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Restoration strategies for native oyster populations rely on multiple sources of

information, which often conflict due to time- and space-varying patterns in abundance

and distribution. For instance, strategies based on population connectivity and disease

resistance can differ, and extant and historical records of abundance and distribution are

often at odds, such that the optimal strategy is unclear and valuable restoration sites may

be excluded from consideration. This was the case for the Lynnhaven River subestuary of

lower Chesapeake Bay, which was deemed unsuitable for Eastern Oyster (Crassostrea

virginica) restoration based on physical conditions, disease challenge, and extant oyster

abundance. Consequently, we (i) evaluated previously unknown historical data from the

1800s, (ii) quantified extant oyster recruitment and abundance, physical conditions, and

disease presence on constructed restoration reefs and alternative substrates, and (iii)

assessed simulations from biophysical models to identify potential restoration sites in the

metapopulation. The collective data distinguished numerous restoration sites (i) in the

polyhaline zone (salinity 18.4–22.2) where disease resistance is evolving, (ii) where oysters

were abundant in the late 1800s-early 1900s, (iii) of recent high recruitment, abundance

and survival, despite consistent and elevated disease challenge, and (iv) interconnected

as a metapopulation via larval dispersal. Moreover, a network of constructed restoration

reefs met size structure, abundance and biomass standards of restoration success.

These findings demonstrate that assumptions about the suitability of sites for oyster

restoration based on individual processes can be severely flawed, and that in-depth

examination of multiple processes and sources of information are required for oyster reef

restoration plans to maximize success. We use these findings and previous information

to recommend a strategy for successful restoration of subtidal oyster reefs throughout

the range of the Eastern Oyster.

Keywords: oyster reef restoration, eastern oyster, Crassostrea virginica, metapopulation dynamics, disease

resistance, population connectivity
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Introduction

“Failure of existing rules is the prelude to a search for new ones.”

Kuhn, 1962, The Structure of Scientific Revolutions

Native oyster species of the family Ostreidae were once dominant
ecosystem engineers worldwide, including the Olympia oyster
Ostrea lurida along the northeast Pacific coast (Ruesink et al.,
2005), the European flat oyster Ostrea edulis of the northeastern
Atlantic (Airoldi and Beck, 2007), the Sydney rock oyster
Saccostrea glomerata of the Pacific coasts of Australia and New
Zealand (Ogburn et al., 2007), and the eastern oyster Crassostrea
virginica of the western Atlantic and Gulf of Mexico (Winslow,
1881; Baylor, 1895). Unfortunately, native oyster species have
been decimated worldwide due to overfishing, eutrophication,
and oyster reef degradation (Winslow, 1881; Rothschild et al.,
1994; Jackson et al., 2001; Kirby, 2004; Lotze et al., 2006; Airoldi
and Beck, 2007; Beck et al., 2009; Zu Ermgassen et al., 2012),
resulting in severe losses of ecosystem services stemming from
oyster reefs, such as nutrient cycling, water filtration and habitat
structure (Peterson et al., 2003; Coen et al., 2007; Grabowski
and Peterson, 2007). In Chesapeake Bay, fishery landings and
abundance of the native eastern oyster C. virginica have declined
to less than 1% of historical levels (Rothschild et al., 1994;
Wilberg et al., 2011), leading to considerable, expensive attempts
to restore native oyster populations (Kennedy et al., 2011).

After decades of failed restoration efforts, it was concluded
that restoration of the native oyster is improbable (Mann et al.,
1991; Mann and Powell, 2007), which produced a scientific
crisis (sensu Kuhn, 1962) leading to consideration of unorthodox
and novel alternatives (see Thomas Kuhn’s quote above). One
alternative was introduction of a non-native species, such as the
Pacific Oyster, C. gigas (Mann et al., 1991) or the Asian Oyster,
C. ariakensis (National Research Council, 2004; United States
Army Corps of Engineers, 2009). Fortunately, novel restoration
approaches led to persisting populations of native C. virginica
on constructed natural and alternative oyster reefs protected
from exploitation in Delaware Bay (Taylor and Bushek, 2008),
North Carolina sounds (Powers et al., 2009), and Chesapeake
Bay (Lipcius and Burke, 2006; Schulte et al., 2009), indicating
that restoration of C. virginica was indeed feasible and that
introduction of a non-native species was not necessary. Despite
these apparent successes, the scientific community has not
reached consensus either on the major barriers for restoration
efforts or on the most effective approaches to achieve success
(Kennedy et al., 2011).

Restoration strategies have emphasized (i) disease resistance
(Encomio et al., 2005; Carnegie and Burreson, 2011), assuming
that restoration failures are due to the inability of C. virginica
to tolerate challenges by two disease agents, Haplosploridium
nelsoni (the agent of MSX disease) and Perkinsus marinus, which
causes dermo, (ii) addition of substrate and three-dimensional reef
structure (Lenihan, 1999; Brumbaugh et al., 2006; Lipcius and
Burke, 2006; Brumbaugh and Coen, 2009; Powers et al., 2009;
Schulte et al., 2009; Burke, 2010), assuming that reef structure
has been severely degraded, (iii) extant oyster abundance
(Brumbaugh et al., 2000; Berman et al., 2002), assuming that

restoration can only succeed where oysters currently reside,
(iv) broodstock enhancement and elimination of fishing pressure
(Rothschild et al., 1994; Schulte et al., 2009; Wilberg et al., 2011),
assuming that the spawning stock is depleted, (v)metapopulation
connectivity (Lipcius et al., 2008; North et al., 2008; Lipcius and
Ralph, 2011; Munroe et al., 2013), assuming that metapopulation
connectivity has been disrupted, and (vi) habitat suitability (Cake,
1983; Soniat and Brody, 1988; Barnes et al., 2007; Starke et al.,
2011; Beseres Pollack et al., 2012), assuming that environmental
conditions in and around potential oyster reef habitats have
deteriorated.

Of these factors, there is strong empirical evidence in support
of the evolution of disease resistance in unfished populations of
Chesapeake Bay (Encomio et al., 2005; Carnegie and Burreson,
2011) and Delaware Bay (Powell et al., 2011), of the efficacy of
substrate addition and three-dimensional reef structure (Lenihan
and Peterson, 1998; Lenihan, 1999; Lenihan et al., 1999; Lipcius
and Burke, 2006; Powers et al., 2009; Schulte et al., 2009; Burke,
2010; Jordan-Cooley et al., 2011), of the need for the elimination
of fishing pressure (Lenihan and Peterson, 1998; Lipcius and
Burke, 2006; Powers et al., 2009; Schulte et al., 2009;Wilberg et al.,
2013), and of the requirement for favorable habitat suitability
(Soniat and Brody, 1988; Barnes et al., 2007; Starke et al., 2011;
Beseres Pollack et al., 2012). In contrast, the suppositions that
restoration efforts need to be limited to areas of extant oyster
abundance (Brumbaugh et al., 2000; Berman et al., 2002) and
need not address metapopulation dynamics (Mann and Powell,
2007) have not been rigorously examined.

In this study we describe a field experiment in which
restoration oyster reefs were constructed and succeeded at sites
selected using historical data and information onmetapopulation
connectivity, rather than relying solely on extant oyster
abundance and disease challenge, in the Lynnhaven River system
of Chesapeake Bay for which it was previously concluded that
restoration was unfeasible due to disease, sedimentation, low
substrate availability, and unsuitable hydrodynamics (Berman
et al., 2002; Mann and Powell, 2007). We then integrate our
results with prior findings to alter the existing paradigm on key
factors necessary to achieve successful native oyster restoration,
and to devise a restoration strategy that integrates multiple,
interacting processes.

Methods

The Lynnhaven River System
The Lynnhaven River is the southernmost tributary of
Chesapeake Bay (Figure 1), and is subdivided into two major
segments. One segment is Broad Bay, connected via Long Creek
and a constructed channel to Lynnhaven Bay, which exchanges
water with Chesapeake Bay via a narrow inlet. The other segment
is Lynnhaven Bay, which is the confluence of the two branches
(eastern and western) of the Lynnhaven River. The narrow
inlet limits water exchange with the bay proper, resulting in the
Lynnhaven River subestuary being classified as a trap estuary
(Sisson et al., 2010), which promotes larval retention. The system
is well-mixed due to its shallow nature, and hydrodynamics are
driven by tidal exchange and wind patterns. Much of the system
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FIGURE 1 | Location of the Lynnhaven River subestuary, potential oyster reef restoration sites (diamonds) determined from historical information

(Baylor, 1893, 1894, 1895; Chipman, 1948), and sites in the subestuary for restoration of spawning stock (dashed polygons) recommended by Lipcius

et al. (2008) as putative sources. Thick arrow indicates tidal exchange through Lynnhaven Inlet between Lynnhaven Bay and Chesapeake Bay. Coordinates of

Lynnhaven Inlet: 36◦ 54′ 27.02′′ N, 76◦ 05′ 31.07′′ W.

is comprised of fine sediments, except for the nearshore areas,
which are of firm sand and shell.

Restoration Reef Selection
We used the results of a calibrated high-resolution biophysical
model of Crassostrea virginica larval dispersal (Shen et al.,
2006; Lipcius et al., 2008; Sisson et al., 2010) to determine
optimal restoration sites in terms of metapopulation connectivity
(Figure 1). The biophysical model included (i) a planktonic larval
phase of 14 d when larvae were transported from the natal reef
and not competent to settle, and an additional 7-d period when
the virtual larvae were competent to settle as they encountered
reefs in the subestuary (Kennedy, 1996); (ii) a larval mortality rate
of 21% d−1 (Cowen et al., 2000); (iii) advection and diffusion by
currents (vertical migration behavior could have been included,
but was not because the shallow nature and mixing of the water
column in the subestuary precluded a strong effect of vertical
migration on transport), and (iv) selection of potential reef
sites based on previous historical locations of oyster production
(Baylor, 1895; Chipman, 1948).

Habitat suitability criteria used in potential site selection are
listed in Table 1, and included optimal salinity (Galtsoff, 1964;
Kennedy, 1996), evidence of recent recruitment (Brumbaugh
et al., 2000; Burke, 2010), and stable bottom (Lenihan and
Peterson, 1998; McCormick-Ray, 2005; Woods et al., 2005). To
assess the salinity zones of the reefs accurately, we examined
long-term water quality data gathered from 1976 to 2003 by the
Virginia Department of Environmental Quality at 14 stations

TABLE 1 | Biological characteristics and physical requirements used in

the determination of reef restoration sites.

Biophysical characteristic Selected optimal level References

Salinity tolerance 18–25 psu 1,2

Historical abundance moderate-high oyster density 3,4,5,6

Recent recruitment moderate-high oyster density 7,8

Reef structure High relief 9,10,11,12

Ecological requirements Suitable habitat 1,13,14,15

Further details underlying restoration site selection are provided in Schulte et al. (2006).
1Galtsoff (1964), 2Kennedy (1996), 3 Ingersoll (1881), 4Baylor (1893), 5Baylor (1895),
6Chipman (1948), 7Brumbaugh et al. (2000), 8Burke (2010), 9Schulte et al. (2006),
10Schulte et al. (2009), 11Lenihan (1999), 12Lenihan et al. (1999), 13Lenihan and Peterson

(1998), 14McCormick-Ray (2005), 15Burke and Lipcius (2010).

throughout the subestuary (Sisson et al., 2010). All of the
restoration reefs were in areas where long-term average salinity
ranged from 18.4 to 22.2 (Supplementary Figure 1), and were
thus fully in the polyhaline zone. Moreover, salinity variation
in these regions typically ranges between polyhaline and upper
mesohaline salinities (i.e., 14–24) and rarely below 5 (Chipman,
1948; Sisson et al., 2010), which is the upper limit of the
oligohaline zone.

Historical Oyster Abundance in the Lynnhaven
River system
To determine past oyster abundance at the potential restoration
reefs prior to the major population collapse in the mid-twentieth
century, we examined historical records from the late nineteenth
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century. The records were both qualitative (Ingersoll, 1881) and
quantitative (Baylor, 1895) surveys of natural oyster reefs, bars,
and shoals in the subestuary. Baylor (1893, 1894, 1895) surveyed
five public oyster grounds of the Lynnhaven River subestuary
in 1893—Broad Bay, Linkhorn Bay, Rainey’s Pond (i.e., Crystal
Lake), Lynnhaven River proper (i.e., Lynnhaven Bay), and the
mouth of Long Creek (Table 2). Baylor was apparently prohibited
by the oyster inspectors from surveying much of the Eastern
and Western Branches of the Lynnhaven River due to the desire
of Virginia Fish Commission inspectors to keep such areas
out of the public oyster fishery (Baylor, 1895). The maps of
oyster ground boundaries (Baylor, 1893) from the Baylor survey
were derived from boundary points measured by theodolite and
certified as follows (Baylor, 1894):

TABLE 2 | Public oyster grounds in the Lynnhaven River subestuary

defined by (Baylor, 1893, 1894, 1895) as those areas where natural oyster

reefs, beds, or shoals occurred during his surveys.

Public ground Location Area (ha) Area % Water depth (m)

1 Broad Bay 236.74 59.3 0–4.0

2 Rainey’s Ponda 14.97 3.8 0 (all shore)

3 Linkhorn Bay 105.22 26.4 0–0.3

4 Long Creek mouth 8.09 2.0 0–2.3

5 Lynnhaven River

properb
33.99 8.5 0–1.2

aRainey’s Pond = Crystal Lake. bLynnhaven River proper = Lynnhaven Bay.

“Report of the survey of the natural oyster rocks, beds and

shoals of Princess Anne County, giving courses and distances from

landmarks, and marked shore stations to be used in conjunction

with the maps and charts of the oyster grounds of Virginia. Jan. 1st

1894. Dr. John T. Wilkins, Jr., Fish Commissioner of Virginia.”

The actual data collection methodology was described as follows
(Baylor, 1894):

“The Method of Defining the Location and Extent of the Natural

Oyster Beds, Rocks and Shoals, was as follows: A theodolite was

mounted at each of two accurately determined triangulation points

on the shore, with an observer at each instrument, the (three

Princess Anne county) commissioners (T.P. Bell, A.G. Mitchell,

W.E. Biddle) being at the same time in a steam launch or boat (with

sounding pole, oyster tongs,&c.,) passing over the beds. As each turn

or corner of the rocks was found, the boat was held stationary for a

certain length of time, and a white and red flag was displayed as

a signal to the observers on shore, who, as soon as the flag was

elevated, simultaneously measured the angle between the initial

triangulation point and the flag-pole, held over the corner of the

rock, the angle and the time of measuring it being recorded at once

by each observer in his own book, while the depth of water as taken

by one of the commissioners was placed in the two record books

when the party came together. J.B. Baylor, U.S. Coast and Geodetic

Survey.”

Restoration Reef construction
Based on our recommendations, the U.S. Army Corps of
Engineers (Norfolk District) constructed 12 reefs (20.57 ha) in
the Lynnhaven River, Broad Bay, and Linkhorn Bay (Figure 2).

FIGURE 2 | Sites of sanctuary oyster reefs constructed in the Eastern Branch of the Lynnhaven River (LR1-4), Broad Bay (BB1-3), and Linkhorn Bay

(LB1-5).
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The reefs ranged in area from 1.62 to 5.67 ha (Table 3), and were
constructed of fossil oyster shell placed on the bottom at heights
of 0.1–0.5m (Schulte et al., 2006). Reefs at Broad Bay 1, Linkhorn
Bay 1 and 2, and Lynnhaven River 1–4 were built in late summer
and early fall of 2007, whereas reefs at Broad Bay 2 and 3, and
Linkhorn Bay 3–5 were built in late summer and early fall of
2008.

Oyster Abundance on Restoration Reefs
To assess the capacity for oysters to recruit and survive at
high abundance in our putative source sites, we validated
the abundance information from the historical record with
field surveys and with other recent abundance estimates
(Brumbaugh et al., 2000; Burke, 2010). In our field surveys, we
used standard procedures under Stratified Random Sampling
(Cochran, 1977; Thompson, 2002) to survey the reefs. Reef
extent and quality (high-relief reef, low-relief reef, unrestored
bottom) were mapped by the U.S. Army Corps of Engineers
with side-scan sonar. Reefs were then apportioned into strata
by location (Figure 2, Table 3). The stratum area estimates were
used to generate random, stratum-specific nominal sampling
sites and backup sites within a grid surrounding each of the
reefs, using stratified random sampling with sample allocation
proportional to stratum area and variance (Cochran, 1977;
Thompson, 2002).

All reefs were sampled in July 2011. To increase sample size,
additional samples were taken at Lynnhaven River reefs 1 and
2 and Linkhorn Bay reef 2 in January 2012. Due to the shallow
nature of Lynnhaven River reefs 3 and 4, we were unable to take
enough samples to provide accurate estimates of oyster density
and biomass on those two reefs.

Sampling sites were located by GPS coordinates and sampled
in the order in which they were generated to assure random
sampling within each stratum. Next, a patent tong (1-m wide)
was deployed from an anchored vessel, the sample was retrieved
on a processing table aboard the vessel, and a photo was taken of
the sample with its ID visible on a whiteboard. A complete 0.5-m2

section was rinsed and retained for lab processing. Samples
were not processed in the field due to the high probability that
individual oysters would not be easily seen in the field, resulting
in biased data. The volume of all live oysters and attached shells

TABLE 3 | Estimated juvenile and adult abundance on the constructed

reefs.

Location Area (ha) Juvenile abundance Adult abundance

Lynnhaven River 1

and 2

1.62 1,133,724 1,043,481

Broad Bay 1 and 2 3.24 505,376 3,624,532

Broad Bay 3 4.86 429,373 2,265,328

Linkhorn Bay 1 3.24 315,860 1,279,247

Linkhorn Bay 2 5.67 890,550 3,347,273

Linkhorn Bay 3, 4,

and 5

1.94 509,338 527,110

Total 20.57 3,784,221 12,086,971

Total abundance of juveniles and adults was 15,871,192.

was measured in a graduated cylinder to estimate accreted reef
volume.

A random subset of sites was selected to estimate oyster
density as a function of reef height. Efficiency of the patent tong
sampling gear was estimated as 82% (Schulte et al., unpublished
data). Parameter estimates for density and abundance were
obtained using the R statistics package (www.r-project.org)
following equations in Cochran (1977) and Thompson (2002).
The R script for stratified random sampling is provided as
Appendix 1 in Supplementary Material.

Condition Index, Biomass and Disease Status of
Oysters on Restoration Reefs
Condition index (CI) was calculated for random subsets of
oysters from the Lynnhaven River, Broad Bay, and Linkhorn
Bay reefs, following procedures outlined in Burke (2010). Each
sample of oysters, which comprised individuals throughout the
range of shell heights (= shell lengths), was cleaned of fouling
organisms and rinsed. Oysters were blotted dry, then measured
(shell height, shell depth, shell width), shucked, and weighed (wet
flesh mass, wet shell mass). Shells and tissue were then dried at
60◦C for at least 48 h and weighed (dry tissue mass= dry weight,
dry shell mass), followed by 6 h at 550◦C in a muffle furnace to
produce ash-free dry mass (AFDM) estimates. Condition index
was calculated as (Lucas and Beninger, 1985; Rainer and Mann,
1992):

CI =
AFDM

SM
× 100

where AFDM is ash-free dry mass in g and SM is dry shell
mass. This CI is an accurate indicator of condition (Hickman
and Illingworth, 1980; Davenport and Chen, 1987). We also
calculated CI as (Abbe and Sanders, 1988; Abbe and Albright,
2003):

CI =
AFDM

SV
× 100

where SV is shell volume. Shell volume was calculated both as
the product of shell height, shell depth, and shell width, and as
half of the volume of an ellipsoid with major axis = shell height,
minor axis= shell width, and vertical axis= shell depth. This CI
was positively and significantly correlated with the first CI, and is
thus not presented.

To generate the relationship between oyster size and biomass,
we used a subset of oysters across the full size range from reefs
in the Lynnhaven River, Broad Bay, and Linkhorn Bay. The
equations derived from these functions were used to calculate
biomass of the sampled oysters. We multiplied the values of ash-
free dry mass (AFDM) by 1.22 to convert them to dry weight
(DW), based on a simple linear regression of AFDM as a function
of DW (r2 = 0.99, n = 301, p << 0.001).

To determine disease levels in Lynnhaven oysters, we
conducted P. marinus and H. nelsoni diagnoses in 110 oysters
previously assessed by Burke (2010). Oysters were collected in
September 2007, around the time when P. marinus levels peak
annually (Carnegie and Burreson, 2009). Oysters ranging in
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shell height (SH) from 46.3 to 121.4mm were collected from
oyster shell and alternative substrate reefs in Long Creek and
Broad Bay (see Burke, 2010, for details), and brought on ice
to the VIMS Shellfish Pathology Laboratory for analyses. Ray’s
fluid thioglycollate medium assays (Ray, 1954) were performed
on gill/mantle and rectal tissues for P. marinus detection, and
remaining viscera were fixed in Davidson’s fixative (Shaw and
Battle, 1957) and processed using standard histological methods
for detection of H. nelsoni in paraffin sections. Infections with P.
marinus were rated rare to very heavy following Ray (1954, with
conversions to numerical scores summarized in Supplementary
Table 1), and infections for H. nelsoni were categorized as rare,
light,moderate, or heavy following Carnegie and Burreson (2011).
Given that these oysters were not the same ones collected in the
field survey, we assessed whether or not their condition index was
similar to those from our field collections. Condition index of a
complementary group of oysters collected at 18 sites by Burke
(2010) was also calculated and compared to the CI values of
oysters collected in our field survey.

Results

Historical Oyster Abundance
Historical records of oyster abundance in the Lynnhaven River
subestuary consistently provide evidence of the high abundance
and quality of oyster reefs in the system (Ingersoll, 1881; Baylor,
1895). Specifically, the largest oyster beds and highest abundances
occurred in Broad Bay and Linkhorn Bay, where most of
our restoration reefs were located (Figures 3, 4). For example,
Ingersoll (1881) stated the following regarding oyster populations
in the Lynnhaven River system:

“The southernmost, and at the same time one of the most famous

localities for oyster-planting in Virginia, is at Lynnhaven, just inside

of Cape Henry. The wide reputation and acknowledged superiority

of the oysters raised in this river and bay led Col. M. McDonald to

examine particularly into the methods pursued there; and he has

kindly placed at my disposal the succeeding memoranda:

Lynnhaven river is simply a branching arm of Chesapeake bay,

and has beenmade by the tidal ebb and flow. . . .Oysters for planting

are obtained from Back bay and Linkhorn bay, tributaries of the

Lynnhaven river, in which there are natural beds. They are also

obtained from spawning-coves in the river itself. Oysters from James

River and other localities have been tried, but have not done well.

. . . They remain in the beds 6 years ormore, . . . They are disposed

of almost wholly at retail, in the shell, over the tables of saloons and

hotels as “fancy” stock.

The amount now planted in this river is almost 200,000

bushels.”

Similarly, the Baylor survey indicated that nearly the whole of
Broad Bay and Linkhorn Bay was “natural oyster rock” (Baylor,
1893), as indicated in the sketches of Broad Bay (Figure 3A) and
Linkhorn Bay (Figure 4) from Baylor’s notebooks. The natural
rock in Broad Bay (Figure 3A), listed by Baylor as Princess Anne
County, Public Ground No. 1 (Table 2), was estimated at 236.74
ha, covered most of Broad Bay (Figure 3B), and constituted
59.3% of the Lynnhaven public grounds (Table 2). Linkhorn Bay

FIGURE 3 | (A) Photograph of the sketch by Baylor (1893) for Public Ground

No. 1 (Broad Bay) in Princess Anne County, with a polygon connecting the

points of the oyster ground superimposed on the photograph. The shoreline of

Broad Bay is faintly visible bordering the polygon. (B) Recent satellite image of

Broad Bay, at approximately the same scale as the sketch, adapted from

Google Earth.

was Public Ground No. 3 and was estimated at 105.22 ha, which
extended through most of the bay (Figure 4) and composed
26.4% of the Lynnhaven oyster grounds (Table 2). In total, the
public grounds in Broad Bay and Linkhorn Bay comprised
85.7% of all public grounds in the Lynnhaven River subestuary
(Table 2).

Oyster Size, Biomass and Abundance on Subtidal
Reef Sites
The relationship between oyster size and biomass was
exponential in all three areas: Lynnhaven River (Figure 5A),
Broad Bay (Figure 5B), and Linkhorn Bay (Figure 5C), as
expected from previous studies.

Live oysters on the reefs were a mix of 2–4 year classes,
depending on the dates of construction and sampling (Figure 6).
Due to the timing of reef construction (Fall 2008) and
sampling (July 2011) at Broad Bay reefs 1–3 (Figures 6A,C,E)
and Linkhorn Bay reefs 3–5 (Figures 6F,H), we expected and
observed a mix of 2009 [0+ age class, mean∼35mm shell length
(SL)] and 2010 (1+ age class, mean ∼70mm SL) oysters. There
were also a few 2+ oysters larger than 100mm SL at Broad Bay
reef 1 (Figure 6A) because part of the reef was built in Fall 2007.
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FIGURE 4 | (Right) Photograph of the sketch by Baylor (1893) for Public

Ground No. 3 (Linkhorn Bay) in Princess Anne County, with a polygon

connecting the points of the oyster ground superimposed on the photograph.

The shoreline of Linkhorn Bay is faintly visible bordering the polygon. (Left)

Recent satellite image of Linkhorn Bay and Crystal Lake, at approximately the

same scale as the sketch, adapted from Google Earth.

The reefs built in Fall 2007 (Lynnhaven River 1 and 2, Linkhorn
Bay 1 and 2) generally had a mix of oysters from the 2008 to
2010 year classes (Figures 6B,D,G), while Linkhorn Bay 2 and
Lynnhaven River 1 and 2 also had new 2011 recruits <20mm
SL because some of the samples from these reefs were from
January 2012 (Figures 6D,G). Note that Linkhorn Bay reef 2 also
had larger individuals than other reefs because it was enhanced
with oysters after construction, and these supplemented oysters
survived in large numbers (Figure 6D).

Oyster density and biomass on constructed oyster reefs
in the Lynnhaven River, Broad Bay, and Linkhorn Bay were
compared with the threshold (15 oysters m−2 and 15 g
dry weight m−2 of oysters of at least 2 year classes) and
target (50 oysters m−2 and 50 g dry weight m−2 of oysters
of at least 2 year classes) for successful performance of
constructed oyster reefs, as established by the Chesapeake Bay
Program’s Sustainable Fisheries Goal Implementation Team
(http://www.chesapeakebay.net/channel_files/17932/oyster_rest
oration_success_metrics_final.pdf). Oyster density on all but one
(Linkhorn Bay 1) of the constructed reefs in the Lynnhaven River
(Eastern Branch), Broad Bay, and Linkhorn Bay (Figures 7A,
8A) surpassed the density threshold and target (Table 4).
Linkhorn Bay 1 exceeded the threshold and was just below
the target at 49.3 oysters m−2 (Table 4). Oyster biomass on
all constructed reefs was driven by adult biomass (Figures 7B,
8B) and surpassed the threshold (Table 4). In addition, three of
the reefs (Lynnhaven River, Broad Bay 1, and Linkhorn Bay 2)
exceeded the target, while the remaining three reefs (Broad Bay
2, Linkhorn Bay 1, and Linkhorn Bay 3, 4, and 5) were between
the threshold and target (Table 4). Consequently, all reefs met
the threshold for successful performance of constructed oyster
reefs, while three of the six reef systems exceeded the target; the
remaining three were between the threshold and target.

FIGURE 5 | Ash-Free Dry Mass (AFDM) as a function of oyster size for

reefs in (A) Lynnhaven River, (B) Broad Bay, and (C) Linkhorn Bay.

Juvenile recruitment was also significantly and positively
correlated with adult density in a sigmoidal fashion, such that
juvenile recruitment was relatively low at adult densities below
50 m−2 and high at densities above 75 m−2 (Figure 9).

Total abundance on the network of reefs was 15,871,192
oysters, with adults (>30mm SL) comprising 76% of the
population (Table 3). Broad Bay contained 43% of all oysters,
Linkhorn Bay also contained 43%, while Lynnhaven Bay had 14%
(Table 3).

We also assessed the effect of water depth on oyster density
(Supplementary Figure 2), which was non-significant (linear
and non-linear regression, r2 = 0.04, p >> 0.05), probably
due to the generally shallow nature of the Lynnhaven River
system.
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FIGURE 6 | Size-frequency histograms for all oysters collected on constructed oyster reefs in Broad Bay reefs 1 (A), 2 (C), and 3 (E), Linkhorn Bay reefs

1 (B), 2 (D), 3 and 4 (F), and 5 (H), and the Eastern Branch of the Lynnhaven River reefs 1 and 2 (G). BB, Broad Bay, LB, Linkhorn Bay, LR, Lynnhaven River.

Reef Height Effect on Recruitment and Adult
Abundance
To determine whether or not the height of constructed reefs
affected oyster density, we analyzed a subset of the data for which
relief (high or low) could be reliably estimated from the side-scan
data. Oyster density was higher on high-relief reef than on low-
relief reef in all three locations (Figure 10), and significantly so
for Broad Bay and for Linkhorn Bay reef 2 (ANOVA, p < 0.05).

Condition Index and Disease Status of Oysters
on Restoration Reefs
Only one oyster had Haplosploridium cells (Burke, 2010), so
MSX analyses were not conducted. In contrast, 102 of the
110 tested oysters (92.7%) were positive for P. marinus cells,
with the average infection reaching light to moderate intensity

(Supplementary Figure 3). Infection intensity was a slightly
positive but non-significant function of oyster size (r2 = 0.04,
p = 0.1, Supplementary Figure 3). Clearly, most oysters
were readily challenged by P. marinus in the Lynnhaven, yet a
relatively small percentage of infections reached heavy intensities
(Supplementary Figure 3). Condition index of oysters was high
and indicative of healthy oysters (Table 5, mean = 2.76, SE =

0.15, n = 18).

Discussion

Metapopulation Dynamics and Biophysical
Modeling of Restoration Sites
We evaluated metapopulation connectivity of historical oyster
reefs in the Lynnhaven River subestuary of lower Chesapeake
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FIGURE 7 | Adult oyster density (A) and biomass (B) on constructed

oyster reefs in the Lynnhaven River, Broad Bay, and Linkhorn Bay.

Dotted lines represent the thresholds (15 oysters m−2 or 15 g dry weight m−2

of oysters) and targets (50 oysters m−2 and 50 g dry weight m−2 of oysters)

for successful performance of constructed oyster reefs, as established by the

Chesapeake Bay Program’s Sustainable Fisheries Goal Implementation Team

(http://www.chesapeakebay.net/channel_files/17932/oyster_restoration_succe

ss_metrics_final.pdf). Note that the thresholds and targets refer to oysters of all

ages (juveniles + adults). Bars represent 1 standard error of the mean.

Bay due to the recognized importance of metapopulation
connectivity in determining the effectiveness of networks of
marine protected areas, both theoretically (Crowder et al., 2000;
Lipcius et al., 2005; Figueira and Crowder, 2006; Hastings and
Botsford, 2006; Treml et al., 2008; Botsford et al., 2009; White
et al., 2010; Kininmonth et al., 2011) and empirically in diverse
species including coral reef fish (Roberts, 1997, 1998; Bode et al.,
2006; Almany et al., 2009; Cowen and Sponaugle, 2009), mussels
(Becker et al., 2007; Carson et al., 2011), crabs and lobsters
(Lipcius et al., 2001, 2005; Fogarty and Botsford, 2006; Incze
et al., 2010), abalone (Miyake et al., 2009), sea urchins (Wing
et al., 2003), andmarine species in general (Pulliam, 1988; Lipcius
and Ralph, 2011). The existence of metapopulation dynamics
is primarily due to the life history of many marine species
whereby an actively dispersing larval phase connects juveniles
and adults of spatially disparate populations, thereby requiring
incorporation of metapopulation dynamics into conservation
and restoration planning.

We selected a biophysical model that integrated larval
duration, mortality, and settlement behavior (Shen et al., 2006;

FIGURE 8 | Juvenile oyster density (A) and biomass (B) on constructed

oyster reefs in the Lynnhaven River (Eastern Branch), Broad Bay, and

Linkhorn Bay. Bars represent 1 standard error of the mean.

Lipcius et al., 2008; Sisson et al., 2010). We examined larval
exchange among potential oyster reef sites in the subestuary
to determine optimal sites for reef restoration alone and those
where joint broodstock and reef restoration would be most
beneficial (e.g., putative sources). The model suggested that
larvae from these sites were advected throughout the subestuary,
including Linkhorn Bay, Broad Bay, Long Creek, Lynnhaven
Bay, and the downriver portions of the Eastern and Western
Branches of the Lynnhaven River. These putative source reefs
were probably interconnected with much of the subestuary via
larval exchange, which suggests that these reefs are optimal for
restoration and broodstock enhancement. Putative sink reefs
are unsuitable for broodstock enhancement because their larvae
appear to be flushed from the system, but they are suitable for
habitat restoration to improve water quality, refuge for small fish
and invertebrates, and feeding grounds for predators such as the
blue crab. It has been suggested that restoration reefs be placed
in sink habitats (Brumbaugh et al., 2006). However, broodstock
on these reefs near the mouth of the subestuary likely produce
larvae that are advected out of the subestuary and lost from the
metapopulation, such that source reefs must also be available to
subsidize sink reefs with larvae. There needs to be a combination
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TABLE 4 | Oyster density and biomass on constructed oyster reefs in the Lynnhaven River, Broad Bay, and Linkhorn Bay.

Location Density (oysters m−2) Biomass (g dry weight m−2)

Juvenile Adult Total Juvenile Adult Total

Lynnhaven River 1 and 2 70.0 64.5 134.5 5.9 203.1 209.0

Broad Bay 1 and 2 15.6 112.0 127.6 1.0 103.3 104.3

Broad Bay 3 8.8 46.6 55.4 0.5 30.6 31.1

Linkhorn Bay 1 9.8 39.5 49.3 0.5 41.5 42.0

Linkhorn Bay 2 15.7 59.1 74.8 0.7 116.8 117.5

Linkhorn Bay 3, 4, and 5 26.2 27.1 53.3 0.9 23.7 24.6

All reefs met the threshold (15 oysters m−2 and 15 g dry weight m−2 of oysters) for successful performance of constructed oyster reefs, which also requires at least 2 year

classes (see Figure 6), as established by the Chesapeake Bay Program’s Sustainable Fisheries Goal Implementation Team (http://www.chesapeakebay.net/channel_files/17932/

oyster_restoration_success_metrics_final.pdf). Three of the six reef systems exceeded the target (50 oysters m−2 and 50 g dry weight m−2 of oysters), while the remaining three

were between the threshold and target. Values exceeding the targets are in bold. Note that the thresholds and targets refer to total oysters (juveniles + adults).

FIGURE 9 | Juvenile oyster density as a function of adult oyster density

in each sample. Data from the three areas (Broad Bay, Linkhorn Bay,

Lynnhaven River) were normalized to account for differences in recruitment by

area. The curve is a non-linear regression fit of the data (p < 0.01).

of different habitat types and locations for restoration reefs in
source and sink habitats, such that both broodstock enhancement
and ecosystem services are restored.

Historical and Recent Oyster Abundance
When assessing optimal sites to serve as source reefs, from which
larvae will disperse back to the natal reef as well as to other reefs
in the metapopulation (Lipcius et al., 2005, 2008; Lipcius and
Ralph, 2011), the key issue is whether or not the reef sites are
capable of supporting oyster populations. In fact, it is expected
that sites selected for restoration will typically have relatively few
oysters; if oysters were already in abundance at these sites, there
would usually be no need for restoration, unless there were a need
to amplify the resident population for some other goal such as
habitat improvement.

To assess the capacity for oysters to recruit and survive at
high abundance in our putative source sites, we examined the
historical record (Baylor, 1893, 1894, 1895; Chipman, 1948;

FIGURE 10 | Adult oyster density as a function of reef height for a

subset of the data for which the measure of reef relief was reliable.

Oyster density was higher on high-relief reef than on low-relief reef in all

locations, and significantly so for all Broad Bay reefs and for Linkhorn Bay reef

2 (ANOVA, p < 0.05).

Schulte et al., 2006) and recent abundance estimates (Brumbaugh
et al., 2000; Luckenbach and Ross, 2009; Burke, 2010). In contrast
to the earlier information on low oyster abundance in the
Lynnhaven River system (Berman et al., 2002), the historical
record demonstrated conclusively that the Lynnhaven River
subestuary consistently harbored abundant oyster populations of
high quality (i.e., “fancy stock”) and production, reaching 200,000
bushels annually (Ingersoll, 1881; Baylor, 1895; Chipman, 1948).
Most of the putative source reefs were in the areas of the
subestuary where spat settlement, seed production, and oyster
abundance were highest, specifically in Linkhorn Bay and Broad
Bay, which were public oyster grounds and seed-producing areas
historically (Ingersoll, 1881; Baylor, 1895; Chipman, 1948).

The oyster reefs in these areas were eventually laid
barren through overfishing, destructive fishing practices, and
pollution (Chipman, 1948). Moreover, the public grounds in the
Lynnhaven River subestuary were not maintained, in contrast to
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TABLE 5 | Condition index and accreted shell volume per m2 on the

constructed reefs.

Location Condition index Accreted Shell Volume

(95% CI) (95% CI)

Lynnhaven River 3.47 (3.10, 3.84) 13.5 L (7.8,19.0)

Broad Bay 2.01 (1.85, 2.18) 13.6 L (10.9,16.3)

Linkhorn Bay 2.26 (2.06, 2.45) 13.4 L (10.3,16.5)

other public grounds in Virginia waters, and most of these were
relinquished to private interests prior to the repletion program,
which began in 1928 (Commission of Fisheries of Virginia, 1931).
Thus, we used recent surveys (Brumbaugh et al., 2000; Burke,
2010) to assure that there was still a capacity for oysters to survive

and grow in abundance at the restoration sites. The surveys
confirmed that oysters were abundant in Linkhorn Bay and

Broad Bay, as well as other parts of the Lynnhaven River, where
densities on natural and alternative reefs reached over 1000 m−2

(Supplementary Figure 4, Burke, 2010). Finally, in terms of water
quality, much of Broad Bay, Linkhorn Bay, and the Lynnhaven
River have been reopened to shellfish harvest in recent years,
which eliminates concerns over the effects of Escherichia coli
contamination on oyster restoration at these sites. Consequently,
the restoration reef sites harbored high oyster densities both
historically and in recent times, and are suitable for restoration.

The utility of historical ecology in conservation and
restoration has become much more prominent in recent years
(Jackson et al., 2001; Lotze and Worm, 2009), and can be
applied to species with written records, as we have done, or with
archaeological or paleontological information, as done for the
blue crab (Rick et al., 2015).

Oyster Size, Biomass, and Abundance on
Subtidal Reef Sites
Live oysters on the constructed reefs in the Lynnhaven River
system were a mix of 2–4 year classes. Age 0 oysters were
generally less than 30mm shell length, while adults ranged from
30 to over 200mm shell length. Oyster density and biomass
on all reefs in the Lynnhaven River system surpassed the
threshold for successful performance of constructed oyster reefs
set by the Chesapeake Bay Program’s Sustainable Fisheries Goal
Implementation Team. In addition, three of the reefs exceeded
the targets for oyster density and biomass, while the remaining
three reefs were between the threshold and target. Consequently,
the network of constructed oyster reefs in the Lynnhaven River
system presently represents a successful restoration effort that
should be monitored to assess its long-term performance.

As expected from previous findings for constructed oyster
reefs in the Great Wicomico River (Schulte et al., 2009), oyster
density was higher on high-relief reef than on low-relief reef and
juvenile recruitment was a positive, sigmoid function of adult
density. These features provide a feedback mechanism for the
long-term persistence of unexploited restoration reefs in the face
of environmental stresses such as siltation and burial (Colden and
Lipcius, 2015).

Disease and Condition of Oysters
All of the restoration reefs were fully in the mesohaline and
polyhaline zones, as evidenced by long-term average salinity
from 1976 to 2003 at these sites (Sisson et al., 2010). Moreover,
salinity variation in the Lynnhaven River subestuary also typically
ranges between polyhaline and upper mesohaline salinities
(Chipman, 1948), where disease challenge is greatest (Carnegie
and Burreson, 2011).

While most oysters were infected with P. marinus (92.7%),
very intense infections were relatively uncommon. Intensity of P.
marinus was not significantly related to oyster size and remained
at moderate intensity through the full size range of oysters.
Despite the potent disease challenge, survival of oysters on the
reefs was over 80% per year (Burke, 2010), the condition of
surviving oysters was high, and a large proportion of the oysters
(>50%) thus survived to reproduce. These collective results
confirm earlier findings (Carnegie and Burreson, 2011) that the
oyster populations in the high-salinity waters of Lynnhaven have
evolved resistance to disease despite strong disease challenge.
The most likely processes mediating survival of the oysters were
availability of reefs of high quality, whether shell or alternative
substrates (Burke, 2010), and development of disease resistance
in the high-salinity waters (Carnegie and Burreson, 2011).

Previously, it was proposed that larger, older oysters should
be harvested and removed from the system (Andrews and Ray,
1988; Krantz and Jordan, 1996) under the assumptions that
disease would have the highest intensity and kill older oysters
in high-salinity areas, and therefore that the propagation of
the disease would be reduced by removal of infected oysters.
In this study, the largest oysters of 100–120mm shell height
had similar P. marinus intensities as those in the smaller size
classes of 60–100mm shell height. Although some of the larger
oysters would have succumbed to disease and were therefore
not sampled, there should still have been a strong positive
relationship between disease intensity and size, which was not
the case. Hence, oysters in high-salinity waters where disease
challenge is strong can survive, reproduce, and persist. Along
with recent findings of the development of disease resistance in
oyster populations (Carnegie and Burreson, 2011), these results
indicate that restoration efforts with native oyster populations
can be undertaken in high-salinity, disease-challenged areas.

What about Climate Change?
Thus, far we have emphasized past and present conditions to be
considered in oyster restoration. But how do we deal with the
uncertain future associated with climate change? Lowered pH
due to ocean acidification may reduce reproductive output by
weakening the shells of oyster larvae, diminishing their growth
rates, and depressing their survival (Kurihara et al., 2007; Miller
et al., 2009; Watson et al., 2009). It may also decrease calcification
rates and amplify shell dissolution rates of juveniles and adults
(Beniash et al., 2010; Waldbusser et al., 2011a,b; Dickinson et al.,
2012), and it may alter interspecific interactions such as predator-
prey dynamics (Gazeau et al., 2013), which can lead to phase
shifts in bivalve prey species (Seitz et al., 2001). Adding the
potential future impacts of warming temperatures and sea-level
rise on oyster populations, such as the proliferation of marine
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infectious diseases (Burge et al., 2014), further complicates
our ability to develop optimal restoration strategies under the
influence of climate change.

A potential solution to the problem of devising optimal oyster
restoration strategies given the unpredictable future effects of
climate change on oyster populations may be the same as that
devised for networks of marine reserves that are susceptible
to catastrophic disturbances such as oil spills (Allison et al.,
2003; McGilliard et al., 2011). Specifically, spatially concentrated
populations are more susceptible to a local catastrophe than
populations spread over a large range, and a concentrated
population is more susceptible to global catastrophes than
a diffuse population of equal abundance (McGilliard et al.,
2011). Hence, oyster reefs should be constructed in multiple
locations over a large geographic area, while also taking
into consideration the likely metapopulation connectivity and
source-sink dynamics. In addition, restoration reefs should be
constructed where populations will likely be resistant or resilient
to climate change, such as populations that have withstood
environmental stress and variability, or where climate change
is unlikely to have a strong effect on future environmental
conditions (Green et al., 2014). This “bet-hedging” strategy
may not maximize short-term metapopulation growth, but it
will reduce the risk of metapopulation collapse when future
environmental conditions are unpredictable (Simons, 2011).

Conclusions and Recommendations for
Oyster Restoration

The restoration sites for oyster reefs were based on a biologically
realistic hydrodynamic model, at locations in the salinity zone
(i.e., polyhaline) where disease resistance is most likely to
evolve, and in areas where oyster populations have recruited
and survived at high density both historically and in recent
times. The integration of information from the historical record,
metapopulation connectivity, physical conditions, and disease
resistance do not contravene but are in fact synergistic and
essential in native oyster restoration. Using our results and the
literature on oyster restoration, we recommend inclusion of the
following elements in oyster restoration efforts. Note that we did
not add citations for each specific element because the origins
of many of these elements are unknown and they are frequently
repeated in the literature.

1. Search and utilize historical information, some of which may
be hidden in archival documents. For instance, we were only
able to find the Baylor (1893, 1894) files after an extensive
search, eventually culminating at the Library of Virginia.
These documents were instrumental in defining a much
broader area of potentially restorable bottom for oyster reefs.

2. Conduct a pre-construction population survey to assess the
status of the population in the restoration area, which is
essential for monitoring and evaluating future performance of
restoration reefs.

3. Conduct a pre-construction high-resolution bottom survey to
map suitable bottom characteristics for restoration sites.

4. Assess habitat quality and environmental conditions (e.g.,
salinity, temperature, dissolved oxygen, water-column

sediment concentration) to determine if they are satisfactory
for oyster survival, reproduction and growth. This
information could be integrated into a Habitat Suitability
Index (Cake, 1983; Soniat and Brody, 1988; Barnes et al.,
2007; Starke et al., 2011; Beseres Pollack et al., 2012) for
the full area to select optimal sites for restoration. Note
that the Habitat Suitability Index must be calibrated and
validated for the specific area under consideration. The use
of a general, uncalibrated, and unvalidated Habitat Suitability
Index is highly inadvisable, as it can easily lead to costly
failures.

5. To minimize the deleterious future effects of climate change,
use a “bet-hedging” strategy by constructing reefs in multiple
locations over a large geographic area, where populations will
likely be resistant or resilient to climate change, or where
climate change is unlikely to have a strong effect on future
environmental conditions.

6. Assess metapopulation connectivity with calibrated, high-
resolution hydrodynamic models, which can be used to define
optimal sites for metapopulation growth and persistence.

7. Utilize realistic demographic models to assess the role of non-
linear processes (e.g., reef height and adult density effects on
juvenile recruitment) and potential for alternative stable states
(Jordan-Cooley et al., 2011).

8. Define optimal reef design and scale for the specific system.
For example, in areas of moderate to high siltation or
periodic hypoxia, high-relief reefs may ameliorate physical
stress whereas low-relief reefs would likely degrade.

9. Define protective measures, enforcement protocols and their
efficacy. Without these, poaching will almost certainly lead to
failed restoration efforts.

10. Monitor the performance of restoration reefs over a prolonged
time period, which should be no less than 10 years for oyster
reefs, to ensure accountability.

11. Manage adaptively, as our ability to predict ecological
outcomes is limited and alterations to restoration plans will
almost assuredly be necessary.
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