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The 5th Assessment Report (AR5) of the Intergovernmental Panel on Climate Change

(IPCC) states with very high certainty that anthropogenic emissions have caused

measurable changes in the physical ocean environment. These changes are summarized

with special focus on those that are predicted to have the strongest, most direct effects

on ocean biological processes; namely, ocean warming and associated phenomena

(including stratification and sea level rise) as well as deoxygenation and ocean

acidification. The biological effects of these changes are then discussed for microbes

(including phytoplankton), plants, animals, warm and cold-water corals, and ecosystems.

The IPCC AR5 highlighted several areas related to both the physical and biological

processes that required further research. As a rapidly developing field, there have been

many pertinent studies published since the cut off dates for the AR5, which have

increased our understanding of the processes at work. This study undertook an extensive

review of recently published literature to update the findings of the AR5 and provide a

synthesized review on the main issues facing future oceans. The level of detail provided in

the AR5 and subsequent work provided a basis for constructing projections of the state

of ocean ecosystems in 2100 under two the Representative Concentration Pathways

RCP4.5 and 8.5. Finally the review highlights notable additions, clarifications and points

of departure from AR5 provided by subsequent studies.

Keywords: oceans and climate change, IPCC AR5, biological processes, physical processes, warming, ocean

acidification, anoxia

Introduction

Working Groups I and II (WGI and WGII) of the Intergovernmental Panel on Climate Change’s
(IPCC’s) Fifth Assessment Report (AR5) synthesized research regarding observed and projected
impacts of climate change on physical and biological processes in the oceans at both global and
regional levels. The impacts of these changes on human health and socio-economics were also
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discussed (reviewed by Cheung et al., submitted). Key findings on
physical processes highlighted, with an extremely high certainty,
that the upper ocean had warmed over the last 40 years
and predicted with very high confidence that this trend would
continue over the coming century (Ciais et al., 2013; Rhein
et al., 2013). It was considered very likely that this increase in
temperature contributed to significant global mean sea level rise
(Rhein et al., 2013). High agreement amongst data provided
evidence that stratification caused by increasing sea temperatures
has caused declining seawater oxygen concentrations (Rhein
et al., 2013). The report expressed high confidence that the
oceans are absorbing anthropogenic carbon and that the resulting
chemical reactions cause ocean acidification (Ciais et al., 2013;
Rhein et al., 2013).

Key findings on biological processes highlighted the effect of
ocean warming on the geographical distribution of organisms
with observations lending evidence to poleward migrations
of species (Poloczanska et al., 2014; Pörtner et al., 2014).
Temperature has already affected the timing of life history
events (phenology) such as reproduction and migration, and
caused irreversible regime shifts in warm water coral reef
and Arctic ecosystems (medium confidence; Field et al., 2014).
Net primary productivity (NPP) was projected to decrease
moderately by 2100 in the open ocean under both low- and
high-emission scenarios, paralleled by an increase in NPP at
high latitudes and a decrease in the tropics (Hoegh-Guldberg
et al., 2014; Pörtner et al., 2014). Despite a lack of field
observations, ocean acidification was predicted to have a
significant effect on many aspects of organisms’ physiology,
behavior, and population dynamics (Pörtner et al., 2014). There
was medium confidence that expansion of suboxic zones would
benefit anaerobic microbes and limit oxygen dependent species
(Pörtner et al., 2014). There was high confidence that the
various environmental drivers would act simultaneously on
organisms causing complex, interacting effects (Pörtner et al.,
2014).

AR5 also identified key uncertainties regarding potential
climate-related impacts on biological and physical systems. In
particular, it highlighted the need for an updated understanding
regarding the following aspects:

(1) The extent of warming in deep water masses (below 700 m)
and limited observational coverage of the ocean, hampering
more robust estimates of ocean heat and carbon content.

(2) While acknowledged as a critical process influencing
ecosystem productivity, the likelihood of climate-induced
changes to major upwelling systems (i.e., increased or
decreased upwelling) is still uncertain (Lluch-Cota et al.,
2014).

(3) Ways in which climate-induced changes in the physiology
and biogeography of an individual species may alter
ecosystem structures, species interactions, and food webs
(Pörtner et al., 2014).

(4) An improved understanding of climate sensitivity at the
ecosystem level that considers multiple drivers (e.g., ocean
warming, acidification, and hypoxia) and synergistic impacts
(Pörtner et al., 2014; Wong et al., 2014).

(5) The degrees to which species can track changes in climate as
well as the influence of multiple stressors on their capacities
to respond remained uncertain (Poloczanska et al., 2014).

(6) The capacity for phenotypic and evolutionary adaptation
over generations to respond to long-term climate change
(Pörtner et al., 2014).

The objective of this review is to draw together the various
sections of the AR5 that address the physical and biological
impacts of climate change on the ocean. We focus on the
physical processes that will have the greatest direct impacts
on biota, namely warming, acidification, and deoxygenation.
Papers published after the AR5 cutoff dates (15/03/2013 for
working group I and 31/08/2013 for working group II) were
then reviewed to update the understanding of the observed
and projected impacts of climate change on physical and
biological processes. The review endeavors to highlight key
developments with respect to our scientific understanding of
the relationships among different anthropogenic and climatic
drivers on marine ecosystems. Lastly, the review calls attention
to areas of agreement with, and points of departure from AR5.
Throughout the text, where possible, the review strives to employ
the same language of certainty as the AR5, summarized inTable 1
and Figure 1.

Physical Science

Since the start of the Industrial Era (1750 onwards),
anthropogenic activities have resulted in increased
concentrations of greenhouse gases and it is now virtually
certain that atmospheric concentrations of greenhouse gases
are at their highest in the last 800,000 years (Ciais et al., 2013).
Concentrations of CO2, CH4 and N2O rose by 40, 150, and
20%, respectively, between 1970 and 2011. Accumulation of
these gases in the atmosphere act to increase radiative forcing
and, of the three, CO2 has the greatest effect (Ciais et al., 2013).
This has resulted in a measureable increase in global air and sea
temperatures (Figure 2) with the beginning of the 21st century
having the warmest years on record since 1880 (IPCC, 2013;
Table 2).

Over the last 800,000 years, concentrations of atmospheric
CO2 have been relatively stable, oscillating between 180 ppm
during glacial periods and 300 ppm during interglacial periods
(Ciais et al., 2013). Between 1750 and 2013, atmospheric CO2

levels rose from 278 ppm to 395.31 ppm (Le Quéré et al., 2014),
exceeding 400 ppm for much of 2014 (http://www.esrl.noaa.gov/
gmd/ccgg/trends/). Total anthropogenic emissions between 1870
and 2014 amounted to 545± 55 Pg C (Le Quéré et al., 2014). The
AR5 states with very high confidence that burning of fossil fuels
and land use changes are the dominant cause of the increase in
atmospheric CO2 (Ciais et al., 2013), contributing 395± 20 Pg C
(including emissions from cement production of 8 Pg C) and 185
± 65 Pg C, respectively (Le Quéré et al., 2014).

The accumulation of greenhouse gases in the atmosphere
and the oceans produces widespread, global, and long-lasting
physical changes in the ocean environment. These changes are
summarized below, focusing on those that are anticipated to
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TABLE 1 | Breakdown of the IPCC AR5 confidence and likelihood terminology.

Confidence terminology Likelihood terminology

Very high confidence At least 9 out of 10 chance Virtually certain 99–100% probability of occurring

High confidence About 8 out of 10 chance Very likely 90–100% probability

Medium confidence About 5 out of 10 chance Likely 66–100% probability

Low confidence About 2 out of 10 chance About as likely as not 33–66% probability

Very low confidence Less than 1 out of 10 chance Unlikely 0–33% probability

Very unlikely 1–10% probability

Exceptionally unlikely 0–1% probability

Source: Stocker et al. (2013).

FIGURE 1 | A depiction of evidence and agreement statements and

their relationship to confidence. Confidence increases toward the top right

corner as suggested by the increasing strength of shading. Generally,

evidence is most robust when there are multiple, consistent independent lines

of high quality. Source: Stocker et al. (2013).

FIGURE 2 | Global temperature anomaly means for January to

November 2014 (2014 was the warmest year ever recorded for this

period). Source: http://www.ncdc.noaa.gov/sotc/global/2014/11#temp.

have the greatest effect on organism and ecosystem functioning.
It is virtually certain that the oceans have sequestered 155 ±

30 Pg C (28% of total emissions) of anthropogenic CO2 since
the Industrial Revolution, very likely at a rate of between 0.1 and
3.2 Pg C yr−1 (Ciais et al., 2013). The increased CO2 absorbed

TABLE 2 | List of the 10 warmest years between 1880 and 2014.

Rank 1 = warmest Year Anomaly (◦C)

1 2014 0.69

2 (tie) 2010 0.65

2 (tie) 2005 0.65

4 1998 0.63

5 (tie) 2013 0.62

5 (tie) 2003 0.62

7 2002 0.61

8 2006 0.60

9 (tie) 2009 0.59

9 (tie) 2007 0.59

Source: http://www.ncdc.noaa.gov/sotc/global/2014/13.

by the ocean is in response to the increasing concentrations
of CO2 in the atmosphere. Without ocean uptake, atmospheric
CO2 would be much higher, thus the oceans play an important
role in mediating global climate change effects (Ciais et al.,
2013).

Model projections show that an increase in atmospheric CO2

will always lead to an increase in ocean carbon storage, all other
things being held constant (Ciais et al., 2013). The proportion
of carbon that remains in the atmosphere will increase with
increasing input of carbon in the atmosphere-ocean system as
the oceans’ buffer capacity diminishes (Ciais et al., 2013). The
excess carbon will continue to invade the ocean for centuries,
perturbing dissolved inorganic carbon (DIC), the partial pressure
of pCO2 in seawater and pH, also in the deep oceans (Ciais et al.,
2013). Model projections show a widespread increase of CO2 in
the upper mixed layer from 0.1 to 0.2mol m−3 in year 1990 to
0.2–0.4mol m−3 in year 2100 under a high emissions scenario
(Cocco et al., 2013).

Warming
AR5 Summary
There is high confidence that 93% of the excess heat in Earth’s
energy inventory from 1971 and 2010 ended up in the oceans
(Rhein et al., 2013). The upper ocean has warmed between
1971 and 2010; globally averaged increases from 0 to 200m
between 1971 and 2010 are 0.25◦C, accounting for approximately
64% of the total warming occurring in the ocean (Rhein et al.,
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2013). Warming is most pronounced at the surface; between
1971 and 2010, temperatures in the upper 75m are estimated
to have increased by approximately 0.11◦C decade−1 (Rhein
et al., 2013). It is also very likely that warming was occurring
earlier, between the 1870’s and 1971 (Rhein et al., 2013). It is
virtually certain that the heat content of the upper oceans has
increased; estimates for the heating rate between 1971 and 2010
vary between 74 and 137 TW (Rhein et al., 2013). It is very likely
that warming has increased the stratification of upper 200m of
the oceans by about 4% during the period 1971–2010; in turn
there is medium confidence that this has reduced the dissolved
oxygen concentration and decreased the availability of inorganic
nutrients (Rhein et al., 2013).

Regionally, the average sea surface temperature (SST) of
the Indian, Atlantic and Pacific Oceans has increased by 0.65,
0.41, and 0.31◦C, respectively, between 1950 and 2009 (Hoegh-
Guldberg et al., 2014). There is high confidence that sea surface
temperatures in sub-tropical gyres of the Atlantic, Pacific, and
Indian Oceans have increased (Hoegh-Guldberg et al., 2014). In
the Indian Ocean, there is medium confidence that 90% of the
warming trend can be attributed to external forcing. Average
sea temperatures have increased between 1950 and 2009 by
0.43 and 0.54◦C in the Pacific and Atlantic equatorial upwelling
systems, respectively (Hoegh-Guldberg et al., 2014). It is likely
that North Atlantic surface waters have warmed by 0.07◦C
decade−1 between 1950 and 2009 (Hoegh-Guldberg et al., 2014),
which has been suggested to be a contributing factor to the retreat
of the Greenland ice sheet (Straneo and Heimbach, 2013).

Warming can be observed in all the sub-regions of coastal
boundary systems (CBS), overall, CBS warmed by 0.14–0.80◦C
from 1950 to 2009 (Hoegh-Guldberg et al., 2014). Key sub-
regions within the CBS such as the Coral Triangle and Western
Indian Ocean warmed by 0.79 and 0.60◦C, respectively, from
1950–2009 (Hoegh-Guldberg et al., 2014). It is very likely that
the Gulf of Mexico and Caribbean Sea have warmed by 0.31 and
0.50◦C, respectively from 1982 to 2006 (Hoegh-Guldberg et al.,
2014).

Due to undersampling, uncertainties assessing warming in the
deep ocean are much higher than for the surface waters; before
2005, the data are too sparse to produce reliable estimates. Studies
confirmwarming between 0 and 1500m since 2005 and it is likely
that waters between 700 and 2000m have warmed, on average
between 1957 and 2009 (Rhein et al., 2013). Conversely, it is
likely that there has been no significant global warming trend
between 2000 and 3000m (1992–2005), although steep vertical
gradients and water mass movements confound sparse sampling
at mid-depths (Rhein et al., 2013). Globally, waters from 3000m
to the bottom are thought likely to have experienced a warming
trend greater than zero (Rhein et al., 2013). Some regions are
better sampled than others, allowing a more detailed assessment
of temperature changes. It is very likely that N. Atlantic deep
waters below 2000m have a net cooling trend of -4 TW between
1955 and 2005 (Rhein et al., 2013). It is considered likely that
waters of Antarctic origin have warmed below 3000m by 0.01◦C
decade−1 between 1992 and 2005 and that waters south of the
Sub-Antarctic polar front have warmed by 0.03◦C decade−1 for
the same period (Rhein et al., 2013).

For deep waters, warming of between 0.3◦C (RCP2.6) to 0.6◦C
(RCP8.5) are projected (Figure 3; Ciais et al., 2013). Depending
on the emission scenario, global ocean warming between 0.5◦C
(RCP2.6) and 1.5◦C (RCP8.5) will reach a depth of about 1 km by
the end of the century (Ciais et al., 2013). There is high confidence
that the largest warming of deep waters will occur in the Southern
Ocean (Ciais et al., 2013).

Updates to AR5
The 2000’s were the warmest decade on record and the 1990’s the
second warmest (Trenberth and Fasullo, 2013; Goddard, 2014).
Nonetheless, several estimates used in the AR5 reported that the
increase in upper ocean heat content (OHC) has slowed between
2003 and 2010, compared to previous decades (Rhein et al.,
2013). Work published since the AR5 suggested that there may
be an impact of large scale natural climate variability, a reduced
radiative forcing, or a smaller warming response to atmospheric
CO2 concentrations (Lewis, 2013). The central and eastern Pacific
have exhibited the greatest slowing in warming trend (Trenberth
et al., 2014) and it has been suggested that variations in both the
Pacific Decadal Oscillation (PDO) and the Atlantic Multidecadal
Oscillation may be responsible for this (Trenberth and Fasullo,
2013; Goddard, 2014; Trenberth et al., 2014; Steinman et al.,
2015). Two recent studies suggest that the warming hiatus is
caused by heat transported to deeper layers in ocean basins,
although there is debate as to which basins are the main drivers
(Chen and Tung, 2014; Trenberth et al., 2014).

Despite the recent hiatus in the global mean surface air
temperature trend, the consensus is that this can be attributed
to natural variability (Trenberth and Fasullo, 2013) and OHC
continues to increase (Goddard, 2014; Huber and Knutti, 2014;
Schmidt et al., 2014b; Trenberth et al., 2014). Data from
Argo floats for the period 2006 to 2013 show no warming
pause and estimate increases in OHC between 0 and 2000m
depth, at a rate of 0.4–0.6 W m2. The Argo data show that
the heat is evenly distributed between the upper 500m and
500–2000m with the Southern Hemisphere gaining more heat
than the Northern (Roemmich et al., 2015). At the same time,
Steinman et al. (2015) combined climate observations and model
simulations and found that a modest positive peak in the Atlantic
multidecadal variability and a substantially negative-trending
Pacific multidecadal variability are seen to produce a slowdown
or “false pause” in warming of the past decade.

Durack et al. (2014) argue that the AR5 estimates for increases
in OHC might be biased low due to limited sampling of the
Southern Hemisphere compared to the Northern Hemisphere.
Satellite observations of sea surface height were used as a
model parameter to calculate changes in OHC, showing a more
homogeneous warming, with larger magnitudes in the South
Pacific and South Atlantic basins compared to IPCC estimates.
The results yielded an increase in global upper OHC of 2.2 to
7.1× 1022 J above existing estimates for 1970 to 2004.

Work published since the AR5 has found that the Arctic
Ocean has exhibited one of the strongest (but variable) warming
trends. In areas where the warming trend is high, a novel study
using isotope proxy analysis found up to 3.7◦C increase between
1920 and 2011. This is approximately 6 times higher than
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FIGURE 3 | CMIP5 multi-model changes in annual mean zonal mean

temperature in the atmosphere and ocean relative to 1986–2005 for

2081–2100 under the RCP2.6 (left), RCP4.5 (center) and RCP8.5 (right)

forcing scenarios. Hatching indicates regions where the multi model mean

is less than one standard deviation of internal variability. Stippling indicates

regions where the multi model mean is greater than two standard deviations

of internal variability and where 90% of the models agree on the sign of

change Source: Collins et al. (2013).

the observed global warming trend and double the previously
suggested rate of warming for the area (Brand et al., 2014).
Conversely, SST measurements have decreased in the Southern
Ocean, particularly around the sea ice margins, possibly due
to runoff from melting shelf ice cooling and freshening surface
waters in the surrounding areas (Bintanja et al., 2013).

A recent estimate suggested that, in the last decade, about
30% ocean warming has occurred below 700 m, contributing
significantly to an acceleration of the warming trend (Balmaseda
et al., 2013). Warming of deep waters is thought to be
particularly strong in the Southern Ocean with a rate of up
to 0.05◦C decade−1 (Patara and Böning, 2014). The warming
of deep Antarctic waters, may, in turn, strengthen the large-
scale meridional overturning of the Atlantic Ocean (Patara and
Böning, 2014).

Results from recent studies agree with the AR5 in predicting
high variability for future SSTs: the strongest warming trends are
predicted in the Arctic Ocean, the tropics and the North Pacific
with increases larger than 4◦C in all 3 regions, under scenario
RCP8.5 (Figure 3; Bopp et al., 2013).Model projections of surface

ocean warming are projected to be +2.73 ±0.72, +1.58 ±0.48,
+1.28 ±0.56 and +0.71 ±0.45◦C for RCP8.5, RCP6.0, RCP4.5
and RCP2.6, respectively by the end of the 21st century (Figure 3;
Bopp et al., 2013).

Upwelling
AR5 Summary
There is considerable debate as to whether climate change will
drive a universal intensification of upwelling (Hoegh-Guldberg
et al., 2014). There is robust evidence andmedium agreement that
the California Current has experienced a decrease in the number
of upwelling events (23–40%), but high confidence that there has
been an increase in the intensity of upwelling events between
1967 and 2010 (Hoegh-Guldberg et al., 2014). In the Canary
Current, there is low agreement on whether the strength of the
upwelling has intensified over the last 60 years (Hoegh-Guldberg
et al., 2014).

It is considered very likely that continued warming would
continue to increase thermal stratification (Ciais et al., 2013),
potentially decreasing the availability of inorganic nutrients
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to surface waters. It is likely that the response will vary
geographically, as complex systems govern these water mass
movements (Ciais et al., 2013). Intensification of upwelling is
predicted in the Southern Ocean, however, there is low confidence
in the current understanding of how eastern upwelling systems
will be altered under future climate change (Ciais et al., 2013).
In the Benguela Current there is medium agreement and limited
evidence, that upwelling will change as a result of climate
change (Hoegh-Guldberg et al., 2014). It is considered likely that
warming in the Atlantic equatorial upwelling systems will weaken
upwelling (Hoegh-Guldberg et al., 2014).

Updates to AR5
Meta analysis of the last 60 years found intensification of
upwelling favorable winds over the California, Benguela, and
Humboldt upwelling systems (Sydeman et al., 2014). Jacox et al.
(2014) reported an increase in nearshore (≤50 km from the
shore) upwelling in the California Current System between 1988
and 2010 but a decrease in off shore (50–200 km) upwelling
for the same period. The authors attribute these differences to
large-scale climate mode fluctuations.

New model projections predict strong changes in in the
intensity, timing and spatial heterogeneity of Eastern Boundary
Upwelling Systems (EBUS) by 2100 (Wang et al., 2015). The
projections show earlier onset and later end of the upwelling
season, as well as an increase in upwelling intensity at higher
latitudes. These predictions were consistent for the Benguala,
Canary andHumboldt Current systems but not for the California
Current System.

Sea Level Rise
AR5 Summary
Sea level varies relative to changes in temperature (thermosteric
sea level rise) and fluxes of water between the oceans and the
continents and ice sheets (mass sea level rise). Global mean
sea level (GMSL) has risen by 0.19 ± 0.02m over the period
1901–2010 (Rhein et al., 2013). It is very likely that the mean rate
was 1.7 ± 0.2mm yr−1 between 1901 and 2010 and increased
to 3.2 ± 0.4mm yr−1 between 1993 and 2010. Ocean thermal
expansion andmelting of glaciers have accounted for over 80% of
the GMSL rise over the latter part of the time series (Church et al.,
2013). Although records for the deep sea are sparser, it is possible
to estimate that warming below 2000m contributed 0.1 [0.0 to
0.2]mm yr−1 to GMSL rise between about 1992 and 2005 (Rhein
et al., 2013). The component of sea level rise that is attributed to
changes in fluxes of water between the oceans and the continents
and ice sheets has been increasing at a rate between 1 and 2mm
yr−1 since 2002 (Rhein et al., 2013).

There is very high confidence that there is high regional
variability in sea level rise, with relative sea level rise sometimes
exceeding global mean sea level rise by an order of magnitude,
reaching more than 10 cm yr−1 (Church et al., 2013). This
variation is partly due to fluctuations in ocean circulation,
tectonic activity and interactions with climate mode variability
such as the ENSO in the Pacific (Church et al., 2013).
Anthropogenic activities such as oil and gas extraction and
changes to the coastal sediment delivery via damming or

consolidation from building work have also contributed to
localized changes in relative sea level (Church et al., 2013). Sea
level rise in coastal boundary systems is variable but, in some
regions, has risen by up to 10mm yr−1 between 1950 and 2009
(Hoegh-Guldberg et al., 2014). In the Pacific, changes in sea level
have been highly variable, in the warm pool of the western Pacific,
rates of sea level rise are up to three times higher than the global
average (Rhein et al., 2013), while the eastern equatorial Pacific
has been declining by −10mm yr−1 (Hoegh-Guldberg et al.,
2014).

It is virtually certain that sea level rise will continue beyond
the 21st Century (Church et al., 2013). Future rates of GMSL rise
over the 21st century are projected to exceed the observed rate for
the period between 1971 and 2010 of 2.0± 0.3mm yr−1 (Church
et al., 2013) for all RCP scenarios.

Updates to AR5
The AR5 reports low agreement on the projected magnitude of
sea level rise due to the use of different models, some of which
take into account ice sheet dynamics (Church et al., 2013). The
IPCC AR5 predicts with medium confidence that the mean sea
level rise will be 0.44m under RCP2.6, 0.53m under RCP4.5,
0.55m under RCP6.0, and 0.74m under RCP8.5 (Church et al.,
2013). Less conservative estimates of projected sea level rise
have been published since and a more recent study suggested
it very likely that GMSL would reach 0.5–1.2m under RCP8.5
and 0.4–0.9m under RCP4.5 (Kopp et al., 2014; Slangen et al.,
2014).

Oxygen
AR5 Summary
Due to the solubility effect, warmer waters contain less dissolved
oxygen. Increased stratification, as a result of warming, decreases
ventilation of water masses, also causing decreased oxygen
concentration. When [O2] are below 60µmol kg−1 conditions
become hypoxic, below 4.5µmol kg−1, waters are termed suboxic
and waters without measurable dissolved oxygen are termed
anoxic (Figure 4; Pörtner et al., 2014).

There is medium confidence that dissolved oxygen
concentrations generally decreased since 1960 but with
strong regional variations (Rhein et al., 2013). The mean annual
global oxygen loss during 1970–1990 between 100 and 1000m is
calculated as 0.55 ± 0.13 × 1014 mol yr−1 (Rhein et al., 2013).
Stratification-induced reduced ventilation is thought to be the
major cause of this decline, with solubility effect accounting for
only 15% of the decrease (Rhein et al., 2013). Naturally occurring,
periodic hypoxic events may be exacerbated by climate change
(Rhein et al., 2013).

Decreases in [O2] have been observed over the last 50
years in tropical basins (−2 to −3µmol kg−1 decade−1), the
subpolar North Pacific and below the thermocline in the southern
Indian Ocean east of 75◦E (Hoegh-Guldberg et al., 2014). Over
the same period, [O2] decreased in North Atlantic surface
waters but increased in intermediate waters (Hoegh-Guldberg
et al., 2014). Conversely, it increased in the thermocline in the
Indian Ocean and South Pacific Oceans between the 1990’s and
2000’s (Hoegh-Guldberg et al., 2014). Results for the Southern
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FIGURE 4 | (A) Principal mechanisms underlying the formation of hypoxic

conditions and their biological background. The buoyant, fresh input from

rivers produces sharp density stratification at the base of the freshened layer

(also valid for ice melt and high precipitation) near the surface and, hence,

vertical mixing is greatly reduced. In consequence, the nutrient inputs from

the river and the atmosphere accumulate in a narrow upper layer, leading to

blooms of phytoplankton. The increased oxygen consumption due to aerobic

decomposition of sinking particulate organic matter (POM) results in hypoxic

conditions of benthic and mid-water oxygen minimum zones (OMZs).

Enrichment of nutrients (eutrophication) results in coastal dead zones. In the

open oceans, heating of the upper layer increases stratification, while the

wind-driven upwelling of hypoxic, nutrient-rich water from deeper layers adds

to the formation of the OMZs. (B) Distribution of free-living marine organisms

(microbes such as archaea, bacteria), in various water layers. Hypoxia

tolerance is enhanced in small compared to large organisms, allowing

unicellular species and small animals to thrive in extremely hypoxic habitats.

Species richness and body size of animals decrease with falling O2 levels.

Source: Pörtner et al. (2014).

Ocean are contradictory depending on region and time period
and require further clarification (Rhein et al., 2013). Along
the continental shelf, large regions of the Eastern Pacific are

low in dissolved oxygen and oxygen minimum zones (OMZ)
are found at around 300m depth (Hoegh-Guldberg et al.,
2014).
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The shoaling lysocline as a result of ocean acidification
means that it is likely that upwelling waters will be both
depleted in oxygen and acidified (Rhein et al., 2013). Coastal
regions, particularly along the west coast of North America, have
exhibited decreases in [O2] due to increased stratification and it
has been suggested that oxygen concentrations in coastal areas
may be declining approximately 10 times faster than the open
ocean, although more data are needed to confirm this hypothesis
(Hoegh-Guldberg et al., 2014). Due to the greater solubility of
O2 in cold waters and the low microbial activity, deep sea waters
are relatively well oxygenated (Hoegh-Guldberg et al., 2014).
However, oxygen concentration is decreasing in the deep sea,
with the largest decline at intermediate water depths (<1000m),
some deeper waters are also decreasing in O2 (Hoegh-Guldberg
et al., 2014).

Ocean warming will very likely lead to further declines in
dissolved O2, estimates of global decline range between 6 and
12µmol kg−1 by 2100, depending on the RCP scenario (Ciais
et al., 2013). The regions most affected by decreasing O2 are the
intermediate to deep waters of the North Atlantic, North Pacific
and Southern Ocean with declines between 20 and 200µmol
kg−1 by 2100 (Hoegh-Guldberg et al., 2014).

Updates to AR5
Recent model projections agree with AR5, suggesting a decrease
in oxygen concentration under every RCP scenario. The modeled
mean reduction in global ocean [O2] is −3.4, −2.5, −2.3,
and −1.8% by the end of the century relative to the 1990s, for
RCP8.5, RCP6.0, RCP4.5, and RCP2.6, respectively (Bopp et al.,
2013).

Models have been limited in their simulation of present day
O2 concentration (Cocco et al., 2013) and as a result there is
uncertainty surrounding the expansion of hypoxic and suboxic
zones, the AR5 report considers it as likely as it is unlikely
that they will expand (Ciais et al., 2013). Cocco et al. (2013)
used models representing the interactions between the physical
climate system, biogeochemical cycles and ecosystems and
predicted a decrease in total ocean dissolved oxygen inventory of
2–4% between 1870 and 2100. The authors found relatively small
changes were projected in the volume of hypoxic and suboxic
waters. Suboxic waters were projected to decrease in volume
by ≤10%. There were discrepancies between model results for
more oxygenated waters; the majority of models predict an
expansion of between 2 and 16% for regions with less than
80mmol m−3 and a decrease in volume of between 0.4 and 4.5%
for water with less than 50mmol m−3.

Ocean Acidification
AR5 Summary
CO2 absorbed by the ocean reacts with the seawater and causes a
decrease in pH, changing the relative abundances of the dissolved
inorganic carbonate species: the concentration of bicarbonate
ions (HCO−

3 ) increases while the concentration of carbonate
ions (CO2−

3 ) decreases, lowering the saturation state (�) of
CaCO3. The carbonate system of seawater, including saturation
state, is affected by temperature, salinity and pressure and,
thus, varies regionally and with depth. The chemical response

of the oceans to increasing CO2 is well understood with very
high confidence (Rhein et al., 2013). There is high confidence
that surface ocean pH has declined by 0.1 pH units since
the beginning of the Industrial Era, corresponding to a 26%
increase in the concentrations of H+ ions (Rhein et al., 2013).
Direct measurements show that the rate of pH decrease is
between −0.0014 and −0.0024 units yr−1 in surface waters
(Rhein et al., 2013).

Regional estimates vary, with some areas better sampled
than others. There is a paucity of time series measurements in
the Southern Ocean surface waters; however, the available data
suggest rates similar to those seen globally (Rhein et al., 2013).
Anthropogenic CO2 has reached at least 1000m in all three ocean
basins and deeper in the Atlantic (Hoegh-Guldberg et al., 2014).
As the waters at the bottom of some oceans basins are very
old, it will take many centuries for full equilibration of deep
ocean waters to recent global warming and CO2 perturbation
(Cao et al., 2014; Hoegh-Guldberg et al., 2014). In upwelling
areas, upwelled water is high in dissolved CO2, exacerbating
ocean acidification driven by anthropogenic activities (Hoegh-
Guldberg et al., 2014).

It is virtually certain that the continued uptake of CO2 by
the oceans will increase ocean acidification (Ciais et al., 2013).
Global decreases in seawater pH are projected to be 0.065 for
RCP2.6, 0.145 for RCP4.5, 0.203 for RCP6.0 and 0.31 for RCP8.5
in 2081–2100 compared to 1986–2005 (Ciais et al., 2013). The
extent of ocean acidification will vary regionally and seasonally
with undersaturated conditions first reached in wintertime (Ciais
et al., 2013). The largest decreases in the concentration of CO2−

3
will be in warmer low and mid-latitudes, as these areas are
naturally high in CO2−

3 concentration but high latitudes and
coastal upwelling areas are projected to be the first to become
undersaturated (Ciais et al., 2013).

Updates to AR5
It has recently been demonstrated that anthropogenic trends in
ocean acidification emerge quickly from the background noise of
natural variability on the local-to-regional scale. Anthropogenic
trends in surface ocean pH (and pCO2) emerge within roughly
12 years, for the majority of the global ocean area, compared
to between 10 and 30 years for surface ocean DIC and 45–90
years for SST (Keller et al., 2014). This implies that anthropogenic
carbon emissions have already forced surface pH values beyond
the range of 20th century natural variability.

Baseline monitoring of the Western Arctic Ocean estimates
that 20% of Canadian Basin surface waters are undersaturated
with respect to aragonite (Robbins et al., 2013) and that the
saturation horizon is shoaling; over 67 and 22% of the bottom
water of Hudson Bay was undersaturated with respect to
aragonite and calcite, respectively (Azetsu-Scott et al., 2014).
In the Arctic, � decreases during ice formation and increases
during ice melt, resulting in a five times larger seasonal amplitude
of the carbonate system in the upper 20m compared to what
is observed in sea ice free systems (Fransson et al., 2013).
Calculated pH trends for the North Atlantic Gyre suggest a
decrease of −0.0022 ± 0.0004 units yr−1 over the period 1981–
2007 (Lauvset and Gruber, 2014). In the North Pacific, a pH
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decrease of −0.0011 ± 0.0004 units yr−1 from 1997 to 2011 has
been calculated (Table 3; Wakita et al., 2013).

It is unlikely that more than 10% of global surface waters
will maintain �a higher than 3 if atmospheric CO2 exceeds
550 ppm by 2100 (Steinacher et al., 2013). It is predicted that
when atmospheric CO2 reaches four times its pre-industrial level,
global mean saturation state of aragonite (�a) horizon will shoal
from the pre-industrial levels of 1288m to 143m (Cao et al.,
2014).

Under RCP8.5, pH reductions exceeding 0.2, units are
projected in 23% of North Atlantic deep-sea canyons and
∼8% of seamounts (Gehlen et al., 2014). Recent work has
found intermediate waters to be twice as sensitive to increased
carbon concentrations as surface waters and project higher rates
(−0.0008 to −0.0023 ± 0.0001 units yr−1, the depending on
RCP) of acidification in intermediate waters than surface waters
over centennial timescales (Resplandy et al., 2013).

Recent projections of future ocean acidification in Polar
Regions estimate that increased ice melt in the Arctic would lead
to enhanced oceanic uptake of inorganic carbon to the surface
layer (Fransson et al., 2013; Reisdorph andMathis, 2014). Within
10 years, 10% of its waters will be undersaturated with respect to
aragonite, and by 2025, under all RCP scenarios, 10% of its waters
are projected to be undersaturated with respect to calcite (Popova
et al., 2014). It is considered likely that large regions of Antarctic
and Sub-Antarctic surface waters will become undersaturated
with respect to aragonite by 2030 (Mattsdotter Björk et al., 2014).

Biological Impacts of Climate Change and
Ocean Acidification

In the following sections the main findings for the impacts of
changes in temperature, dissolved oxygen and ocean acidification

are summarized for microbes, plants, animals and ecosystems.
Corals and coral reefs are treated separately as they represent a
unique and important habitat that is particularly sensitive to the
effects of climate change and ocean acidification.

Impacts of Ocean Warming
The AR5 states that all organisms have an optimum range of
temperature at which physiological processes are most efficient.
The impact of changing temperature depends on the organism’s
specific window of thermal tolerance and ability to acclimate or
adapt to changing conditions, both of which vary greatly among
species. Exceeding these limits can have effects on a wide range of
physiological processes (Poloczanska et al., 2014; Pörtner et al.,
2014).

Organism-specific temperature ranges dictate the distribution
of organisms. A common adaptation to changing temperature
is the displacement of a species to areas of more favorable
temperature (Poloczanska et al., 2014; Pörtner et al., 2014).
Hence, under a warming scenario, poleward migrations are
expected; however, possibilities for migration are limited for
polar organisms. Organisms also respond to temperature-driven
changes in the physical environment such as stratification,
reduced sea-ice cover and freshening (Pörtner et al., 2014).
Unfortunately, for many organisms, poleward movement may
be limited by other factors that restrict migration (Pörtner et al.,
2014).

According to the AR5 there is high confidence that polar and
tropical species are most, and temperate species least vulnerable,
to changes in temperature (Pörtner et al., 2014). As ocean
temperatures are less variable in the Southern Hemisphere
than the Northern Hemisphere, species from the polar regions
of the Southern Hemisphere are predicted to be the most
vulnerable to increasing temperature (Larsen et al., 2014) and
more recent studies add weight to this statement, highlighting

TABLE 3 | Long-term trends of atmospheric (pCO2 atm) and seawater carbonate chemistry (i.e., surface-water pCO2, and corresponding calculated pH,

CO2−

3
and aragonite saturation state (�a) at four ocean time series in the North Atlantic and North Pacific oceans: (1) Bermuda Atlantic Time-series

Study (BATS, 31◦40′N, 64◦10′W) and Hydrostation S (32◦10′N, 64◦30′W) from 1983 to present; (2) Hawaii Ocean Time series (HOT) at Station ALOHA (A

Long-term Oligotrophic Habitat Assessment; 22◦45′N, 158◦00′W) from 1988 to the present); (3) European Station for Time series in the Ocean (ESTOC,

29◦10′N, 15◦30′W) from 1994 to the present; and (4) Iceland Sea (IS, 68.0◦N, 12.67◦W) from 1985 to 2006.

Site Period pCOatm
2

(µ atm yr−1) pCOsea
2

(µ atm yr−1) pHT(yr
−1) [CO2−

3
](µmol kg−1 yr−1) �a(yr−1)

BATS 1983–2009 1.66 ± 0.01 1.92 ± 0.08 −0.0019± 0.0001 −0.59± 0.04 −0.0091± 0.0006

1985–2009 1.67 ± 0.01 2.02 ± 0.08 −0.0020± 0.0001 −0.68± 0.04 −0.0105± 0.0006

1988–2009 1.73 ± 0.01 2.22 ± 0.11 −0.0022± 0.0001 −0.87± 0.05 −0.0135± 0.0008

1995–2009 1.90 ± 0.01 2.16 ± 0.18 −0.0021± 0.0001 −0.80± 0.08 −0.0125± 0.0013

ALOHA 1988–2009 1.73 ± 0.01 1.82 ± 0.07 −0.0018± 0.0001 −0.52± 0.04 −0.0083± 0.0007

1995–2009 1.92 ± 0.01 1.58 ± 0.13 −0.0015± 0.0001 −0.40± 0.07 −0.0061± 0.0028

ESTOC 1995–2009 1.88 ± 0.02 1.83 ± 0.15 −0.0017± 0.0001 −0.72± 0.05 −0.0123± 0.0015

IS 1985–2009 1.75 ± 0.01 2.07 ± 0.15 −0.0024± 0.0002 −0.47± 0.04 −0.0071± 0.0006

1988–2009 1.70 ± 0.01 1.96 ± 0.22 −0.0023± 0.0003 −0.48± 0.05 −0.0073± 0.0008

1995–2009 1.90 ± 0.01 2.01 ± 0.37 −0.0022± 0.0004 −0.40± 0.08 −0.0062± 0.0012

Modified from Rhein et al. (2013).
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the vulnerability of Southern Hemisphere polar organisms to
temperature changes (Chambers et al., 2013; Constable et al.,
2014; McBride et al., 2014).

Microbes

AR5 summary
According to the AR5, warming will enhance microbial growth.
As thermal tolerances are species-specific, continued warming
causes changes in species compositions with warmer conditions
favoring smaller sized species (Pörtner et al., 2014).

Updates to AR5
Recent work by De Senerpont Domis et al. (2014) supports
the assertions of the AR5; showing warming to enhance
phytoplankton growth rates (2014). However, several studies
find that growth is strongly modulated by nutrient availability,
suggesting that under more stratified conditions warming may
have a net negative effect on phytoplankton growth (Chust et al.,
2014; Lewandowska et al., 2014; Marañón et al., 2014). New
model results predict that warming of 2.3◦C leads to a 6%
reduction in phytoplankton biomass (Chust et al., 2014). Recent
work supports the IPCC findings that phytoplankton, including
those that cause harmful algal blooms (HABs), are the taxon that
has displayed the largest latitudinal range shifts concurrent with
climate change, with average distribution shifts of over 400 km
decade−1 (Glibert et al., 2014; Poloczanska et al., 2014). In line
with the findings of AR5, Calbet et al. (2014) observed shifts
in microplankton species compositions, suggesting implications
for the global carbon pump, as small size cells are likely to be
re-mineralized to inorganic carbon at shallower depths. Recent
work has shown that the coccolithophore Emiliania huxleyi is
capable of evolutionary adaptation to ocean warming similar to
that predicted under RCP8.5 (Benner et al., 2013; Schluter et al.,
2014).

Rising temperature has been shown to influence host-
pathogen interactions, increasing infectious disease outbreaks
with pathogens moving polewards (Baker-Austin et al., 2013;
Burge et al., 2014).

Macroalgae and Seagrasses

AR5 summary
There is high confidence that macrophytes are limited in thermal
tolerance and, thus, sensitive to warming, especially in lower
latitudes (Pörtner et al., 2014). Thermal stress has been shown
to affect photosynthesis, growth, reproduction and survival,
with subsequent consequences for macrophyte abundance,
distribution, and productivity. Sea ice retreat in polar areas has
allowed an expansion of macroalgal distribution, via increased
habitat availability (Pörtner et al., 2014).

Updates to AR5
Recent publications support the assertions of the AR5, observing
different distribution shifts and responses to warming in warm
and cold-water species (Brodie et al., 2014; Komatsu et al., 2014)
However, there are some inconsistencies in the literature as
Brodie et al. (2014) predict, “seagrass will proliferate” in the
North Atlantic under future warming. Recent publications add

further evidence that, in temperate regions, kelp mortality, spore
mortality and germination will be negatively affected by projected
temperature increases under RCP8.5 (Brodie et al., 2014; Gaitán-
Espitia et al., 2014). Warming has also been found to increase
the incidence and/or severity of marine diseases affecting eelgrass
(Bockelmann et al., 2013). Increased warming increases the Mg
levels in the calcite of crustose coralline algae although, no
significant trend was observed in samples collected between 1850
and 2010 (Williamson et al., 2014).

Animals

AR5 summary
There is high confidence that surpassing species-specific heat
tolerance limits during warming causes reduced abundance,
mortality, shifts in the seasonal timing, and changes in individual
growth, development, calcification and immunity (Poloczanska
et al., 2014; Pörtner et al., 2014). Although laboratory studies
commonly use temperaturemeans, there is evidence that extreme
temperatures events illicit greater species response than sustained
temperature means, causing mortality and/or latitudinal/depth
range distribution shifts that can cause localized extinctions (high
confidence; Pörtner et al., 2014). During early life, owing to
incomplete development, or as adult spawners, due to large body
size, animals can become more sensitive to warming (Pörtner
et al., 2014).

Updates to AR5
More recent work continues to strongly support the findings
of AR5 that many species are undergoing geographical and
phenological shifts as a result of warming (Vehmaa et al., 2013;
Goberville et al., 2014; Kamya et al., 2014;Mackenzie et al., 2014a;
Church et al., 2013; Mackenzie et al., 2014a,b,c; Queirós et al.,
2014; Rice et al., 2014). The AR5 found that zooplankton have
exhibited some of the most extreme geographic range shifts of
over 100 km decade−1 (Poloczanska et al., 2014). Subsequent
work has observed significant distribution shifts of copepod
species in the North Sea and North Atlantic in conjunction
with warming between 1958 and 2009 (Beaugrand et al., 2014).
Latitudinal range shifts have also been observed in benthic
cnidarians, molluscs and crustacea, non-bony fish and bony fish
(Engelhard et al., 2014; Poloczanska et al., 2014; Potts et al., 2014).

Temperature also governs the distribution and abundance
of large pelagic fish in the Indian, Pacific and Atlantic Oceans
and the work of Mackenzie et al. (2014a) adds weight to the
high confidence of the statement in the AR5 that temperature
anomalies caused a major shift in tuna distribution in these areas.
This may cause high vulnerability in seasonally spawning fish
species (Crozier and Hutchings, 2014; Elettra et al., 2014). There
is medium confidence that warming also causes a decrease in the
body size of some marine fishes (Rice et al., 2014).

Warming has been shown to increase disease incidence in
many marine organisms (reviewed in Burge et al., 2014) and
impair immune responses in host organisms, including shellfish
(Travers et al., 2009), corals (Harvell et al., 2009), and finfish
(reviewed in Bowden, 2008). Recent reemergence of Vibrio
tubiashii, a bacterial pathogen of larval Pacific oysters, was linked
to warming and upwelling of low pH waters (Elston et al.,
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2008). In some cases, though, adaptation to warming may reduce
disease, as heat-resistant Pacific oysters were more resistant to
infection by a herpesvirus (Dégremont, 2011).

Recent work continues to highlight the effects of secondary
drivers such as ocean acidification, hypoxia and food availability
on the capacity of an organism to adapt to changing temperatures
and increasing numbers of recent studies are highlighting the
interactive effects of temperature and secondary drivers (Vehmaa
et al., 2013; Ko et al., 2014; Mackenzie et al., 2014b,c; Madeira
et al., 2014; Pope et al., 2014). A recent study has demonstrated
that trans-generational plasticity can mediate the effects of
warming in a fish species (Shama et al., 2014); however, there
remains low confidence in our understanding of the potential
evolutionary adaptation to warming.

Warm and Cold Water Coral Communities

AR5 summary
Thermal tolerance and recovery capacity of the coral host and
the symbiotic dinoflagellates varies with geography and among
species (Wong et al., 2014). Mass bleaching has more widespread
during the last 20 years; 7% of the reef locations exhibited at
least one bleaching event between 1985 and 1994 compared to
38% between 1995 and 2004 (Wong et al., 2014). There is very
high confidence that bleaching has the potential to cause up to
50% mortality, resulting in declining coral abundance (Figure 5;
Wong et al., 2014).

There is high confidence that mass coral bleaching events
have occurred in all three sub-tropical gyre (STG) regions, in
conjunction with warming (Hoegh-Guldberg et al., 2014). In
the Pacific, there has been a steady decline in coral cover on
coastal coral reef ecosystems ranging between 0.5 and 2.0% yr−1

(Hoegh-Guldberg et al., 2014). High temperature in the Atlantic
STG caused coral mortality in the eastern Caribbean (Eakin
et al., 2010a,b), and in the Indian Ocean, coral cover declined
by an average of 38% following the 1998 and 2010 temperature
extremes (high confidence; Hoegh-Guldberg et al., 2014).

Studies of the thermal sensitivity of cold-water corals are
scarce. One species, Lophelia pertusa, responds to 3◦C warming
with a three-fold increase in metabolic rate, indicating a narrow
thermal window (Pörtner et al., 2014).

Updates to AR5
Studies continue to find that thermal tolerance and recovery
capacity of the coral host and the symbionts varies geographically
and among species (Alemu and Clement, 2014; Cantin and
Lough, 2014; Comeau et al., 2014c; Falter et al., 2014;
McClanahan and Muthiga, 2014). Nevertheless, mass bleaching
events are becoming more predictable due to their relationship
with sustained temperature anomalies of 1 to 2◦C above the
long-term summer maximum (Liu et al., 2014).

Several coral diseases and resultant mortalities have increased
with ocean warming (see review in Burge et al., 2014). Population
crashes of two key reef-building corals (Acropora cervicornis and
Acropora palmata) in the Caribbean (Gladfelter, 1982; Aronson
and Precht, 2001) have now been linked to ocean warming
(Randall and VanWoesik, 2015) and have had drastic impacts on
coral reef ecosystems throughout the region, leading to listing of

the species as Threatened under the United States’ Endangered
Species Act (Weijerman et al., 2014). Temperature increases of
6◦C have also been observed to reduce the production of mucous,
which may increase susceptibility to coral diseases (Pratte and
Richardson, 2014). Dispersal of coral larva is also reduced
under high temperatures, which will weaken connectivity
among populations, thus potentially slowing recovery if local
populations are severely affected (Figueiredo et al., 2014).

Some thermally tolerant species are able to divert cellular
energy into mechanisms for survival and recovery of short-term
heat stress but at the expense of growth and biomineralization
(Maor-Landaw et al., 2014). Studies have shown that repeat
bleaching may impact thermal tolerance; some species are able
to rapidly acclimatize while others become more susceptible
(Grottoli et al., 2014). Models also provide limited evidence that
corals have some capacity to acclimatize to high temperatures but
even considering possible adaptation, it is projected that under
RCP4.5, two thirds of the world’s reefs will be subject to long-term
degradation (Grottoli et al., 2014; Logan et al., 2014; Palumbi
et al., 2014).

Recent work has also suggested that increased temperature
and [CO2] may cause cold-water corals to accumulate
dimethylsulphoniopropionate (DMSP) from the water
column. It has been suggested corals use DMSP in response to
environmental challenges, implying an acclimation response to
CO2 stress (Burdett et al., 2014).

Ecosystems

AR5 summary
Ecosystems that are built around heat sensitive organisms
such as coral reef or kelp forests, may be at increased risk
from warming-induced habitat loss. Within ecosystems, different
tolerances of individual species can cause changes in inter-
specific competition, trophic dynamics and species compositions.
There is low confidence in predicting how ecosystems will react
to immigration of animals as a result of climate change (Pörtner
et al., 2014).

There is medium confidence that in most semi-enclosed seas,
temperature induced faunal latitudinal range shifts have occurred
and in the Mediterranean, Black, and Baltic Seas, increased
temperatures have prompted colonization by invasive warmer
water species (Hoegh-Guldberg et al., 2014). There is medium
confidence that loss of summer sea ice and increased ocean
temperature will enhance secondary pelagic production in some
regions of the Arctic). There is high confidence that these changes
will alter the species composition and carrying capacity with
subsequent effects on fish and shellfish populations (medium
confidence; Larsen et al., 2014).

Updates to AR5
New evidence continues to add to the high confidence level that
observed changes in distribution, phenology and reproduction of
plants and animals in marine ecosystems are, at least partially,
temperature induced (Chambers et al., 2013; Beaugrand et al.,
2014; Goberville et al., 2014; Hiddink et al., 2014; Jones and
Cheung, 2014; Kim et al., 2014; Lambert et al., 2014; Montero-
Serra et al., 2014; Rice et al., 2014). As different species and
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FIGURE 5 | The same coral community (A) before and (B) after a bleaching event in February 2002 at 5m depth, Halfway Island, Great Barrier Reef.

Approximately 95% of the coral community was severely bleached in 2002. Source: Elvidge et al. (2004).

groups have differential responses to warming, effects are seen
at every trophic level and can also be amplified up the food
chain (Pinsky et al., 2013; Chust et al., 2014). Changes in
phenology are not synchronous among phyla and can cause
predator-prey mismatches (Arula et al., 2014; Behrenfeld, 2014;
Lewandowska et al., 2014), changes to species compositions
(Albouy et al., 2014), alterations in food web body size (Gibert
and Delong, 2014) and changes in food web composition
(Verges et al., 2014). Recent work has suggested that this maybe
most pronounced in systems governed by seasonal blooms
(Behrenfeld, 2014).

Changes in the frequency, intensity, and geographic
distribution of marine diseases have had significant impacts on
many ecosystems, particularly if they affect keystone species
(Burge et al., 2014).

Sea Level Rise
AR5 Summary
Vegetated habitats such as mangroves, seagrass meadows,
intertidal rocky reefs and wetlands are the natural systems most
affected by changes in sea level. There is high confidence that
these habitats are in decline with the loss estimated to release
0.04–0.28 PgC yr−1 (Wong et al., 2014). Increasing sea levels
as a result of warming have also caused reductions and range
shifts in seagrass and mangrove systems in the Pacific region
(Hoegh-Guldberg et al., 2014).

Updates to AR5
Recent research adds weight to the findings of AR5 by identifying
vegetated habitats as being particularly vulnerable to sea level
rise (Cazenave and Cozannet, 2014; Di Nitto et al., 2014; Murray
et al., 2014b; Saintilan et al., 2014; Thorner et al., 2014). There is
medium confidence that some coral reefs will be able to keep up
with the projected rate of sea level rise (Hamylton et al., 2014;
Woodroffe and Webster, 2014). However, increasing evidence
suggests increased erosion and export of land-based sediments
and pollutants will exacerbate existing stress to nearshore corals
(Storlazzi et al., 2011). Because even small populations of humans
in close proximity to coral reefs can be deleterious (Knowlton and
Jackson, 2008), evacuation of low-lying islands may reduce stress
to some reefs.

Decreasing Dissolved Oxygen Concentration
Under hypoxic conditions, species with higher O2 demands are
lost and, if hypoxic conditions are sustained, communities that
thrive in low O2 environments replace them (Pörtner et al.,
2014). Oxygen demand depends on species, body size, life stage,
metabolic activity and temperature. In extreme temperatures,
critical O2 concentration is almost the same as fully O2 saturated
water, indicating increased sensitivity to hypoxia in increased
temperatures (Pörtner et al., 2014).

Microbes

AR5 summary
OMZs form habitat for both anaerobic and aerobic microbes that
can utilize very low (<1µmol kg−1) [O2]. In OMZs, microbial
respiration drives O2 concentration down and maintains low
concentrations. There is high confidence that microbial life will
benefit from expanding OMZs (Pörtner et al., 2014).

Updates to AR5
Storch et al. (2014) observed communities shifting to
smaller, multicellular Eukarya, Bacteria and Archaea under
diminished O2.

Animals and Plants

AR5 summary
Special adaptations to hypoxia and lower energy demand are
present in animals that live permanently in OMZs but this is only
possible for animals of small size (<1mm), in cold temperatures
(Pörtner et al., 2014). There is little information on the sensitivity
of macrophytes to hypoxia; however, negative responses have
been observed in eelgrasses so there is medium confidence that
expanding benthic OMZs will constrain the distribution of
macrophytes (Pörtner et al., 2014).

Updates to AR5
Few animals have developed strategies to temporarily cope with
hypoxic conditions and recent research adds weight to the high
confidence level that hypoxia-adapted life forms, such as the
jumbo squid, will benefit from expanding OMZs (Stewart et al.,
2014). Range expansion of hypoxia adapted squid has been
observed (Stewart et al., 2014) and meta-analysis supported the
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oxygen- and capacity-limited thermal tolerance (OCLTT) theory
on the interactive effect of O2 and temperature (Portner, 2010),
limiting the depth distributions of non-hypoxia adapted fish and
invertebrates (Brown and Thatje, 2014).

Ecosystems

AR5 summary
There is medium confidence that expansions of OMZs, will
result in habitat and abundance losses for taxa with high
O2 demands (Pörtner et al., 2014). As many pelagic species
migrate vertically on a daily and seasonal basis, the shoaling
of OMZs will affect migrations and shift microbial and faunal
compositions to organisms that can tolerate brief exposure to
hypoxia (medium confidence; Pörtner et al., 2014). Larval stages
are particularly sensitive, suggesting that the impacts could
threaten population survival and affect higher trophic levels
(Pörtner et al., 2014). There is high confidence that, as a result of
increased energy demand, calcifiers are particularly sensitive to
hypoxia (Pörtner et al., 2014). Expansions of OMZs are predicted
to compress habitat depth for hypoxia-intolerant fish (Hoegh-
Guldberg et al., 2014). Oxidation reactions in OMZs release
nitrogen into the atmosphere meaning that less fixed nitrogen
is available to primary producers as a result there is medium
confidence expansion of OMZs will limit primary productivity
(Pörtner et al., 2014).

Updates to AR5
Observed range changes in non-hypoxia tolerant halibut, adds
weight to the findings of AR5 (Sadorus et al., 2014). The work of
Cheung et al. (2014) supports the assertions of the AR5, finding
high sensitivity in the larvae of benthic invertebrates. Decreases
in coral photosynthesis observed under hypoxic conditions
suggest that decreasing oxygen concentrations could have
potential negative implications for reef ecosystems (Wijgerde
et al., 2014).

Ocean Acidification
A wide range of organismal functions are affected by ocean
acidification including: membrane transport, calcification,
photosynthesis, neuronal processes, growth, reproductive
success and survival. Due to the direct effect of decreased
�, calcifying species are thought to be at greatest risk from
decreasing pH. Very little is known about the capacity for
evolutionary adaptation as most experiments investigating the
effects of ocean acidification are run over relatively short time
periods (Pörtner et al., 2014). Here, the term ocean acidification
primarily refers to the reduction in pH, the reduction in
carbonate ion concentration �, and the increase in bicarbonate
ion concentration and dissolved CO2 concentration in response
to carbon dioxide uptake.

Microbes

AR5 summary
Due to insufficient field observations there is limited evidence
and low agreement on how future conditions will affect
microorganisms. Ocean acidification can drastically alter the
species composition of phytoplankton assemblages, and has been

linked to increased occurrences of harmful algal blooms (HAB) of
diatoms and dinoflagellates. There is low to medium confidence
on the effects of ocean acidification on nitrogen (N2) fixing
cyanobacteria due to the wide range of N2 fixation responses
observed in laboratory experiments. There is medium to high
confidence that foraminiferal calcification is negatively affected by
acidification (Pörtner et al., 2014).

Updates to AR5
New research suggests that ocean acidification might benefit
bacterial communities by elevating growth (Endres et al., 2014)
and increased benthic bacterial diversity has been observed along
natural CO2 gradients (Taylor et al., 2014). Other studies have
found no detectable effects of ocean acidification on natural
bacterial communities (Ahrendt et al., 2014; Gazeau et al., 2014).
There is low to medium confidence on the effects of ocean
acidification on nitrogen (N2) fixing cyanobacteria. A wide range
of N2 fixation responses under RCP8.5 conditions have been
observed in laboratory experiments (Böttjer et al., 2014; Eichner
et al., 2014; Gradoville et al., 2014), possibly due to species-
specific differences in the mechanisms of N2 fixation (Eichner
et al., 2014).

There is medium evidence and low agreement on how
coccolithophore growth and calcification will be affected as they
exhibit highly varied responses depending on species, strain
and secondary environmental controls such as irradiance, bloom
species composition and nutrient availability (Benner et al., 2013;
Horigome et al., 2014; Muller and Nisbet, 2014; Poulton et al.,
2014; Sett et al., 2014; Young et al., 2014). There is evidence
that the coccolithophore, Emiliania huxleyi, has the capacity to
evolve genetic adaptions to both warming and ocean acidification
expected under RCP8.5 (Benner et al., 2013; Lohbeck et al., 2014;
Schluter et al., 2014).

Khanna et al. (2013) adds to the medium to high confidence
that foraminiferal calcification is negatively affected by
acidification. The severity of effects on benthic foraminifera are
species and symbionts-specific (Doo et al., 2014). Planktonic
foraminifera are predicted to experience the greatest decrease in
diversity and abundance in sub-polar and tropical areas, under
RCP8.5 (Roy et al., 2014).

Macroalgae and Seagrasses

AR5 summary
Non-calcifying species generally exhibit positive growth
responses to increasing [CO2] (Pörtner et al., 2014). There is
high confidence that conditions of 720–1800µatm CO2 stimulate
increases in primary production, shoot density, reproductive
output and below ground biomass (Pörtner et al., 2014).
There is medium confidence that impacts on calcification and
respiration are observed when species-specific pCO2 thresholds
are surpassed (Pörtner et al., 2014).

Updates to AR5
Non-calcifying species generally exhibit positive growth
responses to increasing [CO2] although these responses are
season and species specific (Longphuirt et al., 2013), although

Frontiers in Marine Science | www.frontiersin.org 13 June 2015 | Volume 2 | Article 36

http://www.frontiersin.org/Marine_Science
http://www.frontiersin.org
http://www.frontiersin.org/Marine_Science/archive


Howes et al. Climate change in the oceans

these effects can be modulated by nutrient availability (Martínez-
Crego et al., 2014). The work of Betancor et al. (2014) adds
more evidence to the low confidence levels of the AR5 that ocean
acidification can impair the production of grazer-deterrent
substances.

Recent work continues to find complex and varied responses
to ocean acidification in calcifying macrophytes (James et al.,
2014; Johnson et al., 2014b; McMinn et al., 2014). Changes
in species composition along natural CO2 gradients have
been observed (Ordoñez et al., 2014) but negative effects
on calcification can be mediated by inter-specific interactions
(Reyes-Nivia et al., 2014; Short et al., 2014) and acclimatization
(Johnson et al., 2014a). There is medium confidence that
significant dissolution of living and dead maerl beds will occur,
both of which provide important habitat for associated fauna
(Brodie et al., 2014). Crustose coralline algae display species
specific increases in calcification up to 900µatm and decreases
after the species-specific threshold is reached (McCoy and
Kamenos, 2015). Greater instances of dissolution and deformities
have also been observed in crustose coralline algae populations at
natural CO2 vent sites (Brinkman and Smith, 2015).

Animals

AR5 summary
Species-specific responses to ocean acidification are mixed
(Pörtner et al., 2014). Amongst benthic invertebrates, calcifying
organisms are more sensitive than non-calcifying. There is
medium confidence that increased calcification under lowered pH
increases energetic costs at the expense of other physiological
processes (Pörtner et al., 2014). Early life stages are thought to
be more sensitive to ocean acidification drivers and there is high
confidence in attributing fatalities at oyster farms to upwelling,
CO2 rich waters. Despite experimental observation of ocean
acidification effects, the AR5 highlights the lack of field evidence
of current ocean acidification effects in natural communities
(Pörtner et al., 2014).

Updates to AR5
Recent studies continue to find reduced calcification, reduced
rates of repair calcification and weakened calcified structures
under acidified conditions (Bressan et al., 2014; Coleman et al.,
2014; Fitzer et al., 2014; Pörtner et al., 2014; Wei et al., 2015).
Some species have been observed to increase calcification rates at
pCO2 ranging from 600 to 900µatm, before a decrease at higher
pCO2 (Collard et al., 2014; Dery et al., 2014; Langer et al., 2014).

More evidence of the negative effects of decreasing pH on
fertilization success of invertebrates has been found (Sewell et al.,
2013; Bögner et al., 2014; Frieder, 2014; Scanes et al., 2014; Sung
et al., 2014) and RCP8.5 acidification has been shown to have
negative effects on clam larval dispersal (Clements and Hunt,
2014).

In the California Current System, pteropod shell dissolution
due to undersaturated waters can already be observed (Bednaršek
et al., 2014). Studies on non-calcifying zooplankton indicate a
variety of sub-lethal effects under RCP8.5, including decreased
egg production, lower hatch success and decreased survival of
nauplii in copepods (Vehmaa et al., 2013; Zervoudaki et al.,

2013; Pedersen et al., 2014). The AR5 has high confidence that
embryos of Antarctic krill are vulnerable to increased seawater
concentrations of CO2 (Larsen et al., 2014) but Atlantic species
have been found to be resilient (Sperfeld et al., 2014).

Fish, including some commercially important species such as
cod and herring, have been shown to be reasonably resistant to
the effects of ocean acidification (Jutfelt and Hedgärde, 2013;
Chambers et al., 2014; Maneja et al., 2014). However, deformities
in calcified structures (Pimentel et al., 2014) and damage
to internal organs continue to be observed under conditions
predicted for 2100 under RCP8.5 (Frommel et al., 2014). The
strongest effects observed in fish are behavioral, lower pH has
been observed to affect predator avoidance, prey detection,
odor detection, retinal function, lateralization, boldness and
swimming behaviors in fish (Caprio et al., 2014; Chung et al.,
2014; Dixson et al., 2014; Domenici et al., 2014; Munday et al.,
2014; Murray et al., 2014a; Welch et al., 2014).

Recently published reviews highlight the lack of long-term
studies on ocean acidification and the lack of direct experimental
evidence of evolutionary adaptation in animals (Reusch, 2014;
Sunday et al., 2014). Nevertheless, evidence of a few examples of
genetic variations are emerging and have been observed in sea
urchins and polychaete worms (Calosi et al., 2013; Kelly et al.,
2013; Pespeni et al., 2013), as well as genetic variations in fish
that could illicit evolutionary adaptation (Malvezzi et al., 2015).
Acclimatization and trans-generational phenotypic plasticity
over longer-term experiments have been observed in sea urchins
(Dupont et al., 2013) and carry over effects of brief exposure to
acidification on growth of oyster larvae (Hettinger et al., 2013).

Warm and Cold Water Corals

AR5 summary
There is high confidence that warm-water corals will be sensitive
to future ocean acidification, although the magnitude of response
is species specific (Figure 6; Wong et al., 2014). Some species
of warm-water and cold-water corals may display resistance to
lowered pH and can maintain positive net calcification under
aragonite saturation states <1 (Pörtner et al., 2014).

Updates to AR5
Observations of reductions in calcification continue to
demonstrate a species-specific response in both cold and
warm water species (Comeau et al., 2014d; Movilla et al.,
2014), with fast calcifiers affected more than slow calcifiers
(Comeau et al., 2014d). Holcomb et al. (2014) find that response
is affected by the internal pH of the calcifying fluid. Despite
inter-specific differences in pH tolerance, reef ecosystems may be
disproportionately affected if keystone species are lost (Alvarez-
Filip et al., 2013). The magnitude of calcification response to
acidification is also highly geographically specific, suggesting
that secondary factors such as irradiance, nutrient availability
and interactions with other ecosystems, such as mangroves,
can mediate the effects on calcification (Comeau et al., 2014a,c;
Enochs et al., 2014; Gibbin et al., 2014; Tanaka et al., 2014;
Wendel, 2014; Yates et al., 2014).

Ocean acidification has been shown to have significant effects
on dissolution of warm-water corals, with up to 59% lower
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FIGURE 6 | Three CO2 seeps in Milne Bay Province, Papua New Guinea show that prolonged exposure to high CO2 is related to fundamental changes

in the ecology of coral reefs. (A) Low pCO2, pHT ∼ 8.1, (B) high pCO2, pHT ∼ 7.8 to 8.0, (C) very high pCO2, pHT < 7.7. Source: Fabricius et al. (2011).

net community calcification (Comeau et al., 2014b; Silbiger and
Donahue, 2014) observed under RCP8.5 conditions and already
resulting in enhanced erosion of reef framework carbonates
(Silbiger and Donahue, 2014). There is also evidence that
acidified conditions can reduce fertilization and settling success
of larvae (Uthicke et al., 2013).

Ecosystems

AR5 summary
As the effects of ocean acidification are complex and species
specific, it is difficult to accurately assess the impacts at the
ecosystem level. There is high confidence that ocean acidification
will have a wide range of direct and indirect effects on ecosystems
(Pörtner et al., 2014). There is medium confidence that naturally
high CO2 environments are associated with species compositions
that favor non-calcifying species, suggesting that calcifiers are
outcompeted once pH reaches 7.8–7.7 (Pörtner et al., 2014).
There is high confidence that areas prone to low �, such as
upwelling systems and the polar seas, will be strongly affected
by ocean acidification. There is high confidence that Arctic
ecosystems are also at high risk due to the exacerbating effects
of freshwater from melting sea ice. There is high confidence that
elevated CO2 causes losses in diversity, biomass and trophic
complexity of benthic marine communities (Pörtner et al., 2014).

Updates to AR5
A variety of recent publications further demonstrate that the
severity and the magnitude of effects will vary with the type of
ecosystem, geographical location, species composition and the
influence of secondary environmental drivers (Garrard et al.,
2014; Hendriks et al., 2014; Martínez-Crego et al., 2014; Park
et al., 2014; Richier et al., 2014). There is added confidence
that ecosystems built around heavily calcified structures such as
coral and vermetid reefs or maerl beds are at high risk from
ocean acidification (Alvarez-Filip et al., 2013; Brodie et al., 2014;
Comeau et al., 2014b; Milazzo et al., 2014).

The Arctic food web is relatively simple, with pteropods acting
as an important trophic link (AMAP, 2014). A recent assessment
adds to themedium confidence of the AR5 that negative effects on
pteropods will have wider consequences for the Arctic ecosystem,
potentially affecting important fisheries (AMAP, 2014).

Effects of Multiple Drivers
There is high confidence that the effects of climate change will
act on organisms and ecosystems as a suite of simultaneous
environmental drivers which will interact with each other to
have synergistic or antagonistic effects on the fitness of the
individual or ecosystem. There is also growing evidence that the
interactions of other environmental factors such as irradiance,
nutrient availability geographic location and species community
composition can strongly modulate the biological effects of
warming, ocean acidification and hypoxia (Ko et al., 2014;
Comeau et al., 2014a,c; Poulton et al., 2014; Pörtner et al.,
2014).

Microbes

AR5 summary
Experiments and models show mixed responses to multiple
drivers on microbial biota in the surface ocean. The effect of
RCP8.5 levels of CO2 on growth is species specific and these
differences can alter bloom species compositions, with potential
impacts on predator-prey interactions. Shifts to different
phytoplankton species compositions can alter the sinking rates
of particles, as bacteria decompose these particles, it can alter the
levels of dissolved oxygen, potentially expanding OMZs (Pörtner
et al., 2014).

Updates to AR5
Emiliania huxleyi has demonstrated the ability to adapt to
concurrent warming and acidification (Lohbeck et al., 2014;
Schluter et al., 2014). Recent work highlights that the effects of
RCP8.5 levels of CO2 on growth is species specific with and can
be stronglymodulated by nutrient availability (Hoppe et al., 2013;
Marañón et al., 2014), light conditions and temperature (Errera
et al., 2014; Sett et al., 2014).

Plants and Animals

AR5 summary
There is high confidence that the interaction among warming,
acidification and hypoxia predicted for 2100 under RCP8.5
can have synergistic negative effects on organisms. There is
high confidence that warming acts synergistically with CO2

to decrease calcification and increase sensitivity to bleaching
in warm-water corals (Comeau et al., 2014a; Pörtner et al.,
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2014). Combined warming and ocean acidification inmesocosms
following approximately RCP4.5 and RCP8.5 scenarios caused
losses of symbionts and corals, and a nocturnal decalcification
of the reef community in summer (Pörtner et al., 2014).
Hypoxia reduces heat tolerance and vice versa and there
is high confidence that warming will expand the area of
ecosystems affected by hypoxia, even if oxygen concentrations
remain unchanged. This is likely to restrict geographic and
depth ranges, particularly in upwelling areas (Pörtner et al.,
2014).

Updates to AR5
It has been observed that increasing temperature increases the
levels of Mg incorporated into crustose coralline algae calcite,
with potentially synergistic negative effects with acidification
as high Mg calcite dissolves more readily (Williamson et al.,
2014). The combination of warming and high irradiance has
been shown to increase bleaching in crustose coralline algae but
recovery is possible if favorable conditions resume (McCoy and
Kamenos, 2015).

Results continue to show interaction among warming,
acidification and hypoxia effects under conditions predicted
in 2100 under RCP8.5. Synergistic negative effects have
been observed on the growth, survival, fitness, calcification
and development of organisms (Padilla-Gamino et al.,
2013; Vehmaa et al., 2013; Gaitán-Espitia et al., 2014;
Gobler et al., 2014; Hyun et al., 2014; Mackenzie et al.,
2014b; Madeira et al., 2014; Maugendre et al., 2014,
Rastrick et al., 2014; Roy et al., 2014; Schram et al., 2014;
Rosa et al., 2014a,b; Schmidt et al., 2014a). In some cases,
hypoxic conditions have been observed to mediate the negative
effects of ocean acidification (Mukherjee et al., 2013).

Ecosystems

AR5 summary
There is high confidence that the effects of climate change
are already causing changes to the physical and chemical
characteristics of habitats and altering food webs (Pörtner et al.,
2014). There is high confidence that the indirect effects of
climate change, such as shifts in stratification and productivity,
expanding OMZs, and the changing composition and biomass of
food are exacerbating the effects on ecosystems (Pörtner et al.,
2014).

There is high confidence that the combined effects of
increased temperature, hypoxia, and ocean acidification will have
significant impacts on organisms that act as ecosystem engineers,
such as coral or kelp (Dove et al., 2013; Pörtner et al., 2014). Thus,
climate change could drastically alter ecosystems by reducing
habitat quality and extent.

There is high confidence that species’ range distributions and
phenologies will be affected by climate change, altering the
trophic interactions in a given area (Pörtner et al., 2014). It is
likely that some of these changes may be irreversible as the effects
of changes at the base of the food web can be amplified up trophic
levels and drive the ecosystem to a new regime that may become
permanent (Figure 7; Pörtner et al., 2014).

Updates to AR5
Recent studies have modeled the effects of multiple drivers on
ecosystems highlighted implications for plankton biomass and
trophic functioning (Chust et al., 2014; Guénette et al., 2014).
Chust et al. (2014) predicted a global reduction in phytoplankton
and zooplankton biomass by 6 and 11%, respectively, with
negative tropic amplification of climate change effects for 47%
of the ocean. A study focusing on the Scotian Shelf ecosystem
found that the effects of climate change could be enhanced
or ameliorated by predator–prey interactions and predicted a
reduction in biomass of 19–29% by 2100 under RCP8.5 (Guénette
et al., 2014).

Future Projections

Due to the relative lack of knowledge on the interacting effects of
environmental drivers and the complexity of the marine trophic
web, it is difficult to make ecosystem wide projections. It is likely
that under both RCP4.5 and 8.5 there will be significant poleward
migrations and phenological shifts in many groups of organisms
(Pörtner et al., 2014). It is very likely that these effects will be
amplified under RCP8.5 compared to RCP4.5 (Figure 8; Pörtner
et al., 2014). It has also been suggested that there will be losses
in biodiversity, particularly in the tropics (Pörtner et al., 2014).
There may also be shifts to smaller body sizes due to thermal
stress, exacerbated by interactions with other drivers (Figure 8;
Pörtner et al., 2014).

Possible expansion of OMZs will likely affect trophic
interactions, species distribution, migration and composition.
Small-bodied (<1mm) hypoxia-tolerant animals and microbes
will benefit at the cost of large bodied, active animals with high
metabolic oxygen demands. There will be a loss of biodiversity
as communities shift to specialists that are adapted to tolerate
hypoxic conditions (Pörtner et al., 2014). Due to the specialized
nature of animals living in hypoxic conditions, there is high
confidence that expansion of OMZs will decrease biodiversity
(Pörtner et al., 2014).

Microbes
New research from Storch et al. (2014) provide evidence that
small, less complex eukarya, bacteria and archaea will benefit
and proliferate under climate change as they evolve rapidly
and can survive anaerobic conditions and higher temperatures
(Figure 8).

There is medium to low confidence that the levels of ocean
acidification projected under RCP8.5 will be beneficial for
most non-calcifying phytoplankton and cyanobacteria (Figure 8;
Pörtner et al., 2014). There is medium confidence that
coccolithophores are vulnerable to projected end of century
pH but new evidence from natural populations found in high
CO2 waters and long-term laboratory experiments lendsmedium
confidence that they will be able to adapt to future conditions
(Benner et al., 2013; Lohbeck et al., 2014; Pörtner et al., 2014).

Average global primary production is projected to decrease
under RCP8.5 due to a lack of nutrients as the result of
stratification (Pörtner et al., 2014); however, in high latitude
spring blooms systems, photosynthesis is projected to increase.
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FIGURE 7 | Schematic diagram of expected responses to climate

change in a marine food web. A coupled pelagic and benthic food web is

structured by the body size spectrum of species. Combined warming,

hypoxia, and ocean acidification reduce body size, shift biogeographies,

change species composition and abundance, and reconfigure trophic

linkages and interaction dynamics. Fishing generally removes large-bodied

species and truncates the body-size spectrum of the community. This

confounds the detection and attribution of food web responses to climate

change. Arrows represent species interactions (e.g., between predator and

prey or competitors for food or space). Broken lines reflect the potential loss

of populations and trophic linkages due to climate change. Source: Pörtner

et al. (2014).

There is high confidence (with added weight from recent
studies) that warming is also driving changes in phenology
of plankton groups and will continue to do so under RCP8.5
(Behrenfeld, 2014; Hoegh-Guldberg et al., 2014; Poloczanska
et al., 2014). From a global perspective, net primary productivity
under RCP4.5 will show similar patterns to those projected
under RCP8.5, decreasing moderately overall by 2100 but
with increases in high latitude systems (Pörtner et al.,
2014).

Macrophytes
There is low confidence that seagrasses and non-calcifying
macroalgae will benefit under RCP8.5 conditions. As fleshy
macroaglae are cool water adapted, it is predicted that under
RCP8.5 warming, they will undergo significant changes in
their distribution (Figure 8; Brodie et al., 2014). Seagrasses are
thought to be more tolerant of increasing temperatures and may
proliferate, particularly if they are able to colonize ecological

niches provided by the decline of less tolerant groups such as
crustose coralline algae (Figure 8; Brodie et al., 2014; Pörtner
et al., 2014).

Animals
Temperature increase will lead to poleward migrations and
phenological shifts with potential predator prey mismatches.
Reduced ocean productivity will reduce the energy available to
higher trophic levels and so fishery catches are projected to
decrease in temperate and equatorial biomes by 38 and 15%,
respectively under RCP8.5 (Figure 8; Pörtner et al., 2014).

Non-calcifying zooplankton are thought to be reasonably
resilient to the effects of ocean acidification but sensitive to
change in SST (Pörtner et al., 2014). The AR5 and more
recent studies find it likely that zooplankton will continue to
display large geographic and phenological shifts under increasing
temperatures (Figure 8; Chambers et al., 2013; Poloczanska et al.,
2014).
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FIGURE 8 | Projected changes to physical features in the oceans

and some of the potential impacts on life in the oceans under

RCP4.5 (A) and 8.5 (B), based on the findings reported in the

IPCC AR5 and literature published since the cut off dates

(15/03/2013 for working group I and 31/08/2013 for working

group II). It is projected that thermocline and lysocline will shoal to a

greater extent and OMZs will expand more under RCP8.5 compared to

4.5. These changes will favor bacteria and hypoxic specialists (Pörtner

et al., 2014; Storch et al., 2014) and limit the depth ranges of many

species, causing habitat loss (Pörtner et al., 2014). In general, it is

predicted that there will be a shift toward smaller body sizes and that

many species will exhibit poleward migrations in response to increasing

sea temperatures (Pörtner et al., 2014). Icons provided by

http://ian.umces.edu/imagelibrary.html.

New research adds to the high to medium confidence
that calcifying invertebrates, including commercially important
species such as oysters, mussels and clams, will be vulnerable
to end of century ocean acidification (Clements and Hunt,
2014; Scanes et al., 2014). There remains low confidence that
crustaceans will be able to tolerate the projected pH decrease

(Figure 8; Harms et al., 2014; Pörtner et al., 2014). These
projections have profound implications for future trophic
interactions and ecosystem function, as it is likely that many
calcifiers will be out-competed by non-calcifying species. There
is high confidence that elevated CO2 will cause losses of diversity,
biomass and trophic complexity in benthic marine communities
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(Pörtner et al., 2014). The fossil record shows that ocean
acidification events in geological history are marked by mass
extinctions of calcifying taxa. It is likely that species extinctions
will occur under RCP8.5.

Fish are also projected to be vulnerable under RCP8.5
conditions and there is low confidence from model predictions
that ocean acidification will generally reduce fish biomass and
catch (Pörtner et al., 2014). New projections support the AR5
statement that warming of Arctic waters under RCP8.5 will allow
significant distributional shifts and potential interchange of fish
species between the North Pacific and the North Atlantic, causing
changes to fisheries, trophic dynamics and ecosystem functioning
(Jones and Cheung, 2014; Wisz et al., 2015).

There remains low confidence that certain groups of calcifying
invertebrates will be tolerant to RCP4.5 conditions, including
foraminifers and some pelagic molluscs and medium confidence
that crustaceans will also be able to tolerate these conditions
(Pörtner et al., 2014). There is also low confidence that many fish
species will be resistant under RCP4.5 (Pörtner et al., 2014).

Corals
There is very high confidence that, as warming progresses,
coral bleaching and mortality will increase in frequency and
magnitude over the next decade. Under A1B emission scenario
(approximately RCP6.0), 99% of the reef locations will experience
at least one severe bleaching event between 2090 and 2099 (Wong
et al., 2014). New studies that take into account potential coral
acclimation still predict that more than 50% will experience
high frequency bleaching under RCP8.5 (Logan et al., 2014),
causing long-term degradation by 2020 (Figure 8; Pörtner et al.,
2014). There remains limited evidence and low agreement as to
whether corals will be able to acclimate or adapt to increasing
temperatures enough to limit bleaching events (Wong et al.,
2014). There is high confidence that bleaching events will
negatively impact coral community structure and diversity,
with medium confidence of bleaching affecting the abundance
and species composition of fish communities (Pörtner et al.,
2014). New models that account for coral acclimation, predict
that fewer than 50% of corals, globally, may experience high
frequency bleaching under RCP4.5 throughout the 21st century
(Logan et al., 2014), however, there is considerable question as
to whether coral adaptive responses can truly keep pace with
expected warming. Additionally, while some corals may find
geographic refuge due to differential spatial patterns of 21st
century warming (Van Hooidonk et al., 2013), opposing spatial
gradients in ocean acidification may render them unable to keep
pace with erosion as their calcification declines (Van Hooidonk
et al., 2014).

There is high confidence that warm-water corals will be
vulnerable to decreasing pH under RCP8.5 with widespread
dissolution of reefs (medium confidence) and reduced larval
dispersal and settlement (low confidence) occurring by 2100
(Wong et al., 2014). This is very likely to reduce habitat and
refugia for associated fauna. There is high confidence that
calcifying algae, which are associated with coral reefs are also
vulnerable under RCP8.5 scenarios, many species are important
for reef stability and function, therefore, losses may further

impact coral reef health. There is medium confidence that
an atmospheric CO2 concentration expected under RCP4.5
(560 ppm) is the threshold at which global dissolution of reefs
will occur (Wong et al., 2014). The habitat loss associated with
reef dissolution under RCP4.5 will be less severe than for RCP8.5.
There is low confidence as to whether RCP4.5 conditions will alter
distribution of cold corals (Pörtner et al., 2014).

Ecosystems
It is virtually certain that climate change will cause major
changes to ecosystems in high latitude spring bloom systems;
warming is a primary driver of ecosystem changes in the North
Atlantic (Goberville et al., 2014; Hoegh-Guldberg et al., 2014).
There is high confidence that expansion and contraction of
faunal ranges have been observed, with an associated increase in
diversity as warmer water species colonize new areas (Figure 8;
Hoegh-Guldberg et al., 2014; Poloczanska et al., 2014).

There is medium confidence that export of organic matter to
the deep sea is controlled by temperature and that warming and
changes to primary productivity in the upper ocean will reduce
the export of organicmatter to the deep sea. This has the potential
to affect the distribution, abundance and composition of faunal
communities in the deep sea (Hoegh-Guldberg et al., 2014).

The effects of warming will be less severe under the conditions
predicted by the end of the century under emissions RCP4.5
than for RCP8.5. Nonetheless, many plants and animals will
still be severely affected; however, species distributions and
phenological shifts are likely to be less extreme with fewer
negative implications on trophic interactions (Pörtner et al.,
2014).

Discussion

Research published following AR5 endeavored to address many
of the key uncertainties highlighted by the IPCC. Physical and
biogeochemical advances include an improved understanding
of variability and a growing observational coverage in key
environmental drivers such as temperature, carbon and pH.
New studies show that ocean heat content continues to increase
and anthropogenic climate change continues at high speed.
Ecological advances included studies assessing climate-related
impacts to different developmental stages of various taxa, as
well as an improved understanding of impacts arising from
ocean acidification. In most cases the studies published since
AR5 agree or add further weight to a growing body of evidence
and, therefore, do not significantly alter the projections of future
impacts.

The start of this review lists six key uncertainties, identified
by the AR5, regarding potential climate-related impacts on
biological and physical systems. In light of the new research
detailed in this review, these points are revisited and reassessed.

(1) The extent of warming in deep water masses (below

700 m) and limited observational coverage of the ocean,

hampering more robust estimates of ocean heat and

carbon content.

New studies suggest that the warming hiatus in SST may
be caused by heat sequestration in deep ocean basins and
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natural variability associated with Atlantic and Pacific multi-
decadal oscillations. Improved estimates of warming in the
deep ocean and southern hemisphere have been proposed
(see section Warming).

(2) The likelihood of climate-induced changes to major

upwelling systems (i.e., increased or decreased upwelling)

is still uncertain (Lluch-Cota et al., 2014).

Models have improved assessment of changes to
upwelling systems that have that have already occurred and
added weight to the growing body of evidence that predicts
regional intensification of upwelling (see section Upwelling).

(3) Ways in which climate-induced changes in the physiology

and biogeography of an individual species may alter

ecosystem structures, species interactions, and food webs.

Recent studies have identified additional evidence of
changes in community size structure (Gibert and Delong,
2014) and food web composition (Chust et al., 2014; Verges
et al., 2014), with observed examples of community phase
shifts across polar, temperate and tropical marine ecosystems
(Beaugrand et al., 2014; Engelhard et al., 2014; Potts et al.,
2014; Verges et al., 2014).

(4) An improved understanding of climate sensitivity at the

ecosystem level that considers multiple drivers (e.g., ocean

warming, acidification, and hypoxia) and synergistic

impacts.

Studies have recently begun to investigate ecosystem-level
responses to climatic stressors (Chust et al., 2014; Comeau
et al., 2014b; Guénette et al., 2014; Silverman et al., 2014;
Hendriks et al., 2015), although there is still a paucity of
ecosystem level studies that address the impacts of multiple
drivers (see section Effects of Multiple Drivers).

(5) The degrees to which species can track changes in climate

as well as the influence of multiple stressors on their

capacities to respond remained uncertain.

Empirical and theoretical evidence continues to support
the role of climate velocity in influencing species range
shifts (Pinsky et al., 2013; Hiddink et al., 2014). Shifts
in nutrient availability are a key driver for phytoplankton
growth, possibly negating the positive growth effects of
warming. Increasing numbers of studies examine the impact
of multiple stressors on single species (see section Plants and
Animals).

(6) The capacity for phenotypic and evolutionary adaptation

over generations to respond to long-term climate change.

Increasing numbers of studies have begun to address
this question. Trans-generational phenotypic plasticity
is observed in response to warming and acidification
(see sections Ocean Acidification and Impacts of Ocean
Warming), suggesting the potential for genetic adaptation.
Two recent studies find evidence of coccolithophores
demonstrating evolutionary adaptation under ocean
warming and acidification (Lohbeck et al., 2014; Schluter
et al., 2014). Despite recent work, there is still a distinct
paucity of studies addressing the long-term evolutionary
response to climate change stressors, particularly in animals.

Conclusions

Anthropogenic emissions have caused measurable physical
changes in the oceans. The oceans absorb 93% of the excess
energy produced by global warming and approximately 28%
anthropogenic CO2, buffering the effects of climate change
(Rhein et al., 2013). This buffering is not without cost and
changes in ocean temperature, pH, and oxygen content have
been observed over the second half of the 20th century
(Rhein et al., 2013). Increasing atmospheric CO2 will always
lead to an increase in ocean carbon storage, all other things
being held constant (Ciais et al., 2013), thus 21st century
emissions will determine the condition of the world’s oceans
for centuries to come (Ciais et al., 2013). Under both RCP4.5
and 8.5, physical changes are projected to continue but with
greater severity under RCP8.5 (Bopp et al., 2013; Ciais et al.,
2013).

Impacts of warming on biological processes can already
be observed (Poloczanska et al., 2014; Pörtner et al., 2014)
as organisms shift their distributions polewards (Poloczanska
et al., 2014), alter phenology (Pörtner et al., 2014) and
instances of coral bleaching increase in frequency (Wong et al.,
2014). Experimental evidence has shown many organisms to
be sensitive to projected future levels of ocean acidification,
with calcifiers showing the strongest responses. However,
observations of the effects of ocean acidification on natural
populations are scarce, except in areas with naturally high
concentrations of dissolved CO2 (Bednaršek et al., 2014).
Changes in dissolved oxygen concentrations are highly variable
among regions, but it is predicted that expanding OMZs will
favor bacteria and hypoxic specialists whilst reducing habitat
for organisms with higher oxygen demands (Pörtner et al.,
2014).

The overarching findings of both the AR5, and much of the
work published since, is that the effects of anthropogenically
produced climate change on organisms are highly species
specific. Impacts also varying regionally in response to local
drivers and synchronously with other climate change drivers in
unpredictable ways. As a result, there is limited ability to project
the future for marine ecosystems.
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