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Settlement and metamorphosis of marine
invertebrate larvae is an ecological pro-
cess of profound importance to the struc-
ture of benthic marine communities. Yet,
metamorphosis is also a developmental
process and our understanding of the
mechanisms that regulate it remains rel-
atively poor. Over the last 15 years,
a nitric oxide (NO) based signaling
system has emerged as the most phylo-
genetically widespread regulator of set-
tlement and metamorphosis. Among a
sea urchin, three sea squirts, three mol-
luscs, a crustacean, and an annelid, NO
(and often its downstream effector cGMP)
regulates metamorphosis (Froggett and
Leise, 1999; Bishop and Brandhorst, 2001;
Bishop et al., 2001, 2006, 2008; Comes
et al., 2007; Pechenik et al., 2007; Biggers
et al., 2012; Zhang et al., 2012; Romero
et al., 2013). Two important aspects to this
pattern of NO function during metamor-
phosis are that (i) NO always acts as an
inhibitory signal and that (ii) the func-
tionality of NO signaling varies accord-
ing to the settlement ecology of the larva.
Ueda and Degnan’s recent work has chal-
lenged the first pattern and supported the
second.

First, why should NO signaling be
inhibitory in these phylogenetically dis-
parate, morphologically distinct (and, in

some cases, CDB would argue), indepen-
dently evolved larval forms? Based on
a model in which the directionality of
NO signaling during metamorphosis is
stochastic over evolutionary time periods,
there is a small probability, given cur-
rent taxonomic sampling, that all larvae
so far investigated would employ NO in
an inhibitory manner. So either NO sig-
naling during metamorphosis is conserved
because larvae are homologous or because
the use of NO in this manner during meta-
morphosis has been selected repeatedly.
In the foundational study of NO during
metamorphosis of the mud snail Illyanassa
obsoleta Froggett and Leise (1999) hypoth-
esized that the function of an inhibitory
signaling system is to delay the onset of
metamorphosis until chemical inducers
or “cues” are detected, signaling habitats
that are favorable for growth and develop-
ment of the animals (Hadfield and Paul,
2001). Thus, Froggett and Leise provided
a way to think about the directionality of
a signal (i.e., stimulatory or inhibitory)
in the context of a larval behavior that
is presumably ecologically relevant and
adaptive (Pechenik, 1990). It seemed as if
widespread inhibitory NO function could
be placed in the context of an equally
widespread ecological reality.

Nobuo Ueda and Sandie Degnan at
the University of Queensland in Brisbane,
Australia, have shown that NO pos-
itively regulates metamorphosis in the
ascidian Herdmania momus (Ueda and
Degnan, 2013) and, in the present study,
positively modulates (see below for the dif-
ference between a regulator and a mod-
ulator) in the abalone Haliotis asinina.
Therefore, the inhibitory function of NO

in metamorphosis does not appear to be a
fixed character. In this current work, NO
is demonstrated to serve as a necessary
inductive facilitator for metamorphosis
in response to a natural inducer that
is needed to transduce the metamorphic
chemical cue from red coralline algae
Amphiroa. Although in neither study did
the authors test whether NO generators
could antagonize NOS inhibitors (or other
“epistasis”-type experiments) and did not
use a non-enzymatic method of reducing
NO activity, all of their pharmacological
evidence does point to a novel directional-
ity of NO signaling and so is highly notable
in this regard. Interestingly, pharmaco-
logical manipulation of NO levels alone
was not sufficient to induce larval settle-
ment and metamorphosis; NO signaling
could only modulate larval responses to
algal-derived settlement cues. This takes
us to the second emerging aspect of
studies on marine invertebrate metamor-
phic signaling: the relationship between
the function of identified signaling path-
ways and ecological specialization of larval
settlement.

One particular aspect of settlement
ecology concerns differences in the behav-
ior of competent larvae in the absence of
settlement cues, depending upon whether
larvae are settling into specialized niches
or not (Elkin and Marshall, 2007; Toonen
and Tyre, 2007). The “desperate larva”
hypothesis, coined by Toonen and Pawlik
(1994), but informed by earlier seminal
experiments (Knight-Jones, 1953; Wilson,
1953) states that larvae should become
less choosy about where they settle as a
function of time spent in a settlement-
competent state. As a mechanism that
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explains this behavior, NO signaling is
exquisitely suited to this task. The enzyme
NOS consumes L-arginine, the most nitro-
gen rich amino acid, during the produc-
tion of NO; as nutritional reserves decline,
so should NO levels. In most taxa exam-
ined a reduction in NO (or cGMP in some
cases) is sufficient to induce metamorpho-
sis. By contrast, larvae having more spe-
cialized juvenile niches might be expected
to be more selective in their habitat
choices, therefore requiring a more robust
mechanism to delay the onset of meta-
morphosis in the protracted absence of a
settlement cue. To this end, the first evi-
dence for a shift from regulatory to mod-
ulatory NO function was observed with
the nudibranch Phestilla sibogae, a special-
ist carnivore on scleractinian corals in the
genus Porites. In this species manipulation
of NO or cGMP levels alone was not suf-
ficient to induce metamorphosis, but NO
signaling modulated settlement cues ema-
nating from the coral (Bishop et al., 2008).
Romero et al. (2013) showed that among
larvae of the nudibranch Alderia willowi
having low habitat selectivity that, manip-
ulation of NO signaling by lowering NO
levels was sufficient to induce metamor-
phosis while among selective larvae from
the same clutch it was not sufficient. It is
in this context that the results from Ueda
and Degnan are particularly interesting.
Ueda and Degnan have found that Haliotis
asinina prefers a very specific settlement
cue from Amphiroa [but see Gapasin and
Polohan (2005)] and correspondingly, NO
function has shifted from a positive regu-
latory to a positive modulatory role, pro-
viding the third instance of a correlation
between larval selectivity and a shift in NO
function. It would be very interesting to
test the role of NO signaling in a relative to
H. asinina (H. iris, for example) whose lar-
vae were not as selective in their choice of
substrate during settlement (Roberts et al.,
2004) and to extend the present obser-
vations about NO to cGMP. Finally, it
is important, when designating larvae as
having high or low requirements for the
specificity of settlement cue, to determine
larval responses to the protracted absence
of such cues.

Ueda and Degnan analyzed partial
sequence of a cDNA for a presumptive
NOS from H. asinina and determined
that this sequenced showed a high degree

of identity with other invertebrate NOSs,
indicating again the conserved and ancient
use of this enzyme throughout evolu-
tion to control cellular processes. In con-
trast to NOS expression in other lar-
vae where NO serves a negative regula-
tory role, NOS transcription was found
to markedly increase during the meta-
morphic process in these larvae, and was
notably localized to presumptive sensory
cells in the anterior foot of competent
larvae.

Another aspect of this work is the
hypothesized relationship between the
spatial pattern of NOS expression and its
role as either a positive or negative mod-
ulator of metamorphosis. As put forward
by Ueda and Degnan, the three different
regulatory roles for NO in controlling the
metamorphosis of marine larvae appear
to be in operation in gastropod molluscs.
In one role as a negative regulator, as
reported for instance in Ilyanassa obsoleta
and Crepidula fornicata, NOS expression
occurs in the apical sensory organ, a larval-
specific sensory organ that is degraded by
programmed cell death immediately after
metamorphosis (Thavaradhara and Leise,
2001; Gifondorwa and Leise, 2006; Hens
et al., 2006; Pechenik et al., 2007). As
a negative modulator in the nudibranch
Phestilla sibogae, NOS expression occurs
outside of the apical sensory organ in the
cerebral ganglia, pedal ganglia and sen-
sory cells of the foot which become also
part of the adult nervous system after
metamorphosis (Bishop et al., 2008). In
the current work, where NO acts as a
positive facilitator, NOS expression does
not occur in the apical sensory organ
or central nervous system, but rather in
the peripheral neural sensory system of
the larval foot. This positive regulatory
role for NO does not appear to be lim-
ited to the Phylum Mollusca, since Ueda
and Degnan have previously found that
NO acts as a positive facilitator also in
the ascidian Herdmania momus, as men-
tioned. The spatial expression of NOS in
Herdmania was not investigated however,
and this species cannot be considered an
ecological specialist. This apparent corre-
lation between signal directionality and
the relationship of signaling cells to the
whole animal is intriguing, and future
studies may help elucidate any signifi-
cant advantages in having different spatial

NOS expression patterns for negative and
positive regulatory roles of NO.

From Knight-Jones’ and Wilson’s
seminal experiments concerning larval
discrimination (Knight-Jones, 1953;
Wilson, 1953), to Fu-Shiang Chia’s
musings in about “unmasking the meta-
morphic factor” (Chia, 1978), to synthesis
regarding larval competence and delay of
metamorphosis (Pechenik, 1990; Hadfield
et al., 2001) to Toonen and Tyre’s (2007)
and Elkin and Marshall’s (2007) formal
models about larval selectivity during set-
tlement, there has been a long history
of thought regarding ecology, develop-
ment and evolution of larval settlement
and metamorphosis. In keeping with
this tradition, the present work of Ueda
and Degnan has provided some food for
thought and it will certainly be exciting to
see, in future reports, how it all settles out.
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