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Seagrass ecosystems provide numerous ecosystem services that support coastal

communities around the world. They sustain abundant marine life as well as commercial

and artisanal fisheries, and help protect shorelines from coastal erosion. Additionally,

seagrass meadows are a globally significant sink for carbon and represent a key

ecosystem for combating climate change. However, seagrass habitats are suffering rapid

global decline. Despite recognition of the importance of “Blue Carbon,” no functioning

seagrass restoration or conservation projects supported by carbon finance currently

operate, and the policies and frameworks to achieve this have not been developed.

Yet, seagrass ecosystems could play a central role in addressing important international

research questions regarding the natural mechanisms through which the ocean and

the seabed can mitigate climate change, and how ecosystem structure links to service

provision. The relative inattention that seagrass ecosystems have received represents

both a serious oversight and a major missed opportunity. In this paper we review the

prospects of further inclusion of seagrass ecosystems in climate policy frameworks,

with a particular focus on carbon storage and sequestration, as well as the potential for

developing payment for ecosystem service (PES) schemes that are complementary to

carbon management. Prospects for the inclusion of seagrass Blue Carbon in regulatory

compliancemarkets are currently limited; yet despite the risks the voluntary carbon sector

offers the most immediately attractive avenue for the development of carbon credits.

Given the array of ecosystem services seagrass ecosystems provide the most viable

route to combat climate change, ensure seagrass conservation and improve livelihoods

may be to complement any carbon payments with seagrass PES schemes based on the

provision of additional ecosystem services.

Keywords: blue carbon, carbon sequestration, coastal management, marine conservation, payments for

ecosystem services, poverty alleviation
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Introduction

Seagrasses represent a diverse and globally distributed group of
aquatic flowering plants (angiosperms) with up to 76 species
occurring in boreal, temperate, and tropical waters (Green
and Short, 2003). Seagrass meadows are commonly dominated
by a single species, although in tropical regions meadows
comprising 12 distinct species have been recorded. They are often
significant or dominant primary producers, supporting local
food-webs and driving local nutrient cycles (Howard et al., 1989;
Hemming and Duarte, 2000; Gullström et al., 2008). Seagrass
meadows have evolved important physiological, morphological
and ecological adaptations to cope with the range of coastal
marine environments they inhabit, with the spatial distribution
of seagrass meadows heavily influenced by environmental factors
such as light, temperature, salinity, nutrient availability, and wave
action (Hemming and Duarte, 2000; Orth et al., 2006). However,
the shallow coastal habitat colonized by most seagrass meadows
means they are especially prone to significant human-related
disturbance (Waycott et al., 2009).

Human actions provide a triumvirate of environmental,
biological and climatological stressors that act across spatial
and temporal scales delivering locally-specific impacts (Orth
et al., 2006). Drivers of seagrass ecosystem decline include:
eutrophication and solid waste disposal (nutrient pollution);
aquaculture; thermal pollution; physical alteration or habitat
damage (via dredging, coastal infrastructural developments,
land reclamation, and mechanical destruction); disease spread
and invasive species introductions; climate change; over-fishing;
overexploitation; and land-runoff from deforestation, mining
and agriculture (Duarte, 2002; Erftemeijer and Lewis, 2006; Orth
et al., 2006; Waycott et al., 2009; Short et al., 2011; Zuidema
et al., 2011; Hicks and McClanahan, 2012; Cullen-Unsworth and
Unsworth, 2013; Cullen-Unsworth et al., 2014; Baker et al., 2015).

Over several decades the global integrity of seagrass
ecosystems has been seriously undermined by business-as-usual
approaches to coastal development (Duarte, 2002). Occurrences
fuelled by increasing population densities in coastal regions,
which are about three times higher than the global average
and increasing (Small and Nicholls, 2003). In some cases rapid
population growth and urban expansion has shifted farming
practices toward increased agricultural output leading to the
persistent eutrophication of coastal lagoons and reduced seagrass
biomass (Rivera-Guzmán et al., 2014). Similarly, nutrient loading
and sedimentation have markedly reduced the extent of several
seagrass meadow sites in the Western Pacific (Short et al.,
2014).

Globally, 24% of seagrass species are now classified as
threatened or near threatened on the IUCN’s Red List (Short
et al., 2011). Estimates of the rate of seagrass decline have
increased over the last 70 years, from 0.9% yr−1 prior to
1940 rising to 7% yr−1 since 1980 (Waycott et al., 2009;
Fourqurean et al., 2012; Duarte et al., 2013a). The global decline
of seagrass ecosystems threatens to exacerbate climate change
(Duarte et al., 2010; Kennedy et al., 2010; Fourqurean et al.,
2012; Lavery et al., 2013), undermine the supply of a range
of other ecosystem services (Bujang et al., 2006; Orth et al.,

2006; Waycott et al., 2009; Short et al., 2011; Cullen-Unsworth
and Unsworth, 2013) and consequently detrimentally affect
subsistence livelihoods (Unsworth and Cullen, 2010; Nordlund
et al., 2011).

This reality reflects the complexity of seagrass ecosystems,
particularly the connections seagrass meadows have with
marine and terrestrial systems, and therefore the difficulties
and challenges associated with their management, which are
embedded within broader coastal and ocean management issues
(Rudd and Lawton, 2013). For example, in a recent global ocean
research priorities exercise (Rudd, 2014) several top-ranked
priorities had implications for seagrass ecosystems, including:
“greenhouse gas flux” (7th); “climate change mitigation
and manipulation” (8th); “ecosystem structure to service
linkages” (16th); “upland hydrology effects on oceans” (24th);
“coastal hazard management” (35th); “ecosystem management
alternatives” (40th); and “integrated upland coastal management”
(43rd). Our view is that research is needed on multiple fronts to
create enabling conditions and the evidence base needed to craft
innovative new policy tools for conservation and mitigating the
potential adverse effects of climate change.

Our purpose here is to summarize the prospects for
using new approaches to aid seagrass conservation. This will
help address key coastal and ocean research questions, and
provide substantive direction on future seagrass research needs.
We address these issues in the context of incorporating
seagrass habitats into climate change mitigation strategies jointly
focused on ecosystem service provision, carbon management
and livelihood support. In particular, we analyse prospective
financing options in relation to carbon management, alongside
other investment opportunities for including seagrass meadows
into incentive-based mechanisms (e.g., PES) through a co-benefit
and bundled ecosystem service approach. In so doing we consider
science, policy, and governance perspectives acknowledging
the important barriers and challenges existing across those
domains.

We examine five key issues. In Section Seagrass Ecosystems
and Ecosystem Services, we summarize ecosystem services (ES)
provided by seagrass ecosystems and the salient information
needed concerning these ES to develop incentive schemes.
In Section The Value of Ecosystem Services provided by
Seagrass Ecosystems, we ask how ecosystem service valuation
information could be applied to design and implement new
policy innovations. In Section Policy Frameworks for Blue
Carbon management, we examine the prospects for seagrass
carbon finance based on current climate policy frameworks. In
Section Seagrass Habitats: Prospects for PES, we broaden the
scope to financing instruments that could be developed based
on the multiple ES that seagrass ecosystems provide. Lastly,
in Section Possibilities for Implementing Seagrass Conservation
Mechanisms, we summarize the key design, implementation,
and governance issues that must be addressed to bring
functioning seagrass PES schemes to fruition. In addition,
we highlight the relevant ocean priority research questions
that relate to each stage (Rudd, 2014), setting our seagrass-
oriented research in the broader context of ocean research
prioritization.
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Seagrass Ecosystems and Ecosystem
Services

Seagrass ecosystems provide supporting, regulating,
provisioning, and cultural ecosystem services (Barbier et al.,
2011; Raheem et al., 2012; Cullen-Unsworth and Unsworth,
2013). It is important to emphasize that the different lineages
and species of seagrass will differ to some extent in the number
and magnitude of ES they provide, for example, the level of
organic carbon present in living biomass and seagrass meadow
sediments is affected by species differences (Fourqurean et al.,
2012) as are the fish community assemblages seagrass meadows
support (Rotherham and West, 2002). However, our purpose
in this section is to provide a brief outline of the main ES that
are generally attributed to seagrasses in the literature, and to
highlight the information that is necessarily required about
each of these ES for them to be included in an incentive-based
payment mechanism (Table 1). We do not provide a species
by species breakdown of seagrass ecosystem services provision,
partly because much of this information remains to be obtained
(this is what Table 1 to some extent addresses) but it would also
be beyond the scope of the present review.

Regulating Services: Climate Regulation
Historically, seagrass meadows had been virtually ignored in
global carbon budgets (Duarte et al., 2005). More recently
their role in combating climate change through carbon storage
and sequestration has become more clearly recognized, while
simultaneously the spatial extent of seagrass meadows has
continued to decline (Duarte et al., 2010, 2013a; Kennedy
et al., 2010; Fourqurean et al., 2012; Lavery et al., 2013).
Although a small fraction (18 to 60 × 106 ha) of the world’s
ocean area, seagrass meadows are “responsible for 3 to 20% of
the global carbon sequestration in marine sediments” (Duarte
et al., 2013a, p. 32) and store 10% of annual buried organic
carbon (Corg) (Fourqurean et al., 2012; Pendleton et al., 2012).
Consequently, seagrass ecosystems play potentially central roles
in how oceanic ecosystems can mitigate climate change, a
question ranked 8th in global importance by marine scientists
(Rudd, 2014).

Seagrass meadows are highly productive systems, especially
in Indo-Pacific regions, and provide habitat for diverse
communities (Short et al., 2011). However, worldwide, seagrass
standing biomass is small (76–151 Tg C) relative to the biomass
of the vegetation in other coastal ecosystems (Fourqurean et al.,
2012). Nonetheless, the high productivity of seagrass meadows,
with potential net community production (NCP) of 6.7 t C
ha−1 yr−1 (several times higher than NCP rates associated with
Amazonian forests and North American wetlands), contributes
significantly to their carbon sink capacity (Duarte et al.,
2010). Approximately 20–60% of this aboveground productivity
derives from the autotrophic epiphytes that seagrass meadows
support (Duarte et al., 2013a). Moreover, seagrass meadows trap
allochthonous material, including large amounts of particulate
carbon, which combined with their ability to bury carbon enables
seagrass meadows to store large amounts of carbon (Duarte et al.,
2013a).

Carbon stored belowground, as dead roots and rhizomes
and as Corg, may be stable for millennia (Duarte et al., 2010,
2013a). However, the amount of Corg locked beneath seagrass
beds varies considerably according to the interplay of different
abiotic and biotic drivers, with the result that in some cases
deposits of organic-rich sediments beneath seagrass meadows
can be up to 11m thick (Duarte et al., 2013a). In addition, most
seagrass production (approximately 80%) is not consumed by
herbivores and may therefore be buried, where a combination of
low nutrient content and anoxic sediment conditions contributes
to low rates of remineralization aiding long-term storage (Duarte
et al., 2013a). Burial rates are therefore somewhat difficult to
estimate; however, the most robust data suggests mean local Corg

burial rates of 1.2–1.38 t C ha−1 yr−1: equivalent to 30–50% of
NCP (Kennedy et al., 2010; Duarte et al., 2013b). Nevertheless,
others (Siikamäki et al., 2013) have suggested amuch lower burial
rate, equivalent to 0.54 t C ha−1 yr−1.

Globally, the organic carbon that accumulates in the
sediments below seagrass meadows is much greater (4.2–8.4 Pg
C) than the biomass (Fourqurean et al., 2012). However, the
areal extent of seagrass meadows is poorly mapped, meaning
these estimates remain highly uncertain (Duarte et al., 2013b;
Lavery et al., 2013). Further uncertainties arise from the fact that
some 50% of below-ground carbon derives from autochthonous
production while almost 50% is contributed from phytoplankton
and terrestrial sources (Kennedy et al., 2010; Duarte et al.,
2013a). Indeed, significant quantities of carbon are also exported
away from seagrass meadows to adjacent areas, although the
fate of this carbon is poorly understood (Duarte et al., 2010,
2013a).

Despite the uncertainties, alongside the lack of attention
given to the potential implications of extensive conversion of
standing carbon pools beneath vegetative coastal ecosystems
more generally, it is clear that seagrass meadows constitute an
important global carbon sink whose continued loss threatens
to exacerbate climate change (Duarte et al., 2010; Pendleton
et al., 2012). Indeed, global carbon emissions maybe enhanced
by an additional 3–19% from the destruction of vegetative
coastal ecosystems (Pendleton et al., 2012). Based on current
assessments seagrass biomass loss may release between 11
and 23 Tg C yr−1 into the ocean-atmosphere system, and
a further 63–297 Tg C yr−1 into the ocean-atmosphere CO2

reservoir through the oxidization of the underlying sediment
(Fourqurean et al., 2012). Additionally, seagrass loss reduces
the overall carbon accumulation rate (equivalent to between
6 and 24 Tg C yr−1). Collectively, this represents considerable
CO2 emission potential (131–522Mg CO2 ha−1), a figure
comparable to roughly 10% of that emitted annually from land-
use change, with associated economic costs approaching US$1.9
to 13.7 billion yr−1 (Fourqurean et al., 2012; Pendleton et al.,
2012).

Regulating Services: Erosion and Natural Hazard
Regulation
Coastal vegetated wetlands such as seagrassmeadows can provide
effective natural protection from the destructive powers of storms
and wave action (Barbier et al., 2008; Bouma and Amos, 2012;
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TABLE 1 | Seagrass ecosystem services and the corresponding information needed to contribute toward incentive scheme development.

Ecosystem Service What we need to knowa

Climate regulation (carbon

storage and sequestration)

(a) The spatial distribution, density and species assemblage of seagrass meadows. Two relatively accurate and reliable means of

achieving this are:

• Acoustic side scan sonar which is useful up to 25m depths and has been used to map seagrass communities in the

Mediterranean (e.g., Sánchez-Carnero, Rodríguez-Pérez, Couñago, Aceña, 2012; Montefalcone et al., 2013).

• Remote sensing, for example, Landsat 5 TM and 7 Enhanced Thematic Mapper, which is more appropriate for shallow

waters of between 2 and 5m and has been used in Australia (e.g., Dekker et al., 2005; Phinn et al., 2008), Zanzibar (e.g.,

Gullström et al., 2006), and the Coral Triangle (Torres-Pulliza et al., 2013)

(b) Assessment of carbon stocks, rate of accumulation (e.g., Fourqurean et al., 2012; Duarte et al., 2013a; Macreadie et al.,

2014), in particular:

• Belowground biomass and soil: soil depth (thickness of deposit), dry bulk density and organic carbon content

(Fourqurean et al., 2012)

• Aboveground biomass: represents only ∼0.3% of total organic carbon stock (Duarte and Chiscano, 1999)

•Accumulation rate: direct measurement, radiocarbon, 210Pb, soil elevation (Duarte et al., 2013a)

Erosion and natural hazard

regulation (coastal and

shoreline protection)

(a) Local vegetative characteristics such as canopy height, shoot density and below-ground biomass (e.g., Bouma and Amos,

2012; Christianen et al., 2013; Ondiviela et al., 2014)

(b) Bulk density, organic content of sediment and porosity (e.g., de Boer, 2007)

Biodiversity (a) Species inventory, richness, diversity and community structure (e.g., Bell and Pollard, 1989; Barnes, 2013)

(b) Habitat usage of fish species and correlations with life-cycle stages (e.g., Heck et al., 2003; Jaxion-Harm et al., 2012; Seitz

et al., 2014)

(c) Presence of charismatic and Red List species (e.g., Williams and Heck, 2001)

Fisheries (a) Fish species caught, landed and sold (e.g., average catch sizes, market value etc.)

(b) Frequency, location(s) and time spent fishing, for example, by using participatory GIS (e.g., Baldwin et al., 2013; Baldwin and

Oxenford, 2014)

(c) Degree of overlap between commercial and artisanal fish species (i.e., commercial fishing impacts on artisanal fishing

activities)

(d) Types of fishing methods and gear employed and their capacity to damage seagrass beds (e.g., Tudela, 2004)

(e) Invertebrate gleaning activities (e.g., species gleaned, frequency of gleaning etc. Unsworth and Cullen, 2010)

Nutrient cycling and water

quality Regulation

(a) Seagrass biomass and production (e.g., de Boer, 2007)

(b) Levels of leaf litter (e.g., Chiu et al., 2013)

(c) Water turbidity (e.g., Petus et al., 2014)

(d) Dissolved nutrient concentration (e.g., Cabaço et al., 2013)

Cultural services (tourism

and recreation)

(a) Hotels (coastal distribution and ownership of land)

(b) Tourist numbers, demographics and usage of inshore areas (reasons for use)

(c) Local employment of staff in tourism (community-based tourism e.g., Salazar, 2012 (Tanzania); Kibicho, 2008; Steinicke and

Neuburger, 2012 (Kenya))

(d) Local food supply to hotels (e.g., Pillay and Rogerson, 2013)

(e) Associated infrastructure developments and impacts on seagrass meadow stability (e.g., Daby, 2003 in Mauritias; Zuidema

et al., 2011 Turks and Cacos Islands)

Cultural services

(social-ecological)

(a) Composition of household income and reliance on seagrass-derived ecosystem services

(b) Gender differences in use and benefits derived from seagrass meadows e.g., gleaning vs. fishing (e.g., Cullen-Unsworth

et al., 2014)

(c) Cultural significance of seagrass meadows to “traditional way of life” (e.g., Unsworth and Cullen, 2010)

Ecosystem Service Threats (a) Agricultural land run-off: nutrient loading (e.g., Waycott et al., 2009)

(b) Coastal developments and population and urban impacts: infrastructure, conversion of seagrass meadow beds to alternative

uses, sewage discharge (e.g., Short et al., 2011, 2014)

a In relation to the information outlined three points need to be emphasized: First, it is not necessary to obtain detailed information on all ES provided by seagrasses to develop a payment

scheme. Second, their needs to be agreement between the operating scale of the payment scheme and the scale at which ES information is acquired. Third, the information we list is

not meant to be exhaustive.

Duarte et al., 2013b). They are therefore important ecosystems
to study in order to understand the spatial extent, frequency,
and risk of marine hazards affecting coastal waters and how
their effects can be minimized (ranked 35th in Rudd, 2014).
Direct coastal protection is achieved through energy dissipation

resulting from wave breaking, friction and energy reflection
(Ondiviela et al., 2014), processes significantly influenced by
seagrass shoot density and canopy structure (Hansen and
Reidenbach, 2013). Even low biomass and heavily grazed seagrass
meadows can significantly reduce wave action by decreasing the
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hydrodynamic energy associated with current flow (Christianen
et al., 2013). For example, in temperate regions current velocities
have been reduced by up to 60% in summer (high biomass)
compared to 40% in winter (low biomass) in relation to adjacent
non-vegetated sites (Hansen and Reidenbach, 2013). By reducing
wave action and current velocities seagrass habitats also protect
the seafloor against hydrodynamic “shear stresses” (de Boer,
2007).

Seagrass canopies act as efficient filters, stripping particles
from the water column and adding to sediment accumulation
(Hendriks et al., 2008). Soil accretion (∼1.5mm yr−1) is
important in helping coastal wetlands, and seagrass meadows
in particular, adapt to sea level rise (Kirwan and Megonigal,
2013; Lavery et al., 2013), thus contributing to Rudd (2014) 26th
ranked question on sea level rise and vulnerable coasts. Below-
ground seagrass biomass is particularly important for sediment
accretion as well as stabilization against storm erosion (Bos
et al., 2007; Christianen et al., 2013). By helping to immobilize
sediment, seagrass meadows also reduce re-suspension and
increase water transparency (Duarte, 2002; Ondiviela et al.,
2014). In the Arabian Gulf, for example, sediment stabilization
and shoreline protection represent important ecosystem service
functions of seagrass meadows (Erftemeijer and Shuail, 2012).
Overall, the effectiveness and efficiency of the coastal protection
services provided by seagrass ecosystems varies across spatial
and temporal scales due to differences in species type (i.e.,
vegetative characteristics), coastal distribution, flow-vegetation
interactions and water dynamic properties (Ondiviela et al.,
2014). In monetary terms, the erosion control services provided
by seagrass beds (inclusive of algal beds) have been estimated at
US$25,000 ha−1yr−1 (Costanza et al., 2014).

Provisioning Services: Biodiversity and Fish
Nurseries
The physical and biological structure of seagrass meadows is
central to their significance as a marine biotope (Gullström et al.,
2008; Pogoreutz et al., 2012; Saenger et al., 2013). The high
primary productivity of seagrass, their epiphytes and associated
benthic algae provide an important energy source to support
local, transient and distant food webs (Heck et al., 2008). In
addition, the structural complexity of seagrass meadows offers
sites for attachment and a place to avoid predation (Farina
et al., 2009). These attributes mean seagrass meadows function
as foraging areas, refuges and nursery habitats for diverse
communities of marine life, many of which are commercially
important or endangered (Bujang et al., 2006; Orth et al., 2006;
Unsworth and Cullen, 2010; Erftemeijer and Shuail, 2012; Jaxion-
Harm et al., 2012; Browne et al., 2013; Cullen-Unsworth and
Unsworth, 2013). Organic matter produced in seagrass meadows
is also exported to adjacent ecosystems and supports a large
range of marine and terrestrial consumers (Heck et al., 2008).
Connectivity betweenmangrove and seagrass ecosystems has also
been shown to be important for supporting inshore fisheries, the
abundance and assemblage of fish and crustacean communities
and fish life-cycle stages (Bosire et al., 2012; Honda et al., 2013;
Saenger et al., 2013). Seagrass ecosystems are thus important for
ocean priority research questions on biodiversity contributions

to ecosystem function (ranked 6th) and biological connectivity
(ranked 28th) (Rudd, 2014).

Supporting Services: Nutrient Cycling
Seagrass meadows are directly involved in nutrient cycling
through their uptake of water column nutrients, storage in
biomass, detritus and sediment, and indirectly through the effect
of seagrass metabolism on water column and sediment nutrient
re-cycling (Saenger et al., 2013). The nutrient cycling capacity
of seagrass meadows has been estimated to contribute about
US$26,000 ha−1yr−1, or US$1.9 trillion in aggregate, to the global
economy (Waycott et al., 2009; Costanza et al., 2014).

Cultural Services: Social Relations
Wetland ecosystems play vital cultural, economic and ecological
roles, supporting livelihoods and reducing poverty (Kumar et al.,
2011; Senaratna Sellamuttu et al., 2011; Verma and Negandhi,
2011). Frequently, the fish and marine invertebrate populations
supported by intact seagrass ecosystems maintain stocks of
commercial and artisanal importance, and their exploitation
makes significant economic and food security contributions
to many coastal communities (Jackson et al., 2001). In some
cases seagrass supported fisheries may provide a harvest value
of up to US$3500 ha−1 yr−1 (Waycott et al., 2009). In Tarut
Bay, (Arabian Gulf), seagrass ecosystems support a US$22
million yr−1 fishery (Erftemeijer and Shuail, 2012). Prawns are
also the basis for extensive fisheries, particularly along warm-
temperate and tropical coastlines, and previous estimates of the
potential total annual yield from seagrass ecosystems in Northern
Queensland, Australia, equated to a landed value of US$0.41–1.35
million yr−1 (Watson et al., 1993). In the Caribbean and Indo-
Pacific region valuable species found on seagrass meadows such
as queen conch (Euatrombus gigas), spiny lobster (Palinuridae),
and smudgespot spinefoot (Siganus canaliculatus) also support
local fisheries (Cullen-Unsworth and Unsworth, 2013; Baker
et al., 2015).

Shellfish gleaning frequently supports artisanal fishers’
subsistence and generates income for rural households
(Unsworth and Cullen, 2010). Invertebrate harvesters in
Zanzibar, East Africa, can earn between US$8.51 and US$17.01
per catch from gleaning activities, emphasizing the social-
ecological connections between coastal community livelihoods
and seagrass ecosystem functioning (Nordlund et al., 2011).
In some locations, the scale of inshore fisheries supported by
seagrass ecosystems have been shown to be more significant (in
economic terms) than those supported by mangroves or coral
reefs. Recent evidence from Chwaka Bay (Zanzibar) indicated
that fishers spend 70% of their time fishing seagrass meadows
and preferred fishing there compared to mangrove and coral
reef habitats (De la Torre-Castro et al., 2014). As a consequence,
over 50% of the fish sold in the central market derived from
seagrass meadows. In Wakatobi National Park (Indonesia),
60% of invertebrate collectors and 40% of fishers and gleaners
preferred harvesting from seagrass meadows compared to 20%
of collectors, fishers and gleaners who preferred to harvest
exclusively from coral reefs (Unsworth et al., 2010).
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The Value of Ecosystem Services Provided
by Seagrass Ecosystems

Ecosystem Service Valuation
Valuing ecosystem services has become an increasingly
important tool for demonstrating the significance of biodiversity
and ES to society and informing policy decisions (Brondizio
et al., 2010; Gómez-Baggethun et al., 2010; Dendoncker et al.,
2014; Liekens and De Nocker, 2014). ES valuations have
been criticized for focusing disproportionately on utilitarian
values, overly commodifying nature and ignoring ecological
complexity, potentially leading to erroneous policy decisions
(Kosoy and Corbera, 2010; Norgaard, 2010; Gowdy and Baveye,
2014). In light of these criticisms efforts to value ES have
increasingly sought to focus on integrating the ecological,
social and economic dimensions of ES into a unified whole
(Figure S1 Supplementary Material) (TEEB, 2010; UK NEA,
2011; Dendoncker et al., 2014). A plethora of monetary and
non-monetary techniques have recently been developed to try
and capture the broadest range of “values” across the breadth of
ecosystem services (Table S1 Supplementary Material). Seagrass
ecosystems provide a potentially tractable environment within
which to conduct multi-faceted valuation research and address
an important ocean research question (ranked 53rd, Rudd, 2014)
on ecosystem service valuation implications.

Seagrass and Wetland Valuation Studies
Economic valuations of seagrass ecosystems remain few in
number, with most focusing on the market value of commercial
fisheries as the primary ecosystem service of importance
(Table 2).

In several respects seagrass ecosystems have been
marginalized in favor of other coastal and estuarine ecosystems,
meaning valuation studies conducted for other wetland biotopes
(i.e., mangroves, coral reefs, and saltmarshes) are the only
suitable avenue to identify comparative estimates for commonly
shared ecosystem services that may offer insights into the
expected range of values for seagrass meadows (Table 3).

Overall, the lack of in-depth local studies spanning different
continents and regions valuing the breadth of ecosystem services
provided by seagrass ecosystems needs to be remedied, with
particular focus on qualitative value attributions associated with
the social-ecological dynamics of seagrass systems (Cullen-
Unsworth and Unsworth, 2013). This view supported the wider
sentiment articulated by Raheem et al. (2012, p. 1169), that
“there is a dearth of spatially explicit non-market values for
services provided by coastal and other ecosystems,” and by
the Abu Dhabi Global Environmental Data Initiative (AGEDI,
2014, p. 10), that the “option of combining Blue Carbon with
other ecosystem services valuation should be kept open to
provide multiple potential values that can support conservation
activities.” Strengthening the evidence base regarding the global
economic value of oceans (ranked 48th, Rudd, 2014) requires
site-specific seagrass ecosystem valuation efforts that can be used
to derive transfer values frommeta-analyses (e.g., Johnston et al.,
2005; Brander et al., 2012).

Policy Frameworks for Blue Carbon
Management

Recent thinking about Blue Carbon acknowledges the special
importance of the carbon storage and sequestration capability
of coastal and marine wetlands and organisms in global climate
change scenarios and policies (Sifleet et al., 2011; Vaidyanathan,
2011). Blue Carbon sinks capture and store amounts of carbon
equivalent to up to half of global transport emissions (∼
400 Tg C yr−1) yet their inclusion in current mitigation and
adaptation programs has been very limited (Locatelli et al., 2014).
Developments could occur in the regulated (compliance) or the
unregulated (voluntary) carbon sectors. We take each in turn.

The Regulated Sector
Policies and Processes
Collectively, the United Nations Framework Convention on
Climate Change (UNFCCC), Manado Ocean Declaration
(2009), Cancún Agreement (2010) and Rio Ocean Declaration
(2012) provide opportunities for development of Blue Carbon
initiatives. In practice, however, current policy processes
inadequately account for the restoration and protection of Blue
Carbon systems (Grimsditch, 2011; Murray et al., 2011). This
is due, in part, to the initial bias toward terrestrial climate
change mitigation and adaptation activities within the UNFCCC,
alongside the acknowledgment that practical expansion to coastal
and marine systems (from principled intentions) would require
further international agreement (Murray et al., 2012). However,
as a recent report indicates (UNEP and CIFOR, 2014: x)
“climate change mitigation frameworks developed for terrestrial
ecosystems can be extended to include coastal wetlands.”

There are clear points of entry for Blue Carbon funded
activities under the parallel pathways of the UNFCCC,
specifically: the Land Use and Land-Use Change and Forestry
(LULUCF) and the clean development mechanism (CDM) of the
Kyoto Protocol; and the Reduced Emissions from Deforestation
and forest Degradation+ (REDD+) and Nationally Appropriate
Mitigation Actions (NAMAs) of the Durban Platform. In
many cases these entry points require altering or reinterpreting
definitions (Gordon et al., 2011; Grimsditch, 2011; Murray et al.,
2011, 2012). Nevertheless, some argue that by the Paris COP
21 meeting in 2015 negotiations are likely to have reached a
consensus for including an approach for Blue Carbon accounting
under the UNFCCC (UNEP and CIFOR, 2014).

Kyoto Protocol Opportunities
Limited possibilities exist within the Kyoto Protocol (Murray
et al., 2012). However, some progress has been made through
the recently updated Intergovernmental Panel for Climate
Change (IPCC) guidelines. The so-called “Wetlands Supplement”
includes guidance for national governments to report carbon
emissions and removals for specific management activities in
coastal wetlands (e.g., mangroves, tidal marshes and seagrass
meadows) (IPCC, 2014). The activities that national governments
will be able include in their national inventories for greenhouse
gases covers forest management in mangroves, certain aspects
of aquaculture, drainage and restoration or creation of coastal
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TABLE 2 | Valuation studies of seagrass meadows.

Study Location Description Value

Watson et al., 1993 Queensland (Australia) Multi-species prawn fishery A$1.2 million yr−1

McArthur and Boland, 2006 South Australia (Australia) Secondary fisheries production A$114 million yr−1

Unsworth et al., 2010 Wakatobi National Park

(Indonesia)

Ecological and socio-economic assessments of the

importance of seagrass meadow fisheries

US$230 million (value extrapolated to the

national level)

Kamimura et al., 2011 Seto Inland Sea (Japan) Wild juvenile black rockfish (Sebastes cheni) production US$78,600 yr−1

Rudd and Weigand, 2011 Newfoundland, Canada Choice experiment to estimate citizens’ willingness to

pay (WTP) for improvements in three ecosystem

services associated with a reduction in wastewater

pollution in the Humber Arm, with eelgrass (Zostera

marin) used as an indicator for estuarine biological

diversity

$2.63 sq km−1 household−1 yr−1

Lavery et al., 2013 Australia Estimation of the value of stored organic carbon

beneath Australia’s seagrass ecosystems (17 habitats,

10 seagrass species). Valuation based on the Corg

content of the top 25 cm of sediment

A$3.9-5.4 billion

Vassallo et al., 2013 Isle of Bergeggi (Italy) Natural capital assessment of Posidonia oceanica

seagrass meadows using emergy analysis. Focused on

the collective value of four ecosystem services: nursery

function, sedimentation and hydrodynamics, primary

production and oxygen release

€172m−2 a−1

Tuya et al., 2014 Gran Canaria Island

(Spain)

Primary and secondary fisheries associated with

Cymodocea nodosa seagrass meadows

€673,269 yr−1 (whole island value)

Blandon and zu Ermgassen,

2014

South Australia (Australia) Meta-analysis of juvenile fish abundance to assess the

juvenile fish enhancement capacity of seagrass

ecosystems. Thirteen commercial fish established to be

recruitment enhanced

Species were enhanced by approx. A$230,000

ha−1 yr−1

wetlands. However, this supplementary regulation is “encouraged
but not mandatory in context of any other activities under Article
3, paragraphs 3 and 4, of the Kyoto Protocol” (UNFCC, 2014).

Moreover, extension of current LULUCF definitions to cover
wetland ecosystems is lacking (Murray et al., 2012). However,
with the publication of the IPCC Wetland Supplement the case
for not including a broader set of definitions that specifically
mention wetlands is harder to justify. Furthermore, activities
under LULUCF could include avoided wetland degradation
via alternative use or prohibiting disturbance (Herr et al.,
2012). With regards to baseline credit mechanisms such
as the CDM, in 2011 a mangrove project was approved
as an afforestation and reforestation activity. However, the
methodology applied is specifically for mangroves and not (so
far at least) transferable to tidal marshes or seagrass meadows
(Lovelock and McAllister, 2013). Moreover, the much more
substantial avoided emissions resulting from protecting Blue
Carbon pools remain outside this mechanism (Murray et al.,
2011, 2012).

Durban Platform Opportunities
The Durban Platform provides more scope for Blue Carbon
activities. Mangroves are now covered by REDD+ (Grimsditch,
2011). However, seagrass inclusion remains some way off:
this would require a broader definition of “forests” as well
as an extension of emission and reduction activities across
all land-uses (i.e., Agriculture, Forestry and Other Land Uses,
AFOLU) (Murray et al., 2011, 2012; Siikamäki et al., 2013).

Nevertheless, AFOLU projects do include a variety of carbon
accounting protocols relating to biomass, Corg and greenhouse
gas emissions (UNEP and CIFOR, 2014). There have been
calls to decouple carbon sequestration and emissions arising
from habitat degradation (Grimsditch, 2011). This is particularly
important for seagrass meadows where the “real” carbon of
interest is buried in the sediment. Under REDD+, deciding
what aspects of the Blue Carbon pool (i.e., sediment/soil-
carbon or above-ground biomass) count would be especially
important (Murray et al., 2011). Extension of REDD+ to
seagrass meadows could easily see them contributing to
reduced emissions via the degradation pathway, through a
focus on management strategies linked to tackling the negative
impacts of nutrient loading for example (Seifert-Granzin,
2010). Developments to include tidal wetland restoration and
conservation under REDD+ are currently on-going (UNEP and
CIFOR, 2014).

NAMAs offer the most direct route for funding Blue Carbon
enterprises because countries have autonomy over the activities
that form part of their national strategies, and could reasonably
protect and restore wetland and coastal ecosystems (Grimsditch,
2011; Herr et al., 2012; Murray et al., 2012). Furthermore, the
green climate fund provides finances for programs in accordance
with NAMAs that could be directed toward Blue Carbon
activities (Herr et al., 2012). However, the challenge remains that
inclusion of these activities under a national framework would
still require measurement, reporting and verification approval
(Murray et al., 2012).
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TABLE 3 | Valuation studies of coastal and wetland ecosystem services.

Studya Description Ecosystem service values

Barbier et al., 2011 Global synthesis of estuarine and coastal ecosystem services Coastal protection: (US$174 ha−1 yr−1 coral reefs in the Indian Ocean, US$236

ha−1 yr−1 saltmarshes in the US and US$966-1082 ha−1 yr−1 mangroves in

Thailand). Maintenance of fisheries: (US$5-45,000 Km-2 yr−1 coral reefs (local

consumption and exports) in the Philippines, US$647-981 acre−1 saltmarshes

(recreational fishing) in Florida and US$708-987 ha−1 mangroves in

Thailand).Carbon sequestration: (US$30.50 ha−1 yr−1 for saltmarshes and

mangroves based on global sequestration rates). Tourism, Recreation and

Research: (US$88,000 coral reefs in the Seychelles, £31.60 person−1 saltmarsh

(otter habitat creation) in the UK)

UNEP, 2011 Total economic value of the ecosystem services delivered by

mangroves in Gazi Bay, Kenya

Total Economic Valuation: (US$1092 ha−1 yr−1) e.g., Fishery: (US$44 ha−1

yr−1) Coastal protection: (US$91.7 ha−1 yr−1) Carbon sequestration: (US$126

ha−1 yr−1) Biodiversity: (US$5 ha-1 yr-1) Existence value: (US$594.4 ha−1 yr−1)

Verma and

Negandhi, 2011

Livelihood dependency and economic evaluation of the

Bhopal wetland, India

Fisheries production: (US$33 month−1 fisherman−1) Boating activities

(US$2264 yr−1 boatman−1) waterchestnut cultivation (US$222 yr−1 family−1)

cloth washing activities (US$66 month−1 household−1) secondary activities

e.g., sugar cane juice sellers (US$6000 yr−1)

Brander et al.,

2012

Meta-analysis of the value of ES supplied by mangroves

mainly in Southeast Asia. Valuations based predominantly on

fisheries, fuel wood, coastal protection and water quality

Overall mean and (median) value: US$4185(239) ha−1 yr−1

Salem and Mercer,

2012

Global estimates of mangrove ecosystem services Fisheries: (US$23,613 ha−1 yr−1). Forestry: (US$38,115 ha−1 yr−1). Recreation

and Tourism: (US$37,927 ha−1 yr−1). Non-Use: (US$17,373 ha−1 yr−1). Water

purification: (US$4,784 ha−1 yr−1)

Brander et al.,

2013

Global meta-analysis of ES delivered by wetland systems in

agricultural landscapes, with a focus on three regulating

services: flood control, water supply and nutrient cycling

Mean and (median) values presented

Flood control: US$6923(427) ha−1 yr−1 Water supply: US$3398(57) ha−1 yr−1

Nutrient cycling: US$5788(243) ha−1 yr−1

Camacho-Valdez

et al., 2013

Socio-economic benefit of saltmarshes in Northwest Mexico US$1 billion yr−1

James et al., 2013 The social (non-monetary) values attached to mangroves

across three villages in the Niger Delta region of Nigeria.

Social values assessed were: therapeutic, amenity, heritage,

spiritual and existence

Mean values for the village-level importance placed on these aspects of the

social value of mangroves

Therapeutic: (14–71%) Amenity: (65–73%) Heritage: (70–92%) Spiritual:

(44–76%) Existence: (89–91%)

Kakuru et al., 2013 Wetland ecosystem services in Uganda Flood control: (US$1.7 billion yr−1). Water regulation: (US$7 million yr−1)

aThe examples we cite are not meant to be exhaustive but rather illustrative of the different types of services and values attributed to a range of coastal wetland ecosystems, and are

therefore to be seen as a guide for the range of possible valuations that may be attributed to seagrass ecosystems.

The Voluntary Sector
The Global Voluntary Carbon Market
The voluntary carbon market (VCM) accounts for 0.1–0.02%
of the value and volume of the regulated global carbon market
respectively (Benessaiah, 2012). Yet rapid sector expansion has
led to increasing interest from governments, particularly in
relation to carbon standards and registries (Peters-Stanley and
Yin, 2013). The principal attraction of the VCM is its deregulated
nature, which helps to reduce transaction costs and stimulate
innovation. However, the trade-off to this regulatory flexibility
is market uncertainty and depression of the carbon price,
which can have serious implications for expected project returns
(Benessaiah, 2012; Thompson et al., 2014). Project size is also
a determinant of offset price, with smaller projects garnering
higher carbon prices for carbon dioxide equivalent (CO2e). The
average carbon price for micro projects (i.e., those generating

less than 5Kt CO2e yr−1) was recently US$10/tCO2e, whereas
the mean carbon price for mega projects (i.e., those generating
more than 1Mt CO2e yr−1) was US$5.8/tCO2e (Peters-Stanley
and Yin, 2013).

Worldwide carbon standards have expanded from
concentrating purely on carbon accounting to emphasizing
co-benefits (Peters-Stanley et al., 2012). This has been driven,
particularly in the private sector, by an increasing interest
in measuring and verifying non-carbon project outcomes
(Peters-Stanley and Yin, 2013). Programs are progressively
focusing on climate change adaptation, public health, gender
issues and biodiversity as additional attributes to non-carbon
benefits (Peters-Stanley and Yin, 2013) (Table 4). For example,
the verified carbon standard (VCS), which accounts for 55% of
market share, considers climate, community and biodiversity
(16%) and Social Carbon (2%) co-benefits (Peters-Stanley and

Frontiers in Marine Science | www.frontiersin.org 8 June 2015 | Volume 2 | Article 32

http://www.frontiersin.org/Marine_Science
http://www.frontiersin.org
http://www.frontiersin.org/Marine_Science/archive


Hejnowicz et al. Harnessing the potential of seagrasses

TABLE 4 | Carbon standards appropriate for joint environmental and

development projects.

Carbon standard

and credits

Description

Gold Standard

(acquired Carbon

Fix Standard)

Carbon accounting + embedded co-benefits

Plan Vivo Carbon accounting + embedded co-benefits

VCS Carbon accounting + tagged co-benefits

VCS and CCB This joint process is premised on the notion that forestry

and land-use projects with be better able to meet

emission reduction targets and achieve co-benefits if

validation/verification costs are lowered

Social carbon Co-benefits (needs to be accompanied by a carbon

accounting standard)

Global

conservation

standard

Developed for the purposes of ensuring conservation can

deliver payments to local landholders, the accounting

system is based on the “stock” amount of identifiable and

measurable ecosystem service benefits—credited

through the use of Conservation Credit Units (CCUs). The

first protocol established CCUs based on carbon stocks

in vegetation.

Women’s carbon

standard

Certifying the role, engagement and leadership of women

in carbon projects. Jointly administered by Women

Organizing for Change in Agriculture and Natural

Resource Management—WOCAN

Vulnerability

reduction credits

Acknowledges and qualifies reduction in community

vulnerability arising from adaptation efforts. Administered

by the Higher Ground Foundation

The poverty

alleviation criteria

tool

Measures the poverty alleviation outcomes resulting from

forestry and other land-use projects implemented under

the Panda Standard. Developed jointly by ACR (American

Carbon Registry) and the China Beijing Environmental

Exchange

Yin, 2013). This is important for ecosystems such as seagrass
meadows that provide multiple benefits in addition to carbon
storage as those benefits might be captured via broader standard
attributes.

Another important development for coastal wetland systems
such as seagrass meadows is that the VCM has highlighted
the special connections between carbon and water. Both
VCS and the American Carbon Registry (ACR) have coastal
wetland accredited carbon accounting methodologies (Peters-
Stanley et al., 2012; Thomas, 2014). For example, in the
Mississippi Delta the ACR has developed a wetland restoration
protocol (UNEP and CIFOR, 2014). Furthermore, VCS has
also developed a soil carbon sampling methodology that could
be transferred to wetland and peatland ecosystems (Peters-
Stanley and Yin, 2013). Indeed, VCS methodologies cover the
full array of Blue Carbon activities, from restoration and re-
vegetation to conservation andmanagement, and in late 2013, the
“Greenhouse Gas Accounting Methods for Tidal Wetlands and

Seagrass Restoration” methodology was submitted to VCS and is
currently awaiting approval (UNEP and CIFOR, 2014).

Although the increasing alignment between livelihood
development and carbon management is welcomed, several
challenges exist. Specifically, a lack of appropriate markets,
negotiating trade-offs between maximizing economic efficiency
and ensuring equity in benefit flows, and adequately socially
embedding payment schemes. These challenges relate to broader
issues of the transaction costs of ocean management (ranked
57th, Rudd, 2014). Developing inclusive sustainable livelihood
VCM projects depends on the provision of secure property
rights and tenure arrangements regarding the ownership and
use of resources. However, providing secure property rights
alongside certification can be prohibitively expensive (e.g., CCB
certification is estimated at US$4000–US$8000) even though
adequately accounting for costs and securing financial streams
is essential (Benessaiah, 2012). Negotiating investment risk and
return uncertainty are significant challenges in community-based
carbon projects where non-compliance and complex program
arrangements are pressing issues. Likewise, the provision of
“enabling institutions” for effective administrative, operational
and implementation performance remains crucial. Nevertheless,
the advantages of the VCM outweigh the downsides and present
a more immediately attractive option even if in some quarters
the regulated carbon market is the preferred long-term option
(Benessaiah, 2012; Ullman et al., 2013).

Multilateral Environmental Agreements
The sustainability of estuarine, coastal and marine habitats, with
regards to their use, conservation, restoration and in climate
change mitigation and adaptation have been alluded to under
several regional and international multilateral agreements for
example: the Convention on Biological Diversity (CBD); Ramsar
Convention on Wetlands (Ramsar); UNEP Global Programme
of Action for the Protection of the Marine Environment
from Landbased Activities (GPA-Marine); Convention for the
Protection of the Marine Environment and Coastal Areas
of the South-East Pacific (Lima Convention) and the South
Pacific Regional Environment Programme (SPREP). Although
predominantly management and advocacy-related, some of these
programs offer financial support for Blue Carbon activities
(Laffoley, 2013).

National Level Policies
Research evaluating the ways in which vegetative coastal
ecosystem services and carbon in particular can be included
in national level statues and policies is lacking, partly as a
result of the highly individual nature of national legislation.
However, Pendleton et al. (2013) have identified how such
“coastal carbon” could be incorporated under a subset of
existing U.S. federal statutes and policies including the National
Environmental Policy Act, the Comprehensive Environment
Response, Compensation and Liability Act, the Oil Pollution
Act, the Clean Water Act and the Coastal Zone Management
Act amongst several others. The analysis indicates that although
coastal carbon services are not currently accounted for under
existing federal-level legislation, to do so would be relatively
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straightforward and consistent with the implementation of
these regulations (Pendleton et al., 2013). Nevertheless, despite
this relative ease, incorporating coastal carbon into existing
federal legislation would require further improvements in the
availability of expertise, guidance and procedures for assessing
the value of coastal carbon, quantifying the impacts of projects
on carbon storage and sequestration and mapping the spatial
dynamics of coastal ecosystems. The lack of precedent (i.e.,
the formal assessment and analysis of the benefit-costs of
coastal carbon economics values in these regulations) was also
recognized as an important limitation that would need to be
overcome for wider “coastal carbon functions” to be frequently
included in regulatory assessments (Pendleton et al., 2013).
Importantly, these considerations are equally applicable to State-
level legislation as they are to other national legislative policies
and statutes in other countries.

Blue Carbon Demonstration Sites and the Future
Recent research, policy and financing advancements in Blue
Carbon relevant to seagrass meadows include global programs.
The Blue Carbon Initiative (www.thebluecarboninitiative.org)
focused on integrating Blue Carbon activities into the UNFCCC
and other carbon financing mechanisms (Herr et al., 2012;
Thomas, 2014). Charities such as The Ocean Foundation
and partners (www.seagrassgrow.org) have developed a Blue
Carbon calculator that determines CO2 emission reduction
offsets in terms of the protection and restoration of seagrass
meadows (a method pending formal approval by the VCS).
Collectively, developments such as the Blue Carbon portal
(www.bluecarbonportal.org) and work by Bredbenner (2013)
and Thomas (2014) have demonstrated the current global
extent of Blue Carbon activities. In particular, significant work
remains to establish a functioning global network of fully
implemented Blue Carbon programmes involving the active
transfer of carbon credits (Locatelli et al., 2014). In this
regard, securing private financing of Blue Carbon activities
will become increasingly important (Thomas, 2014). Presently,
Blue Carbon programs are predominantly research-oriented,
in the early stages of development and mangrove-focused,
with few directed efforts toward seagrass ecosystems (Table 5)
(Bredbenner, 2013).

Seagrass Habitats: Prospects for PES

Here we explore opportunities for developing seagrass PES
programmes. The options we describe should be seen as working
in tandem with carbon-credit schemes not as mutually exclusive
alternatives.

A Brief Explanation of PES
PES programs are marketed as win-win opportunities,
supporting conservation and the sustainable use of natural
resources while improving rural livelihoods (van Noordwijk
et al., 2007; Muradian and Rival, 2012; Pokorny et al., 2012).Yet,
what constitutes PES, both in theory and practice, and PES
success is open to debate (e.g., Wunder, 2005; Farley and
Costanza, 2010; Muradian et al., 2010; Hejnowicz et al., 2014).

TABLE 5 | Seagrass-related blue carbon initiatives.

Blue carbon project Description

Long-term ecological research in

the Patos Lagoon Estuary

(Brazil)–Institute of Oceanography

and Federal University of Rio

Grande

Spatial and temporal description of

seagrass and macroalgae vegetation

changes. Mapping, biomass, and

sedimentation sampling for carbon stock

evaluation

National seagrass ecosystem

mapping (Brazil)–Universidade

Estadual de Rio de Janeiro,

Universidade Federal do Rio

Grande,

Universidade Federal de Santa

Catariana e Universidade Federal

Rural de Pernambuco

Spatial mapping of Brazil’s seagrass

ecosystems, distribution and extent, and

the determination of the associated carbon

stock

Seagrass and Mangrove pilot

assessments (Indonesia)–Agency

for Research and Development of

Marine and Fisheries, Ministry of

Marine

Affairs, Fisheries-Indonesia

Three pilot areas: Banten, East Kalimantan

and North Sulawesi—field surveys,

mapping, and biophysical sampling of

seagrass and mangrove systems to assess

carbon storage and sequestration,

alongside the socio-economic value of

these systems for improving policy

Mangrove, saltmarsh and

seagrass Blue Carbon potential

(China)—Tsinghua University,

Xiamen University, State Oceanic

Administration

Assessment of the Blue Carbon potential of

these ecosystems (i.e., carbon storage and

sequestration) to provide evidence to

support habitat restoration linked to carbon

credit scheme

Adapted from Bredbenner (2013).

This is largely due to the plurality of financial arrangements
underpinning PES schemes, which include government-
financed, user-financed or hybrid co-financed arrangements,
often involving external donors, such that the ways in which
they function do not conform to a single operational standard
(Schomers and Matzdorf, 2013). Financially speaking, however,
they can (generally) be thought of as a form of direct payment
based on the beneficiary pays principle (Parker and Cranford,
2010). Within typical PES programs (Lin and Nakamura, 2012;
Tacconi, 2012; Derissen and Latacz-Lohmann, 2013; Martin-
Ortega et al., 2013), ES providers (e.g., landholders, farmers
or communities) voluntarily participate in a program whereby
they receive payments from ES buyers (e.g., a government, a
utility or private organization). Transactions are facilitated by
a single or multiple set of intermediary actors (e.g., a semi-
autonomous body or non-governmental organization). In return
for payments, providers adopt alternative land-use practices
and management strategies that can secure and deliver a set of
important ES to a wider beneficiary population.

Institutionally, PES programs are generally framed as
decentralized instruments favoring bottom-up solutions to land
management issues (Landell-Mills and Porras, 2002; Bond and
Mayers, 2010). Despite the diversity of contexts in which
PES schemes operate, they tend to adopt common modes of
activity such as restricting agricultural development, proposing
alternative cropping arrangements, reducing deforestation, and
expanding forests (e.g., reforestation and afforestation), or
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protecting watershed and hydrological services (e.g., Asquith
et al., 2008; Bennett, 2008; Muňoz-Piňa et al., 2008; Wunder and
Albán, 2008; Porras, 2010; World Bank, 2010; Kolinjivadi and
Sunderland, 2012). Consequently, PES involves multiple partners
across sectors as well as spanning spatial and temporal scales
(Schomers and Matzdorf, 2013). To function properly, schemes
need to be acceptable to stakeholders, take the form of contractual
obligations to which all participating parties agree, have specified
objectives, be operationally transparent, and provide payments
(in monetary or in-kind terms) to ES providers that account for
(ideally) the full range of their opportunity costs (Wunder et al.,
2008; Bosselmann and Lund, 2013; Hejnowicz et al., 2014).

PES Case Studies and Some Considerations
Examples relevant to guiding the development of seagrass
payment schemes need to involve community approaches to
natural resourcemanagement, as well as the provision of multiple
ES with a focus on carbon management (e.g., Fisher et al., 2010;
Table S2 Supplementary Material). Schemes seeking to deliver
multiple ES via incentive mechanisms must also tackle the issue
of stacking and bundling (Box 1). That is to say, determining
what ES are to be provided, whether they will be paid for
individually (i.e., stacked) or collectively (i.e., bundled), and
what form payments will take (Bianco, 2009; Ingram, 2012).
Additionally, PES programs need to ensure that as part of
their design and implementation they maximize biodiversity
and social co-benefits by adopting a decoupled approach to
benefit maximization (recognizing individual ES properties and
spatial attributes), ensuring management decisions account for

internal and external costs, and increasing social co-benefit
provision by concentrating on economic and cultural context
(Phelps et al., 2012; Greiner and Stanley, 2013; Potts et al.,
2013).

Seagrass PES Scheme Options
Regulating Fisheries and Developing Protected Areas
Many possible institutions are available to control and direct
fishing activities along coasts and marine ecosystems (Rudd,
2004). They may involve fishing gear and net restrictions,
limiting fishing permits to local residents and restricting the
exploitation of connected habitats while providing alternative
income generating projects and “legal” fishing equipment (e.g.,
Mnazi Bay Ruvuma EstuaryMarine Park, Tanzania—Albers et al.,
2012; Mohammed, 2012). Enforcing closed fishing seasons while
providing wage supplements to fishers to offset opportunity costs
resulting from deferred fishing activities is another approach
(e.g., the defeso system in Brazil—Begossi et al., 2011, 2012).
Seagrass PES schemes may often involve creating marine
protected areas (MPAs), safeguarding the underlying resource
base supporting coastal communities and compensating local
fishers for lost income resulting from harvesting restrictions
(Table 6). Designating “no-take-zones” to increase habitat cover
and fish stocks, and compensating fishers for lost income is
a strategy that some external non-governmental organization
(NGO) donors have used (e.g., Kuruwitu Conservation and
Welfare Association in Kenya—Mohammed, 2012). Setting up
seagrass PES schemes requires research in a number of areas
identified as priorities (Rudd, 2014), including the role of MPAs

BOX 1 | Stacking and bundling ecosystem services.

Stacking refers to the receipt of multiple payments for different ES provided from a single plot or parcel (Bianco, 2009; Cooley and Olander, 2012). Cooley and Olander

(2012) recognize three forms of stacking, namely: horizontal (whereby individual management practices performed on spatially distinct areas each receive a payment);

vertical (where a single management practice employed on spatially overlapping areas receives multiple payments) and temporal (essentially a vertical form of stacking

where payments are disbursed over time according to the production of different ES).

Advantages of stacking: (i) delivers management that provides multiple services from programs concerned with specific services; (ii) potentially increases programme

uptake rates and therefore ES provision, (iii) encourages large-scale projects that could not operate through single payments e.g., wetland restoration, (iv) may increase

buyer diversification, and (v) incrementally stacking payments in an optimum way for a particular project can help raise necessary funds (Bianco, 2009; Cooley and

Olander, 2012; Robert and Stenger, 2013).

Disadvantages of stacking: (i) stacking can make it difficult to demonstrate how ES delivered by mitigation projects have abated environmental impacts allowed through

offset sales; (ii) stacking may undermine project “additionality” e.g., if payments are more than that required to initiate a project, or are for an activity that would have

occurred in the absence of the project, and (iii) stacking indirectly encourages “double counting”—paying twice for (in essence) the same service where similar services

overlap e.g., water quality credits and wetland mitigation credits (Bianco, 2009; Cooley and Olander, 2012).

In the case of bundling, single payments are received for the provision of multiple ES from an individual parcel—importantly payment amounts are not (generally speaking)

based on the summation of the individual values of each ES (Cooley and Olander, 2012).

Advantages of bundling: (i) recognizes the interconnectedness of ES processes and production; (ii) is beneficial for biodiversity and conservation (where broad

conservation outcomes are sought); (iii) may increase the overall provision of individual ES from a parcel; (iv) can reduce administrative and transaction costs and

raise price premiums, and (v) may reduce the degree of infrastructure needed to support a functioning market (Greenhalgh, 2008; Wendland et al., 2010; Deal et al.,

2012; Robert and Stenger, 2013).

Disadvantages of bundling: (i) optimizing multiple ES is difficult and given the uncertainty regarding quantification may lead to unintended trade-offs; (ii) limited knowledge

concerning ES provision means accurately modeling ES spatial delivery and distribution is highly complex; (iii) regulatory requirements may mean that it is necessary to

“unbundle” specific services from the broader set; (iv) it can be difficult to demonstrate additionality and mitigate against double counting, and (v) performance related

payments can be difficult to manage as ES bundle provision varies with time (Greenhalgh, 2008; Wendland et al., 2010; Deal et al., 2012; Robert and Stenger, 2013).

Projects that employ either stacking or bundling need to ensure they have resolved the issues of additionality and double counting before proceeding (Bianco, 2009).
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TABLE 6 | Examples of marine conservation agreements securing coastal conservation and livelihood development opportunities.

Country Project summary

Ecuador, Galera-San Francisco Marine Area—operating

since 2008

• Established to combat issues of overfishing, pollution, habitat destruction, and coastal construction

• Local communities involved in the structuring of the conservation agreement and in the management of the

conservation area

• Conservation agreement covers lobster fishing, no-take areas, fishing regulations and patrol zones

• Benefits to the community include employment in patrolling, management and user rights, access to

markets for alternative income streams and capacity building

• Funded by the Nature Conservancy and Conservation International (via conservation stewardship

programme) and Walton Foundation (via eastern tropical pacific seascape)—requires government

investment to maintain the program in the long-term

Fiji, Bio-prospecting and Live Rock Harvesting—earliest

projects since 1997

• Example of locally managed marine areas (of which 200 currently exist involving 300 communities covering

30% of inshore fisheries)

• Bio-prospecting: External private organizations make agreements with local communities facilitated by the

University of South Pacific (USP) and regulated by the government; with benefits directed to local resource

owners (fees paid by these companies are channeled to a district conservation and education trust fund)

• Live Rock Harvesting: To substitute the removal of the natural reef base with artificially created reef-bases

for aquarium traders. Local users are granted management and access rights over parts of the seabed.

Walt Smith International signs agreements with local villages and trains individuals to artificially culture and

harvest “live rocks.” Villages pay US$0.25/Kg of bare rock and receive US$0.50/Kg of “live rock.” USP also

purchases 5000 Kg of material for each village on the stipulation that almost two-thirds of the proceeds are

put back into the live rock harvesting process

Indonesia, Koon Island, Maluku Marine Conservation

area—2011 to 2014 (with option for yearly renewal)

• Comprises a marine protected area, a no-take-zone (to protect spawning grounds) and a rights-based

sustainable fishery (also involving a local fishery cooperative partnering with a local fishing company)

• Established to protect biodiversity, maintain a sustainable fishery and enhance community development

• A community foundation has been created (TUBIRNUIATA) to implement project activities such as patrols

which employ paid community members

• Funding is mainly through philanthropic sources as well as WWF-Indonesia—also attempting to establish a

number of ecotourism initiatives

Indonesia, Penemu and Bambu Islands, West

Papua—Marine Conservation Area—from 2011 to 2036

• Comprises a no-take-zone and sustainable fishery, for the purposes of conservation, ecotourism, and

community development

• Project developed with a local non-profit organization Taman Perlindungan Laut (TPL) and Sea Sanctuaries

Trust (SST)

• Marine conservation agreement is a contract between TPL/SST and the Pam Island Communities, with the

purpose of developing ecotourism businesses to provide alternative livelihood revenue streams and sustain

the program long-term. Benefiting local communities through employment opportunities, technical

assistance and access to goods and services

• Aims to be self-funding after 10 years

Tanzania, Chumbe Island Coral Park,

Zanzibar—established since 1992

• Private marine reserve, which includes 30 hectares designated as a marine reef sanctuary (coral reef and

seagrass beds) plus an additional 20 hectares of coral rag forest, for the purposes of conservation,

research, eco-tourism and local education

• Chumbe Island Coral Park Ltd established the park through management contracts and a lease from the

Zanzibar government, and has since become an international ecotourism destination and conservation

area

• The ecotourism component fully covers management costs. Several international conservation and

development donors have been involved with specific local conservation and education programmes

• The Park trains and employs local people as rangers, guides and hospitality personnel. Guides and rangers

also function as educators to communicate to local fisherman the importance of the reef bed and

maintaining a no-take-zone. Local people have benefitted through increased incomes, access to markets

for local goods, technical assistance and improved fish stocks

Examples adapted from The Nature Conservancy’s Marine Conservation Agreements: Practitioner’s Toolkit (http://www.mcatoolkit.org/).

on ecological resilience (ranked 30th) and their effect on human
well-being (ranked 45th). Questions regarding compliance with
rules (ranked 58th) and the capacity of communities to manage
their coasts (ranked 56th) also demonstrate the potential value
of seagrass PES development beyond the sector, as programs
provide valuable opportunities to learn broad lessons about the
interactions between social and ecological systems.

Ecotourism
MPA managers and coastal businesses may establish “green”
levies or taxes for resort tourists and charge user-fees for diving
access and licenses. Revenues generated by these charges can
be re-invested to support continued management activities to
enforce the operating rules and ensure compliance, conserve
and restore seagrass beds, and create employment opportunities
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for local community members (Lutz, 2011). In this respect,
participation of the private sector can be transformative for
scheme development by acting as a powerful ally in conservation
outreach, providing new sources of financial support and creating
employment and income opportunities alongside appropriate
public sector institutions (e.g., the Indonesian Yayasan Karang
Lestari coral restoration project and Marin tourism park on the
island of Gili Trawangan—Bottema and Bush, 2012).

Linking Farming, Industry and Watershed and

Coastal Management
Eutrophication and hypoxia resulting from nutrient loading
and upland pollution are significant threats to the health of
seagrass ecosystems (Waycott et al., 2009; Short et al., 2011,
2014). Because upstream land-use activities can negatively affect
seagrass ecosystems (Freeman et al., 2008; Rivera-Guzmán
et al., 2014) the conditions necessary for formulating watershed
payment schemes are rife (Porras et al., 2013). This may
involve cross-sector collaborative partnerships between local
and international NGOs, who are often project initiators and
intermediary facilitators, working together with public utilities,
private firms and government organizations acting as ES buyers
(Porras et al., 2008; Schomers and Matzdorf, 2013). Benefits
to water quality and reduced water treatment costs save public
utilities and private firms significant financial outlays, which may
then be channeled into project start-up costs and payments for
participants. Examples include the equitable PES schemes for
watershed services in Tanzania and Honduras (Kosoy et al., 2007;
CARE, 2009; Branca et al., 2011). Collectively, these examples
highlight the integrated nature of coastal and terrestrial systems
and demonstrate that PES schemes which acknowledge these
interactions begin to address Rudd’s (2004) questions on “upland
hydrology effects on oceans” and “integrated upland coastal
management” ranked (24th) and (43rd) overall.

Biodiversity Conservation
Many turtle populations nest in coastal regions supported by
seagrass ecosystems (Cullen-Unsworth and Unsworth, 2013).
These iconic and charismatic species are increasingly threatened
by poaching and so ensuring healthy nesting populations is vital
(Koch et al., 2006). Protecting seagrass ecosystems may be a cost-
effective and financially viable option for sea turtle conservation.
Paying locals to monitor nesting sites and fisherman for
releasing live turtles caught in fishing gear provides a direct and
additional income stream for local communities (Ferraro, 2009;
Mohammed, 2012). In nesting projects locals usually receive two
payments: a flat fee for identifying nest locations; and a variable
payment based on hatching success. Successful examples include
Natamu Turtle Watch and Knunga Marine National Reserve
Conservation and Development Project in Kenya and Sea Sense
on Mafia Island in Tanzania (Ferraro, 2009).

Due to positive willingness to pay (WTP) for sea turtle
conservation among citizens of developed countries (e.g., Rudd,
2009), there are also opportunities for developing international
PES schemes that transfer funds from developed countries, where
WTP for iconic species conservation is high, to developing
countries where turtle nesting grounds and critical life stages

occur. For other seagrass-dependent iconic species that enjoy an
international profile, there may be similar opportunities as for sea
turtles. Seagrass ecosystem conservation and management may
thus provide lessons in how triage decisions for species at risk
(ranked 32nd, Rudd, 2014) are conceptualized and implemented
(Hughes et al., 2009).

Importantly the relationship between iconic species and
seagrass meadows is highly dynamic. For example, in Australia
it has been shown that dugong grazing intensity can impact
the composition of seagrass meadow beds and their capacity to
recover (Preen, 1995). It is therefore imperative for conservation
measures to adequately account for these potential negative
impacts on the long-term condition of seagrass meadows, which
may arise from population increases in iconic grazing species as
a result of triage programmes.

Restoration
Seagrass ecosystems are declining yearly (Unsworth et al., 2014).
To reverse this global trend seagrass restoration (in suitable
areas) offers an effective means to rehabilitate carbon stores
and sinks (Duarte et al., 2013c) whilst enhancing other equally
important ecosystem services (Greiner et al., 2013). A recent
seagrass restoration CO2 accumulation model, examining long-
term trends in carbon sequestration for several commonly
planted seagrass species, demonstrated that at an optimal density
carbon accumulation of 177–1337 t CO2 ha−1 after 50 years
could be achieved (Duarte et al., 2013c). However, although
seagrass restoration has a relatively long history, particularly
in the USA, it still remains limited in scope and success
(Fonseca, 2011). Nevertheless, the importance of restoration
activities for coastal management has been highlighted by Rudd
(2014), with the ocean priority research question addressing
“restoration effectiveness” ranking (29th). Restoration programs
also provide opportunities to generate significant socio-economic
benefits.

However, seagrass restoration costs can be expensive. In the
USA, projected costs were estimated at between US$593,000
and US$970,000 (1996 US$) per hectare (author’s conversion)
once mapping and ground-truthing, planting, monitoring,
contracting, and government oversight were included (Fonseca,
2006). In addition, restoration programs suffer from a number
of challenges associated with validation (i.e., monitoring), site
selection, artificial colonization methods, management processes
and lack of adequate scientific knowledge regarding seagrass
ecology (Fonseca, 2011). Nonetheless, with respect to restoration
program outlays, recent estimates in Australia have suggested
somewhatmore feasible restoration costs of between AUS$10,000
and AUS$629,000 per hectare, with investments in restoration at
the lower end implying pay-back times of 5 years or less (Blandon
and zu Ermgassen, 2014). This is further supported by the work
of Duarte et al. (2013c), which suggests that due to the value
associated with the sequestered carbon restoration programs
may be able to recover between US$12,000 and US$43,000 ha−1

(constant dollars), enabling the recovery of full program costs
where a carbon tax is in place. Furthermore, most restoration
programs are likely to be undertaken in developing countries
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where capital and labor costs are much less prohibitive (Duarte
et al., 2013c).

The Swahili Seas Mikoko Pamoja project (2010–2013)
provides a successful example of a wetland restoration carbon
finance program operating in a developing country context.
Active in Gazi Bay, Kenya, the Mikoko Pamoja project has
established a mangrove conservation and restoration program
focused on the carbon storage value of mangroves to benefit
poor coastal communities. The program operates an accredited
Plan Vivo carbon credit scheme providing US$13,000 annually,
which is disbursed to conservation activities and community
development projects. Moreover, since 2012 one of the project
partner’s, Earthwatch Institute, has employed local residents
and volunteers to participate in mangrove management and
restoration activities covering over 600 hectares. Finally, the
project has also engaged in a number of capacity building
initiatives through the provision of additional training and
networking facilities (UNEP and CIFOR, 2014).

Possibilities for Implementing Seagrass
Conservation Mechanisms

Deciding on the basic operational parameters for a PES program
is only half the challenge; the other is to consider how
broader institutional and governance elements weave together
to influence scheme developments and outcomes: issues that
need to be tackled at the design and implementation stage to
ensure lasting results (Lin and Nakamura, 2012; Lin and Ueta,
2012). Collectively, these issues are intimately linked to three
of the priority research questions identified by Rudd (2014),
namely: “management capacity of human communities” (ranked
56th), “transaction costs of ocean management” (ranked 57th)
and “property rights and conservation” (ranked 66th). Below we
identify some of the most salient issues, incorporating insights
from REDD+ and coastal resource management. As AGEDI
(2014 : 10) note, “Blue Carbon and PES project developers have
the opportunity to learn from the challenges and successful
outcomes from REDD+ projects that feature similar project
elements.”

Institutions
Effective institutions are crucial to the successful implementation
of incentive schemes and the resolution of coastal management
problems (Rudd et al., 2003; Imperial, 2005; Schomers and
Matzdorf, 2013; Somorin et al., 2014). In the process of
establishing effective institutions the development of institutional
flexibility is particularly important, as this enables programs to
respond adaptively over time to changing circumstances and
thus maintain their efficacy (Larson and Soto, 2008; Murdiyarso
et al., 2012). Securing institutional flexibility requires program
arrangements that foster active connections and relations
between actors, strong leadership and feedbacks in learning
systems (Cox et al., 2010; Garbach et al., 2012; Legrand et al.,
2013; Giest and Howlett, 2014).

In order to deliver these, programs need to be based
on a platform of transparency, accountability and inclusivity
(Lockwood et al., 2010; Larsen et al., 2011; Ingram et al.,

2014). These aspects function as enabling properties, and the
evidence clearly indicates that a lack of transparency and
accountability can seriously impair institutional capacity and
effectiveness (Somorin et al., 2014), whilst also undermining
social capital (Rudd et al., 2003; Shiferaw et al., 2008). In
addition, programs that fail to consider the issue of inclusivity can
ultimately disempower participant groups, and as a consequence,
embed benefit sharing inequalities between households and
communities (Krause et al., 2013).

Stakeholders and Participation
Devolving decision-making to stakeholder groups can be
enormously beneficial (Larson and Soto, 2008), at once
enhancing and strengthening intra-community ties as well as
a sense of common identity (Rudd et al., 2003). Conversely,
centralized administration can often stifle local-scale innovations
and the development of shared visions (Pokorny et al., 2013).
Programs need to engage and connect with local stakeholders in
order to maximize participation, which is central to providing
effective management (Agrawal and Chhatre, 2006; Benjamin,
2008). Doing so legitimizes decision-making and empowers
individual and collective agency enabling the design process
to align with, and support, local norms, values and beliefs
(Kanowski et al., 2011; Brooks et al., 2012; Corbera, 2012; Bremer
and Glavovic, 2013). This is essential for participant commitment
(Murdiyarso et al., 2012; Davenport and Seekamp, 2013) and
acknowledges the relevance for effective governance of local
users’ knowledge (Andersson et al., 2014).

These processes can be supported by clarifying stakeholder
roles and responsibilities and promoting leadership (Chhatre
et al., 2012; Dent, 2012). Leadership, and especially local
leadership, has been shown to be fundamental to delivering
successful coastal management (Sutton and Rudd, 2014). Finally,
it is important to acknowledge how participation is framed in the
context of power relations, as these can represent potent forces
capable of distorting the meaningful involvement, agency and
legitimacy of grassroots actors (Dewulf et al., 2011; Cook et al.,
2013).

Tenure and Property Rights
Ownership in developing countries is often complicated by
overlapping formal and informal (customary) tenure and rights-
based arrangements (Awono et al., 2014; Resosudarmo et al.,
2014; Rights and Resources Initiative, 2014; Sunderlin et al.,
2014). Clearly defining, legitimizing and enabling functioning
property rights systems is essential for operationalizing incentive
programs (Lockie, 2013). Such clarifications are critical for
conditional payments where knowing who to pay (i.e., the
right holder) and who is accountable for delivering project-level
outcomes is necessary (Visseren-Hamakers et al., 2012; Duchelle
et al., 2014; Sunderlin et al., 2014). Functioning tenure and rights-
based systems also provide the framework to enforce property
rights, securing contracts (Naughton-Treves and Wendland,
2014) and combating weak governance (Resosudarmo et al.,
2014).

This is particularly pertinent to coastal marine environments
where complications concerning tenure, rights designations and
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authority are a direct challenge to introducing and enforcing
incentive schemes (Mohammed, 2012), a state of affairs clearly
linked to the ambiguities regarding property rights in coastal
areas and the variety of users and user interests (Cicin-Sain,
1993). As part of the design process it is crucial to mitigate
potential mismatches arising between the provision, delivery and
bundle of property rights to reduce the likelihood of marine
resource conflicts developing (Yandle, 2007), as well as to ensure
that poorer sectors are not marginalized or power asymmetries
and social inequalities reinforced (WRI 2005; Fisher et al., 2008).

Benefit Sharing
Distributing benefits and costs in a fair and equitable way is
a fundamental aspect of delivering socially acceptable incentive
schemes (McDermott et al., 2012; Rodríguez de Francisco et al.,
2013). Traditionally, equity concerns have been side-lined in
favor of a greater emphasis and focus on efficiency maximization
(Pascual et al., 2010; Narloch et al., 2011, 2013). However, this
trade-off can produce socially undesirable outcomes (Asquith
et al., 2008). Incorporating social parameters in the targeting
of schemes in order to widen access and participation whilst
reducing the marginalization of poorer communities represents
an important first step in reversing these potential trade-offs
(Mahanty et al., 2013). These processes need to proceed in
tandem with beneficiary identification and the evaluation of
the potential socio-economic ramifications of ES provision and
distribution (Willemen et al., 2013). Additional considerations
for effective benefit sharing include legitimizing decision-making
processes via legal and procedural avenues (Murdiyarso et al.,
2012); adjusting compensation levels according to the capacity
needs of individuals, households and communities (Mohammed,
2012); and addressing the potential socio-economic impacts of
programs on non-participants (Huang et al., 2009).

Delivering Ecosystem Services, Monitoring, and
Compliance
The central tenant of incentive schemes relates the provision
of specified outputs to agreement obligations and payments
(Ferraro, 2008; Wunder et al., 2008). Consequently, monitoring
and compliance represent key contractual conditions for
programs to deliver their principal objectives (Danielsen et al.,
2013; Hejnowicz et al., 2014). These can be distilled into four
broad areas:

First, measuring ES provision (Porras et al., 2013). This
reduces the likelihood of producing a false picture of service
provision, and provides a scientifically robust case for PES
program design (Hejnowicz et al., 2014). It has been suggested
that even though coastal systems may be data poor, there
is sufficient knowledge of the management activities that
improve resource protection and ES provision (Lau, 2013).
Second, evaluating scheme additionality and demonstrating
“added value” by addressing the links between management
interventions and program delivery (Ghazoul et al., 2010).
Validating additionality requires baseline data, suitable metrics
and performance indicators plus the targeting of PES to locations
likely to maximize program benefits (Wünscher et al., 2008;
Sommerville et al., 2011; Wünscher and Engel, 2012; Lau, 2013).

Third, assessing potential of spill-over effects (i.e., leakage)
resulting from program implementation that may offset
additionality gains (Engel et al., 2008; Porras et al., 2013). Fourth,
monitoring contract conditionality and ensuring compliance
(Ferraro, 2008). This requires establishing who is monitoring
(i.e., users, communities or officials) and how frequently
(Sommerville et al., 2011), providing sufficient payments to
programme participants (Porras et al., 2013), and ensuring
agreements are long-term arrangements with enforceable
penalties for breaches of contract (Ferraro, 2008; Wunder
et al., 2008). All have substantive effects on transaction costs of
governance (ranked 57th, Rudd, 2014) and will influence the
long-term viability of PES structures.

Costs and Funding
The viability of PES programs relies upon consistent and
sufficient financial flows, both in the short-term (i.e., covering
costs needed to initiate and implement a project) and the long-
term (i.e., securing the funds necessary to sustain an active
project), without which lasting transformative change cannot be
achieved (Hejnowicz et al., 2014; Kauffman, 2014). Programs
need to be designed so that they sustain themselves through self-
generated revenues (Pirard et al., 2010). An added complication
for seagrass PES schemes is that monitoring and enforcement
in marine and coastal environments may require extra technical
and specialist equipment not needed in the terrestrial sphere,
adding significantly to program outlays (Lau, 2013). Securing
long-term funding that reduces fiscal constraints but is not
overly reliant on external donor funding is particularly important
(Fauzi and Anna, 2013; Hein et al., 2013). Achieving both these
objectives requires adequately accounting for the full range of
transaction costs, which in some cases may be prohibitive for
PES development (McCann et al., 2005; Marshall, 2013; McCann,
2013).

Conclusions

Seagrass ecosystems provide an array of globally and locally
significant ecosystem services. From the perspective of climate
change, it is their carbon sequestration and storage potential that
is most attractive. Seagrass ecosystems are also home to diverse
marine life that can directly or indirectly support the artisanal
and commercial fisheries that help maintain resilience in human
communities. In addition, they also play an important role in
the conservation and maintenance of marine biological diversity
and influence national or international non-market benefits
deriving from endangered species such as sea turtles (Rudd,
2009). We have examined the prospects for financing seagrass
conservation under a purely carbon approach and in conjunction
with PES schemes that could help capture the benefits derived
from multiple ecosystem services beyond carbon sequestration.

The prospects for developing a pure carbon credit scheme
remain slim, especially if targeted at the regulatory carbon
market. Opportunities exist, however, for VCM schemes and
these are far more promising. However, the instability of
the VCM and the impact this has on carbon prices makes a
purely carbon-based approach questionable; fluctuating carbon
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prices mean projects cannot guarantee financial returns on
investment or adequate payments to meet participants’ needs.
Nonetheless, voluntary carbon standards are channeling more
effort into delivering co-benefits and, from this perspective,
seagrass PES schemes may be highly complementary. Adopting
a combined strategy would maximize conservation and
livelihood outcomes so long as the design, implementation and
institutional issues previously highlighted were adequately dealt
with.

Providing the scientific evidence base for complex incentive
schemes is challenging. This is particularly so with Blue
Carbon systems where there remain many ecological, social,
and economic knowledge gaps that need to be negotiated in
order to develop functional payment programs. However, we
have mapped out what those potential knowledge gaps are in
relation to seagrass ecosystems, in terms of basic ecosystem
function-service information, ecosystem service valuation and
research concerning the governance structures and apparatus
through which incentive schemes would need to operate. In
so doing we have highlighted the importance and complexity
of seagrass ecosystems and the value of conserving them. At
the same time we have clearly identified how by conserving
these systems, particularly through the use of innovative
financial incentive mechanisms, we are also contributing to
a broader set of significant global ocean priority research
challenges.

Overall, a wide range of opportunities exist for including
seagrass meadows in local PES schemes to combat climate
change, secure seagrass conservation and enhance coastal
community development. However, realizing the “true” potential
of seagrass meadows requires international cooperation on
two fronts: combating the threats that currently imperil the

integrity of functioning seagrass ecosystems and including them
in formal climate change policies such as REDD+. In this respect
challenges and barriers remain but promising progress is being
made; efforts to protect and rehabilitate seagrass ecosystems are
crucial because of their widespread distribution, their central role
in supporting functional coastal environments and the human
communities that rely on those systems.
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