of the modern ocean (Marañón et al., 2001)
and our results suggest that these differences will be maintained
also in the future. Analogously to the results presented here, a pre-
vious multi-species and multi-nutrient modeling study showed
that a surface ocean with less mixing and hence less nutri-
ents will favor smaller phytoplankton species (Litchman et al.,
2006).

Accumulating evidence suggests that a changing climate has
and will have dramatic consequences on the Earth’s biota
(Parmesan, 2006). In planktonic ecosystems, for example,
changes in the environment have entailed shifts in the phe-
nology of phytoplankton (Schlüter et al., 2012) and zooplank-
ton (Schlüter et al., 2010) causing mismatches between trophic
levels and functional groups (Edwards and Richardson, 2004).
The quantitative analysis of the temporal patterns of the two
planktonic ecosystems in the Atlantic Ocean show two appar-
ently distinct regimes, the first from 1850 to 2000 and the
second from 2000 to 2100 (Figure 3). The two regimes are,
however, not separated by an abrupt shift as observed, for exam-
ple, in the Pacific Ocean (Hare and Mantua, 2000), in the
North Sea (Beaugrand, 2004; Weijerman et al., 2005) and in the
German Bight (Schlüter et al., 2008), but are rather linked by
a very smooth transition (Figure 3). Note that the low signal
to noise ratio typical of phytoplankton time-series may hin-
der the detection of patterns or key drivers of change (Winder
and Cloern, 2010). To minimize the effect of potential noise
on our results and to avoid the over-interpretation of short-
term fluctuations, we focused our analyses on long-term trends
(i.e., decades to centuries) of temporally and spatially averaged
variables.
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FIGURE 8 | Sensitivity analysis of the phytoplankton state variables (P, S,

and V) to ± 25% changes in the values of the model parameters for the

future-B1 period. The origin of each panel corresponds to the magnitude of

the slope quantified in Supplementary Figure 2, and the bars represent the
effect of the 25% alterations. For further details of the parameters used see
Table 1.

The quantitative analyses of the long-term trends in the
three macroecological properties show a decline in P, S, and V
(Figure 5), with the major differences arising between regions.
The temperate Atlantic will be the region to experience the
highest rates of decline (Supplementary Figure 2), in terms of
phytoplankton cell sizes and functional diversity. It has been sug-
gested that a changing climate, specifically an increase in SST, will
lead to a dominance of small phytoplankton cells in the oceans
(Daufresne, 2009; Morán et al., 2010). However, other studies
have questioned this conclusion providing empirical evidence for
a stronger effect of nutrients rather than of SST on the size struc-
ture of phytoplankton communities (Marañón et al., 2012). Our
simulations suggest a combined effect of SST and nutrient avail-
ability, with the latter being governed by changes in MLD and N0

(Figure 4). This finding is also consistent with a recent empirical
biogeographical classification of the phytoplankton size distribu-
tion in the global ocean (Acevedo-Trejos et al., 2013) suggesting
that the most parsimonious model of size structure can be defined
by nutrient availability and temperature. Nevertheless, none of
the mentioned theoretical and empirical studies has linked in a
single framework, as we do here, the size composition and the
adaptive capacity of the community to future changes of the
environment.

Our modeling approach focuses on phytoplankton commu-
nity structure and functional diversity and treats zooplankton
as an assemblage of many identical individuals. We thus disre-
gard the variety of different feeding mechanisms in zooplankton
and their potential impact on the phytoplankton community (see
Gentleman et al., 2003, for a review on functional responses of
zooplankton). However, to assess the sensitivity of our results
to this model simplification, we performed an in-depth sensi-
tivity analysis on the role of zooplankton grazing in structuring
the two phytoplankton communities (Figures 6–8). Specifically,
we found that an increase in grazing pressure would exacer-
bate the declining trends in S, and V. Analogously, a decrease
in grazing pressure would attenuate the declining trends in the
two variables. While this finding highlights the fundamental role
of grazing in defining phytoplankton size distributions, a more
detailed description of zooplankton, e.g., including different zoo-
plankton size classes, life stages, feeding preferences, etc. (e.g.,
Banas, 2011; Prowe et al., 2012; Wirtz, 2012a; Mariani et al.,
2013), would probably improve the quality of our projections
(Wirtz, 2012a; Smith et al., 2014). However, an adequate descrip-
tion of the adaptive responses of grazers is still a topic of ongoing
research (Litchman et al., 2013; Smith et al., 2014) and a con-
sistent and well accepted formulation that takes into account all
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relevant zooplankton-phytoplankton interaction processes is still
lacking.

In summary, our study suggests that under a warmer and more
stratified ocean phytoplankton communities will shift toward
smaller mean size and will lose adaptive capacity in the pro-
cess. These changes will be more pronounced in regions with
strong seasonal variations and will be additionally modulated by
potential modifications in grazing pressure.
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APPENDIX
Following the classical approach of Fasham et al. (1990), the effect
of the physical forcing (and therefore the connection with cli-
mate) on the ecosystem is modeled implicitly by the seasonal
dynamics of the upper mixed layer depth M(t), which is applied
as a forcing to the model. h(t) = dM(t)/dt is used to calcu-
late the time rate of change of the upper mixed layer depth.
Material exchange between the upper mixed layer and the bot-
tom layer are typically modeled as two processes (Fasham et al.,
1990; Merico et al., 2004): (1) vertical turbulent diffusion and
(2) entrainment or detrainment caused by deepening or shallow-
ing of the upper mixed layer. Following Fasham et al. (1990) and
Merico et al. (2004), we use the variable h+(t) = max[h(t), 0] in
order to account for the effects of entrainment and detrainment.
Zooplankton organisms are considered capable of maintaining
themselves within the upper mixed layer and thus the simple
function h(t) is used in that case. Diffusive mixing across the ther-
mocline, κ , is parameterized by means of a constant factor. The
whole diffusion term is written as

K = κ + h+

M(t)
. (A1)

The model is based on adaptive dynamics (Wirtz and Eckhardt,
1996; Norberg et al., 2001; Merico et al., 2009). This modeling
approach focuses on a characteristic trait of the phytoplank-
ton community to reduce the complexity of multispecies mod-
els (Merico et al., 2009). A moment closure technique is then
adopted to approximate the whole community dynamics with
three macroecological properties: (1) total biomass, (2) mean
trait, and (3) trait variance, the latter reflecting the functional
diversity of the community (Merico et al., 2009). The considered
trait is phytoplankton cell size, S, which is expressed as Equivalent
Spherical Diameter, ESD, in units of μm. The changes in total
community biomass (P) over time t depend on the mean cell size
S and are described by

dP

dt
= [r(S) + ε]P , (A2)

where ε = 1
2 V ∂2r(S)

∂2S
denotes higher order moments resulting

from the moment closure technique (Merico et al., 2009), with
V indicating the variance of the distribution of cell sizes (see
Equations A9, A10 below). The term r(S) is the net growth rate
of the total phytoplankton biomass, i.e., gains minus losses in P,
which is given by:

r(S) = μP · f(T) · 	(I) · U(S, N) + δI − mP

−μZ · G(S, P) · Z − ν(S) + K , (A3)

where μP is the maximum specific growth rate at temperature
T = 0◦C and f(T) = e0.063·T represents Eppley’s formulation of
temperature-dependent growth. The light limitation term, 	(I),
integrates the photosynthetically active radiation (PAR) I through
the mixed layer by using Steele’s formulation:

	(I) = 1

M(t)

∫ M

0

[
I(z)

Is
· e

(
1− I(z)

Is

)]
dz , (A4)

where Is is the light level at which photosynthesis saturates and
I(z) is the PAR at depth z. The exponential decay of light with
depth is computed according to the Beer-Lambert law with a
generic extinction coefficient kw

I(z) = I0 · e−kw·z , (A5)

with I0 representing light at the surface of the ocean (i.e., z = 0).
Light attenuation is simulated with a constant attenuation coef-
ficient and it is assumed to include the effects of different sub-
stances in the water, such as chlorophyll and other suspended
particles. This means that the effect of chlorophyll concentra-
tion on light attenuation is uniform throughout the year in both
locations. While this may not impinge on the accuracy of our
results in the tropics, because of the relative low and constant
biomass there throughout the year, it may lead to an overesti-
mation of the biomass during high productivity periods in the
temperate region. However, the value of the extinction coef-
ficient that we consider (kw = 0.1 per meter, see Table 1) is
relatively higher, albeit within the range suggested in the liter-
ature (Edwards and Brindley, 1996), than the one used in the
classical approach of Fasham et al. (1990), kw = 0.04 per meter,
and this can partly compensate for the absence of an explicit
self-shading mechanism. Despite the simplicity of the light limi-
tation term, our model is able to reasonably capture the observed
nutrient and phytoplankton seasonal cycles in both regions (see
Supplementary Figure 3).

The nutrient-limited uptake term U(S, N) depends on the
nutrient concentration and scales with phytoplankton cell size:

U = N

N + KN
= N

N + (βU · S
αU )

, (A6)

where βKN and αKN are, respectively, intercept and slope of the
KN allometric function. This empirical relationship is based on
observations of different phytoplankton groups (Litchman et al.,
2007), with the regression parameters rescaled from cell volume
to Equivalent Spherical Diameter (ESD).

The term G(S, P) denotes zooplankton grazing, which is a
function of phytoplankton cell size:

G = S
−1

P
S

+ KP
, (A7)

where KP is the half saturation constant for grazing.
The term ν(S) represents the size-dependent sinking

ν = βν · S
αν

M(t)
, (A8)

where the constants αν and βν are the parameters of the allomet-
ric function proposed by Kiørboe (1993), which transformed here
to obtain units in meters per day.

Finally, the term δI accounts for the dispersal rate of phy-
toplankton (i.e., immigration) into the considered community
(Norberg et al., 2001), mP accounts for all possible phytoplankton
losses other than grazing and mixing.
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The temporal changes in mean cell size are described by the
adaptive dynamics equation

dS

dt
= V

∂r(S)

∂S
, (A9)

where V is the size variance or functional diversity of the com-
munity. The size variance determines the adaptive capacity of
the phytoplankton community and its temporal evolution is
given by

dV

dt
= −V2 ∂2r(S)

∂2S
+

[
δI · P

P
(V0 − V)

]
, (A10)

where V0 is a source of size variance from an immigrating
community outside the modeled region.

Differential equations for nutrients (N), zooplankton (Z), and
detritus (D) complete the model system:

dN

dt
= −μP · f(T) · 	(I) · U(S, N) · P + δD · D (A11)

+K · (N0 − N) + εN,

dZ

dt
= δZ · μZ · G(S, P) · P · Z − mZ · Z2 (A12)

− h(t)

M(t)
· Z + εZ,

dD

dt
= (1 − δZ) · μZ · G(S, P) · P · Z + mP · P + mZ · Z2

−δD · D − K · D + εD, (A13)

where εN = 1
2 V ∂2μP·f(T)·	(I)·U(S,N)

∂2S
P, εZ = 1

2 V ∂2δZ·μZG(S,P)·Z
∂2S

P,

εD = 1
2 V ∂2(1−δZ)·μZG(S,P)·Z

∂2S
P account for higher order moments

resulting from the moment closure technique (Merico et al., 2009)
and N0 is the concentration of nutrients below the mixed-layer.
This variable is a forcing obtained from NCAR model simulations
and changes, therefore, with mixed-layer depth and time.

Note that the only differences between the model applica-
tions to the two regions are represented by the environmental
forcing. Model parameters and model structure (including the
formulation of the size-dependent processes and therefore of the
emerging trade-off) are identical in both cases.

For a detailed description of all the parameters used refer to
Table 1.
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