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Wood sinking into the deep sea is often colonized by species of the bivalve subfamily
Xylophagaidae; specialist organisms that bore into it and digest cellulose with the aid
of symbiotic bacteria. Very little is known about the nature of Xylophagaidae borings,
Xylophagaidae abundances and population size structures, their rates of growth and
their consumption rates of wood. To investigate this, several sets of experimental wood
packages were deployed and retrieved: two sets from two seamount sites on the
Southwest Indian Ridge (732-750 m), one from the Mid-Cayman Spreading Centre in the
Caribbean (4773 m), and three sets from 500 m in the Tongue of the Ocean, Bahamas.
The wood samples were scanned using X-ray micro-computed tomography (micro-CT).
The wood at each deployment site was colonized by a different species of xylophagaid.
Making novel use of micro-CT images, the morphology of intact xylophagaid borings were
shown to resemble Prince Rupert’'s Drops with “drop lengths” varying between species.
Mean sizes of Xylophagaidae and mean minimum growth rates (2.55-8.76 mm year™")
varied among species also. Rates of wood degradation were up to 60 cm?® per year per
100 individuals but in reality, this may have been an underestimate. This analysis has
given insight into the importance of the subfamily Xylophagaidae with regard to wood
remineralization in the deep sea.
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INTRODUCTION

With the exception of sites of autochthonous primary produc-
tion such as hydrothermal vents, the food webs of the deep-sea
floor are ultimately sustained by organic matter from the upper
ocean. Although most allochthonous organic input to the deep-
sea floor is marine in origin, terrestrially-derived materials such
as wood can provide major inputs, particularly at bathyal depths
near forested regions or major river systems. Upon reaching the
deep-sea floor, wood creates ephemeral patchy habitats that host
distinct assemblages of fauna (Turner, 1973). These fauna colo-
nize and congregate around the organic enrichment caused by the
wood, using it as a food source, substratum and shelter (Turner,
1973, 1977; Wolft, 1979). Wood falls also have the ability to sup-
port chemosynthetic animals that are dependent on sulfide-rich
conditions created by anoxia from organic loading of the imme-
diate sediments (Duperron et al., 2008; Bernardino et al., 2010;
Bienhold et al., 2013). Globally, the significance of wood falls
to the overall energy budget of the deep-sea environment and
carbon mineralization on the seafloor is still unquantified (Gage,
2003).

There are few data on the quantities of terrestrial plant mat-
ter entering the oceans worldwide, but it has been sufficient to
allow the evolution of the diverse obligate wood-boring mol-
lusks, the Xylophaga Turton 1822, the Xylopholas Turner 1972,
and the Xyloredo Turner 1972 (Turner, 1955, 1972; Knudsen,
1961). There are more than 55 known species of Xylophagaidae
(Pholadidae, Bivalvia) from around the world at depths from
0 to 7250 m (Knudsen, 1961; Turner, 2002; Voight, 2008, 2009;
Voight and Segonzac, 2012). These opportunists bore into the
wood using the toothed-ridged anterior edge of their shells as
rasps before ingesting the wood particles and storing them in a
caecum (Knudsen, 1961; Turner, 1973; Romey et al., 1994; Distel
and Roberts, 1997). Wood then passes through the stomach and
gut where it is digested with the aid of symbiotic bacteria, which
may be capable of synthesizing enzymes such as cellulases as has
been seen in teredinids (Distel and Roberts, 1997; Yang et al,,
2009). Wood not only provides Xylophagaidae with nutrition but
also shelter (Distel and Roberts, 1997).

Xylophagaidae is the most important subfamily that converts
energy in refractory deep-sea wood and other plant material
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measurements of growth rates and the rates of degradation of
wood by members of this subfamily. We test the hypotheses
that different species found in varying locations have different
growth rates and abundances, and that wood-degradation rates
of xylophagaids vary between wood types, species, and location,
with more wood being degraded per Xylophagaidae individual in
warmer waters.

MATERIALS AND METHODS

EXPERIMENTAL DEPLOYMENTS AND RECOVERIES

Wood samples from the Southwest Indian Ridge (SWIR), the
Mid-Cayman Spreading Centre (MCSC) in the Caribbean, and
the Tongue of the Ocean (TOTO) in the Bahamas were ana-
lyzed. Full experimental protocols for the deployments on the
SWIR and TOTO can be found in Amon et al. (in review) and
Tyler et al. (2007) respectively. At the SWIR, mango wood was
deployed for two years on two seamounts, Atlantis Bank and
Coral Seamount, at ~750 m. At TOTO, spruce and oak planks
(14 x 14 x 1cm approximately) were deployed at ~480-520 m

for ~6 months. Once recovered, the wood was transferred into
buckets of chilled water and photographed. The deployments
from TOTO were fixed in 80% ethanol and deposited in the
Natural History Museum, London after some individuals were
used for reproductive studies. The SWIR deployments were
frozen at —20°C. The wood package deployed at the MCSC
was within 0.5km of the active Beebe Hydrothermal Vent Field
(Connelly et al., 2012) at 4773 m, and consisted of a block of
three planks of pine wood at 20 m off the seafloor on a moor-
ing that also had oceanographic instruments and whale bones
attached. One boring was located on the MCSC deployment,
which was sawn free from the rest of the wood, photographed
and preserved in 100% ethanol. Bottom-water temperature was
recorded at each deployment site (Table1). A combination of
previously-published and unpublished new samples were used
in this study because intact deep-sea wood samples inhabited
by Xylophagaidae are rare and this novel technique would be
better tested using larger sample numbers. The morphology of
Xylophagaidae from each wood location was examined to identify

Table 2 | Micro-CT scanning parameters of all wood samples.

Sample Sample code Voltage Number of Resolution Total volume of
(kV) projection (wm per sample (mm3)
images pixel)
Atlantis Bank, SWIR SWR06 180 3142 0.0762 947145
SWR24 180 3142 0.0860 637386
SWR37 180 3142 0.0913 860650
Coral Seamount, SWIR SWR55 180 3142 0.0898 130213
SWR56 180 3142 0.1006 998641
SWR64 180 3142 0.0742 387103
Beebe Vent Field, MCSC CAYMAN1 180 3142 0.0456 3181
Tongue of the Ocean, Bahamas (TOTO) 1STOAKFEBAUG93_1 190 3142 0.1152 546046
1STOAKFEBAUG93_2 190 3142 0.1152 484910
2NDSPRUCEFEBAUG93_1 180 3142 0.1136 506524
2NDSPRUCEFEBAUG93_2 180 3142 0.1136 421234
2NDSPRUCENOV93APR94_1 180 3142 0.1136 337024
2NDSPRUCENOV93APR94_2 180 3142 0.1136 373467
In all samples, amps were 200 uA and exposure time per projection were 500 ms.
Table 3 | Measurements of the Xylophagaidae populations.
Species Wood Dayson n(numberof Minimum Maximum Mean Modal Mean abundance Mean
seafloor  specimens diameter diameter diameter diameter (individuals minimum growth
measured) (mm) (mm) (mm) (mm) dm3) rate (mmd=")
Xylophaga cf. indica  Mango 756 697 2.04 9.79 5.86 5.13 300 0.008
Xylophaga murrayi Mango 716 87 0.94 8.54 5.31 4.86 17 0.007
Xyloredo cf. nooi Pine 703 1 - - 6.40* - - 0.009*
Xylophaga depalmai Oak 182 1489 0.97 8.80 412 2.26 1446 0.023
Spruce 182 1318 0.28 10.12 4.1 4.78 1445 0.022
Spruce 158 1089 0.50 8.56 413 3.97 1624 0.026

Measurements with an asterisk (*) do not represent a mean measurement but rather are from the only specimen present in that sample. A dash (-) is placed where

population measurements could not be made, as only one individual was present.
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each species at the Natural History Museum, London, by light
microscopy with a Zeiss V.20 stereomicroscope with AxioCam
camera.

MICRO-COMPUTED TOMOGRAPHY AND ANALYSIS OF SCANS
Subsamples were sawn from three pieces of wood from each
of the two SWIR locations to allow the samples to fit into the
scanner. Six whole blocks from the TOTO samples were cho-
sen for scanning. The 13 samples (Tables1, 2) were scanned
using the Nikon HMX ST 225 micro-CT (Nikon Metrology,
Tring, UK). This system is equipped with a detector panel
(2000 x 2000 pixels) with a maximum resolution of 5 pm/pixel
and a maximum energy of 225 kV. A tungsten target source
and a scanning medium of air were used for each scan of the
13 specimens. Individual scanning parameters can be found
in Table 2. Images acquired during the scanning process were
subsequently reconstructed using the software CT Pro (Nikon
Metrology, Tring, UK), which employs a modified version
of the back-projection algorithm created by Feldkamp et al.
(1984). This enabled the production of a volume image file that
was opened in VG Studio Max 2.1 (Volume Graphic GmbH,
Heidelberg, Germany) for each specimen. This program allowed
the creation of a stack of grayscale bitmap images, which
were then imported into the Drishti software suite (Limaye,
2006).

In Drishti, different transfer functions were created for
xylophagaid shell, wood and air based upon the relative X-
ray absorption (a proxy for density) of each. Manual defin-
ing of each transfer function using the “mop carve” function
in Drishti was needed to remove artifacts created during the
scanning process, including all the air surrounding the wood
during the scan. The specimens of Xylophaga depalmai were
not imaged effectively; this may have been as a result of sig-
nificant shell degradation since sampling in 1993/4, thus all
the X. depalmai individual diameters in each piece of wood
were supplied from the study published as Tyler et al. (2007).
Volume measurements of the wood, air in borings, as well as
diameters of every individual Xylophagaidae shell in each sam-
ple were measured using the “get volume” and “path length”
function in Drishti (Tables 2—4). Numbers of individuals mea-
sured per species, as well as minimum growth rates, are also
in Table3. The minimum growth rates of the four xylopha-
gaid species were calculated based on an assumption that set-
tlement occurred on the first day of deployment. Whilst this is
unlikely, it does provide a minimum growth rate that can be
compared across the samples. The individual volumes were cal-
culated manually from the diameters assuming that they were
spherical.

All statistical analyses were performed in SPSS Statistics v.
20.0. The Kruskal-Wallis test was used to measure significant dif-
ferences between Xylophagaidae abundances, sizes and growth
rates for each species. The percentages of total wood volume
bored, xylophagaid population rates of wood degradation and
individual rates of wood degradation for each species were also
compared. Also, temperature was correlated with Xylophagaidae
abundances, sizes and individual xylophagaid rates of wood
degradation.
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RESULTS

COLONIZING XYLOPHAGAIDAE SPECIES AND MORPHOLOGY OF
BORINGS

The wood packages from the two localities on the SWIR were
colonized by two species of Xylophaga: at Coral Seamount,
Xylophaga murrayi Knudsen 1967 (Figures 2A,E, and Table 3)
and at Atlantis Bank, Xylophaga cf. indica Smith 1904 (Amon
etal., in review) (Figures 2D,H, and Table 3). The wood from the
TOTO experiments was colonized by Xylophaga depalmai Turner
2002 (Tyler et al., 2007) (Figures 2B,F, and Table 3). The wood
from the MCSC experiments was colonized by one specimen of
Xyloredo cf. nooi Turner 1972 (Figures 2C,G, and Table 3). The X.
cf. nooi individual was not included in comparisons that consider
the entire population.

Micro-CT revealed a characteristic 3D shape of the xylopha-
gaid borings: an elongated teardrop, which could be described
as akin to a “Prince Rupert’s Drop,” so named for the forma-
tion created by liquid glass dropped into water (Figure 3). There
was however, some variation observed visually between species.
Xylophaga murrayi and X. depalmai both have “Prince Rupert’s
Drop” borings but X. depalmai was larger (Figures 3B,C). The
boring shapes for X. depalmai did not differ between spruce and
oak. Xyloredo cf. nooi has a much shorter drop length (Figure 3D)
whilst the boring of Xylophaga cf. indica has a very elongated
“Prince Rupert’s Drop” (Figure 3E and Table 4). The borings of
Xylophagaidae are distinct from the borings created by terrestrial
insects in wood; a reticulate network of thin tubes of generally
equal width (not tapering to a point) was also revealed by the

FIGURE 2 | Colonizing Xylophagaidae species. (A-D) were imaged
using light microscopy and (E-H) were imaged using micro-CT. (A)
Xylophaga murrayi; (B) Xylophaga depalmai; (C) Xyloredo cf. nooi; (D)
Xylophaga cf. indica; (E) Xylophaga murrayi; (F) Xylophaga depalmai;
(G) Xyloredo cf. nooi; (H) Xylophaga cf. indica. The individual

Xylophagaidae would be better resolved if smaller scans had been
done. Xylophaga depalmai in (F) has not been imaged properly (only
the densest parts of the shell can be seen) and this may be as a
result of shell degradation over time. Scale bars for (A-D) are 2mm
(E-H) are 5mm.

FIGURE 3 | Prince Rupert’s drops and the typical boring morphologies of
colonizing Xylophagaidae species. (A) Three Prince Rupert’s Drops; (B)
Xylophaga murrayi boring imaged using micro-CT, (C) Xylophaga depalmai
boring imaged using micro-CT, (D) Xyloredo cf. nooi boring imaged using
micro-CT; (E) Xylophaga cf. indica boring imaged using micro-CT. The Prince

Rupert's Drop is made from heating glass and allowing it to fall into water
where it cools quickly. The image in (A) is credited to Gary Hodges, courtesy
of The Corning Museum of Glass. All boring openings (B-E) are indicated by
arrows. The transfer functions for Xylophagaidae shells (green) and air (gray)
can be seen in (B-E). Scale bars for (B-D) are 5mm and (E) is 20 mm.
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micro-CT (Figure 4), hypothesized to have been created prior to
deployment.

A characteristic boring produced by Xylophaga murrayi had
a volume of 392.6 mm? and a length of 15.4 mm, for Xylophaga
cf. indica, a volume of 2686.2mm?> and a length of 114 mm,
and Xylophaga depalmai had a typical volume of 617.2mm?>
and a length of 27.6 mm (Figure 3 and Table 4). For Xyloredo
cf. nooi, a volume of 231.0mm> and a length of 12.1 mm
were observed (Figure3 and Table4). All four species’ bor-
ings had apertures less than 1.0mm in diameter, which lead
into much wider borings (Figure3). The borings in each
piece of wood from the SWIR were very similar in orienta-
tion and extended in a similar direction (Figures4-6). The
Xylophaga individuals kept their borings separate and pre-
vented burrows joining, unlike the probable terrestrial wood
infestation (Figure4). Xylophaga specimens within the bor-
ings did not appear to orient themselves in similar ways
(Figure 7).

ABUNDANCE AND POPULATION SIZE STRUCTURE

Abundances of the Xylophaga in the wood from the Bahamas
and SWIR were significantly different (H = 9.346, p = 0.009)
(Table 3). Xylophaga murrayi from Coral Seamount had the
lowest mean abundance with 117 + 99.0 individuals dm™
and Xylophaga cf. indica from the Atlantis Bank had 300 +
114.3 individuals dm~> (Table 3). Xylophaga depalmai in oak
from TOTO had 1446 + 34.8 individuals dm~> while spruce

contained the highest mean abundance, 1484.5 & 259.8 individ-
uals dm™> (Table 3). There was no significant difference among
the TOTO sample sets. A video showing the internal structures of
a piece of wood colonized by X. depalmai can be accessed here:
https://www.youtube.com/watch?v=9G3_qMYL7pM.

There was a significant difference in the mean sizes of
the four species of Xylophaga from all 13 scanned pieces of
wood (H = 9.703, p = 0.021) but not within the populations
of Xylophaga depalmai from different types of wood (Table 3).
The mean diameter of Xylophaga murrayi recorded was 5.31 +
1.6 mm, Xylophaga cf. indica was 5.86 £ 1.5mm and X. depal-
mai had mean diameters of 4.12mm in oak (*1.3mm) and
spruce (£1.5mm) (Table 3). The only specimen of Xyloredo cf.
nooi had a diameter of 6.40 mm (Table 3). The modal diam-
eters differed slightly from the mean diameters (Figure8 and
Table 3). The population structures of X. cf. indica and X. depal-
mai were unimodal suggesting that only one recruitment event
had occurred and was not continuous (Figure8). However,
for X. murrayi, some evidence of a bimodal distribution was
observed in two of the three samples, but this cannot be con-
sidered strong evidence for more than one recruitment event
(Figure 8A).

GROWTH RATES

For Xylophaga murrayi, the bimodal size structure creates the pos-
sibility that more than one recruitment event has occurred, and as
such the minimum growth rates that follow may be inaccurate for

FIGURE 4 | Borings of a population of Xylophaga murrayi. Only the
transfer function for air can be seen in this image. Some of the air
surrounding this piece of wood was purposefully left in to allow the
reader to gauge the shape and size of the wood and the relative

position of the borings within the wood. The thin pipe-like boring
network seen to the left was not created by Xylophaga and may
belong to wood-boring terrestrial insects that attacked the wood when
on land. Scale bar is 30 mm.
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FIGURE 5 | Borings of a population of Xylophaga depalmai. Only
the transfer function for air can be seen in this image. Some of
the air surrounding the piece of wood was purposefully left in to

allow the reader to gauge the shape and size of the wood and
the relative position of the borings within the wood. Scale bar is
30 mm.

some individuals of that species. Statistically, minimum growth
rates of each species were significantly different (H = 9.791, p =
0.020) (Table 3). X. murrayi had a mean minimum growth rate of
0.007 & 0.016 mm d~! (~2.55 mm year™ '), Xylophaga cf. indica
had a mean minimum growth rate of 0.008 #+ 0.008 mm d~!
(~2.92 mm year~!) and the Xylophaga depalmai populations had
a much faster overall mean minimum growth rate of 0.024 mm
d=! (~8.76 mm year_l) (Table 3). This did not differ signifi-
cantly from the growth rates observed for X. depalmai in the
much larger dataset in Tyler et al. (2007) (0.0235 mm d~! for
spruce and 0.0252mm d~! for oak). There was no significant
difference in minimum growth rates of X. depalmai populations
with varying deployment lengths or wood types but Tyler et al.
(2007) did show a variable growth rate depending on the time of
year of deployment. Xyloredo cf. nooi had a minimum growth rate
0f 0.009 mm d~! (3.29 mm year™!) based on a single observation
(Table 3).

WO0O0D CONSUMPTION RATES

Micro-CT data was used to measure the percentage volumes
of the wood consumed by entire Xylophagaidae populations.
The wood bored by Xylophaga murrayi at Coral Seamount
was the least bored (1.43-12.62% in 716 days) (Table4). At
Atlantis Bank, Xylophaga cf. indica consumed 31.16-46.25% of
the wood in 756 days, and at TOTO, Xylophaga depalmai con-
sumed 24.65-50.03% in 158-182 days (Table 4). The percentage
volumes of each block that were made up of borings were signifi-
cantly different between the three Xylophaga species (H = 6.231,
p=0.044).

The maximum rate of wood degradation by the Xylophaga
murrayi population was 6.57% per year of deployment (Table 4).
This is equal to an average value of 0.2351 4 0.1186 cm® being
degraded per year per individual of X. murrayi, or ~20 cm?® of
wood being consumed per year by 100 individuals (Table 4).
The maximum rate of wood degradation by the Xylophaga cf.
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FIGURE 6 | Borings of a population of Xylophaga cf. indica. Only the transfer function for air can be seen in this image. The borings are not as easily
distinguished, as the air in the borings was not well defined due to the wood being highly degraded to pulp. Scale bar is 30 mm.

indica population was 22.26% per year (Table 4). This is equal
to an approximate average value of 0.6052 £ 0.0759 cm® being
degraded per year per individual of X. cf. indica or 60cm> of
wood being consumed by 100 individuals per year (Table4),
which is approximately three times the rate of consumption by
X. murrayi. These values for X. cf. indica, however, are prob-
ably underestimates as a result of the limitation explained in
the Discussion. The mean rate of wood degradation per indi-
vidual of Xylophaga depalmai per year was 0.084% from oak
and 0.150% from spruce (Table4). The maximum volume of
wood that could be degraded in 6 months by the population
of X. depalmai would be 51.88%, resulting in the wood being
completed degraded before a year had elapsed (Table 4). Blocks
deployed for 12 months in TOTO had totally disintegrated at the
end of the deployment (Young and Tyler, unpubl. data). This is
equal to an approximate average value of 0.4380 + 0.1440 cm®
being degraded per year per individual of X. depalmai in oak
(or 43cm® per year per 100 individuals approximately) and
0.6040 4 0.108 cm?® in spruce (or 60 cm® per year per 100 indi-
viduals) (Table 4). The rates of wood degradation for each block
were significantly different between the three species’ populations
(H = 9.346, p = 0.009), as well as the approximate rates of wood
degradation for each individual Xylophaga for the three species
(H = 6.846, p = 0.033).

Mean xylophagaid diameter, mean xylophagaid abundance
and mean volume of wood bored per xylophagaid individual
per year for each species in this study were correlated with the
temperature at the corresponding sample site. There was a weak
correlation between mean size and temperature (r = —0.571,
p = 0.042) but there were strong significant correlations between
temperature and mean abundance (r = 0.770, p = 0.003) and
mean volume of wood bored per individual per year (r = 0.797,
p =10.002).

DISCUSSION

DISTRIBUTION, BODY SIZE, SETTLEMENT AND GROWTH RATES OF
XYLOPHAGAIDAE

The Xylophaga species colonizing the deployments in the SWIR
have each been found once previously in the Indian Ocean. The
localities of Xylophaga murrayi and Xylophaga cf. indica from
this present study therefore extend their geographic ranges within
the Indian Ocean, increase their depth ranges by ~400 m, and
also extend the temperature range for X. murrayi (4.3-12.9°C)
(Knudsen, 1961, 1967). Xylophaga depalmai was described from
off Florida but is now known to inhabit depths of 30-520 m from
the Bahamas to Massachusetts, USA (Turner, 2002; Tyler et al.,
2007). Xyloredo nooi was described from the Bahamas at 1737 m
(Turner, 1972).
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FIGURE 7 | Xylophaga cf. indica population in situ. Only the transfer function for Xylophaga shells can be seen in this image. Scale bar is 30 mm.

With regard to body size as measured by shell diameter, known
dimensions of the single specimen of Xylophaga murrayi recorded
by Knudsen (1967) (5.0 x 5.6 x 5.7 mm) were similar to those
recorded during this study. The one specimen of Xylophaga cf.
indica observed by Knudsen (1961) was almost twice as large
as many of the specimens observed during our study (12 mm
diameter compared to 5.13 mm). The type specimen of Xylophaga
depalmai described by Turner (2002) had a diameter of 9.8 mm,
but Tyler et al. (2007) and this study recorded modal diame-
ters between 2.26 and 4.78 mm. Recorded sizes of Xyloredo nooi
are slightly larger than that observed here. The absence of a
calcareous lining in the boring and the smaller size indicate
that this individual may have been a young specimen (Turner,
2002). X. depalmai had the smallest sizes of the four species,
which may be as that experiment had the shortest deployment
time.

Previous studies have shown species of Xylophaga to have syn-
chronous recruitment (Turner, 1973; Berg et al., 1987), and the
unimodal size-frequency distributions of Xylophaga cf. indica and
Xylophaga depalmai in our deployments are consistent with such
a recruitment pattern. For Xylophaga murrayi, the evidence is
less certain as there are two distinct peaks in the size distribu-
tion for two of the three blocks examined, perhaps representing
two synchronous events. It is noteworthy that the SWIR deploy-
ments had been on the seafloor for two years, compared with six
months for the Bahamas deployments. Tyler et al. (2007) showed
that there was only one recruitment event despite the X. depalmai

population reproducing, suggesting that zygotes were advected
away from the parents.

Xylophaga murrayi from Coral Seamount (SWIR) had the
lowest mean abundance (117 individuals dm=3) of all three
Xylophaga species (excluding the Xyloredo individual) whereas
Xylophaga cf. indica from the more northerly Atlantis Bank
(SWIR) had more than double the abundance (300 individ-
uals dm=®) of X. murrayi. This may have been as a result
of environmental setting: the deployment sites on the two
seamounts had different substratum types and physical, chemical
and biological oceanographic parameters, especially temperature
(Rogers et al., 2012). Warmer temperatures at Atlantis Bank may
have been more conducive to recruitment than the colder tem-
peratures at Coral Seamount. Predation or differing larval supply
to each seamount could have also resulted in these differences.
Xylophaga depalmai had the highest abundance of all the locali-
ties (~1500 individuals dm~3), approximately five times higher
than X. cf. indica and 15 times higher than X. murrayi. There
was no difference in X. depalmai abundances by wood type or
deployment length, as was seen by Haderlie (1983).

There was only one specimen of Xyloredo cf. nooi recovered
from the deployment in the MCSC. This was initially thought
to be as a result of the mooring design, which was dictated by
the requirements for suspended oceanographic instruments: the
wood was suspended 20 m above the seafloor and hence poten-
tially into a region of the water column with fewer Xylophagaidae
larvae (Haderlie, 1983; Turner, 2002). However, Romano et al.
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FIGURE 8 | Population structure of three Xylophaga species. (A) Size
class graphs for Xylophaga murrayi; (B) Xylophaga depalmai; (C)

Xylophaga cf. indica. The three samples displayed in (A) and (C) are
replicates whereas the six samples in (B) have had variables altered;
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samples in (B) are labeled according to wood type (oak or spruce)
and then the deployment length (182 or 158 days). The Xylophaga
population sizes in the scanned pieces of wood for each species are
indicated as n.

(2013) have shown that wood suspended 20 m above the seafloor
can be colonized heavily by Xylophaga, although that study was
conducted in a submarine canyon, which could have greater
amounts of turbulence than in the MCSC. The height that
Xylophagaidae larvae are able to swim up into the water col-
umn may differ according to the species present and the depths
of deployments (Romano et al., 2013). The lack of prolific set-
tlement at 4773 m in the MCSC is probably not a result of the
extreme depth, as other xylophagaids (Xylophaga clenchi, 4862 m
and Xylophaga abyssorum, 3950 m) have been found at similar
depths nearby (Turner, 1955, 2002; Voight, 2009).

Xylophagaidae are known to have very rapid growth
rates when compared with other non-chemosynthetic deep-sea
bivalves (e.g., Tindaria callistiformis = 8.4mm/100 years)
(Turekian et al., 1975). Xylophaga murrayi, Xylophaga cf. indica
and Xyloredo cf. nooi had similar minimum growth rates but
Xylophaga depalmai grew approximately three times faster (Tyler
et al.,, 2007). The difference in growth rates between X. depal-
mai and the other species of Xylophagaidae in this study may
be explained by the S-shaped growth curve (Romey et al., 1994).
As X. depalmai were growing for a maximum of 158-182 days,
whereas the other species were growing for a maximum of 756
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FIGURE 9 | Cross-section through a piece of wood deployed at Atlantis
Bank, SWIR. This image shows a problem faced when using micro-CT to
estimate volume of unbored wood in samples that contain a large amount
of wood pulp (dark gray) created during the Xylophagaidae boring process.
The outlines of burrows in unbored wood can clearly be seen, as well as
the air (black) and Xylophaga indica shells (white).

days, the Bahamian species may still have been in the rapid
growth phase rather than the plateau phase as with the other
species. Romano et al. (2013) observed the mean growth rate
was 0.070 mm d~! in the first three months of deployment, but
then slowed in the next nine months to 0.021-0.016 mm d~'.
Xylophaga atlantica has growth rates that differed with crowd-
ing: 0.085 mm day~! in individuals that settled at the deployment
beginning and 0.031 mm day~' in individuals that settled one
year after deployment (Romey et al., 1994).

THE EFFECT OF XYLOPHAGAIDAE ON WOO0D

The shape of xylophagaid borings is very characteristic, and clos-
est to the shape of the “Prince Rupert’s Drop,” however, our study
has also shown that the borings of different species vary in mor-
phology and size. Volumes of xylophagaid borings have not been
reported previously but lengths have: Turner (1973) reported 20-
mm burrows in an undescribed Xylophaga sp., comparable with
the lengths observed in Xylophaga murrayi and Xylophaga depal-
mai. Turner (1973) however, proposed overcrowding to explain
these burrow sizes; that may be the case for X. depalmai but not
for X. murrayi in this study. Turner (2002) noted that Xylophaga
profunda had borings of 45-50 mm length or approximately twice
the shell depth, fitting in the middle of the range of boring sizes
observed in this study. Dons (1940) observed similar sized borings
(50 mm) in Xylophaga dorsalis.

How much wood can Xylophagaidae eat? This study has
demonstrated the variability in the rates of wood degradation
by xylophagaids, however we are unsure whether this is as a
result of intrinsic variables relating to the species themselves
(e.g., metabolic rates) or extrinsic variables (e.g., wood hard-
ness, wood size and shape etc.). The percentage of wood bored
by the populations of each Xylophaga species was related to the
abundance of animals and may also be related to different-sized
wood blocks with regard to surface area to volume ratios, which
will affect levels of Xylophaga recruitment. Xylophaga murrayi

had 14-26 individuals present in each sample and this corre-
sponded to 1-13% of wood being bored. Xylophaga cf. indica
had 203-239 borings in each sample corresponding to 31-46% of
wood being bored. However, Xylophaga depalmai had the high-
est frequency of borings (457-776 borings) but the amount of
wood consumed (25-50%) was similar to that of X. cf. indica.
This was normalized by calculating the mean individual bor-
ing rate per day for each species, and it was then apparent that
per individual, X. cf. indica was the most efficient borer and
X. depalmai had the highest percentage of wood bored because of
the large population size. An X. depalmai individual could bore
0.4380 cm® in oak and 0.6040 cm® in spruce and X. cf. indica
individual bored 0.6052cm?® in a year (though this was proba-
bly an underestimate). An individual of X. murrayi was able to
bore 0.2351 cm® of wood in a year. Even though calculations show
individual boring efficiency was only marginally higher in X. cf.
indica than X. depalmai, the figure may in fact be much higher due
to methodological limitations after visual inspection of the wood.

After observing the wood and the micro-CT scans, we believe
that the percentages of wood bored by Xylophaga cf. indica are
underestimated. The wood inhabited by X. cf. indica was so
heavily bored that the blocks were disintegrating and could be
crushed by hand, whereas the wood bored by Xylophaga depal-
mai had many apertures covering the surfaces but was still solid.
This would indicate that the percentage volume bored by X. cf.
indica (46%) should be much higher than X. depalmai (50%).
This inaccuracy may have been caused by the inability of the
micro-CT scanner to distinguish between wood pulp within bur-
rows created by the boring activity of X. cf. indica and solid
unbored wood, resulting in much higher volumes of “solid” wood
being recorded (Figure 9). The borings (shown as air) created by
Xylophaga murrayi and Xylophaga depalmai were well defined and
did not contain wood pulp, whereas those air spaces created by
X. cf. indica appear to be more “rugged” indicating the presence
of small particles of wood pulp instead of the smooth bor-
ing edges (Figures 4-6, 9). Similar fast consumption rates have
been observed in previous studies: Turner (1973) noted wood
blocks disintegrating while being collected by DSV Alvin after
104 days off Massachusetts, and Haderlie (1983) noted panels
disintegrating after 4-6 months of deployment.

A positive relationship between water temperature, abundance
and wood consumption was observed. At the coldest sites (Coral
Seamount and MCSC), the wood was the least heavily colo-
nized and bored. Warmer temperatures may be more conducive
to recruitment and survival of Xylophagaidae larvae account-
ing for the higher degradation rates in Xylophaga cf. indica and
Xylophaga depalmai. Metabolic rates of animals are also known
to be higher in warmer temperatures, which may be a factor in
the higher degradation rates in those two species. Recent obser-
vations of the absence of wood-eating fauna such as Xylophaga
from Antarctic waters (Glover et al., 2013) are also supportive of
this, although the authors hypothesized that this was due to lack
of larval input rather than cold temperatures.

CONCLUSION

Micro-CT has provided a new, non-destructive method to gain
insight into Xylophagaidae ecology and their use of wood
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as a resource, including quantitative measurements of their
wood degradation rates. This study has also reaffirmed that
Xylophagaidae are keystone species in wood-fall ecosystems and
are vitally important in the remineralization of wood in the deep
sea. If future studies can be directed into estimating how much
wood enters the deep sea and assessing its importance as a food
resource, our data can be used to directly estimate the overall rem-
ineralization rates for terrestrial wood inputs in deep-sea areas
with known presence of Xylophagaidae.
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