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Nanotoxicity has become of increasing concern since the rapid development of metal

nanoparticles (NPs). Aquatic nanotoxicity depends on crucial qualitative and quantitative

properties of nanomaterials that induce adverse effects on subcellular, tissue, and, organ

level. The dose-response effects of size-dependent metal NPs, however, are not well

investigated in aquatic organisms. In order to determine the uptake and elimination

rate constants for metal NPs in the metabolically active/detoxified pool of tissues, a

one-compartmental toxicokinetic model can be applied when subcellular partitioning of

metal NPs data would be available. The present review is an attempt to describe the

nano-characteristics of toxicokinetics and subcellular partitioning on aquatic organisms

with the help of the mechanistic modeling for NP size-dependent physiochemical

properties and parameters. Physiologically-based pharmacokinetic (PBPK) models can

provide an effective tool to estimate the time course of NP accumulation in target

organs and is useful in quantitative risk assessments. NP accumulation in fish should

take into account different effects of different NP sizes to better understand tissue

accumulative capacities and dynamics. The size-dependent NP partition coefficient is

a crucial parameter that influences tissue accumulation levels in PBPK modeling. Further

research is needed to construct the effective systems-level oriented toxicokinetic model

that can provide a useful tool to develop quantitatively the robustly approximate relations

that convey a better insight into the impacts of environmental metal NPs on subcellular

and tissue/organ responses in aquatic organisms.

Keywords: waterborne nanoparticles, size-dependent, subcellular, toxicokinetic model, PBPK, nanotoxicity

INTRODUCTION

Nanotoxicity has become of increasing concern since the rapid development of metal nanoparticles
(NPs) and their wide use in industrial and biomedical applications. Metal nanomaterials have been
widely used in drug delivery, sunscreens, electronics, computer processors, conductive coatings,
anti-aging creams, and skin conditioners (Shaw and Handy, 2011). These broad applications have
led to direct or indirect release of NP into environment including aquatic and oceanic ecosystems.
The large specific surface areas and reactive activity of nanomaterial properties makes them efficient
in practical applications. However, they also reported to induce different toxic modes of action
depending on their nano-characteristics, especially related to particle size (Shaw and Handy, 2011).

In view of the biological factors, nanotoxicity to aquatic organisms is exerted through two
mechanisms: (i) the accumulative capacity of NPs through absorption, distribution, metabolism,
and excretion (i.e., toxicokinetics, TK) and (ii) the accumulated nanomaterial-causing adverse
effects at the site of action or target site (i.e., toxicodynamics, TD). When chemical induces the
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adverse effect to the organism, the critical effect concentration is
not dependent on the external concentration. The appropriate
determination should be involved the toxic properties of
chemical, exposure pathways, endpoint of toxic effect response,
and internal/external effect concentration. Toxicokinetic
mechanism represents the time course of chemical and
metabolite level in the target organs/tissues of aquatic organism,
quantifying the relationships between external concentration of
chemical in aquatic ecosystems and internal dose of chemical in
target organs or tissues of exposed aquatic organism.

Wang and Rainbow (2006) suggested that specific subcellular
distribution of chemicals could reflect their toxic reactions.
Recently, most studies have shown negative effects and
tissue accumulations of metal NPs among aquatic organisms
(Zhao et al., 2011; Farmen et al., 2012; Shaw et al., 2012;
Maes et al., 2014). However, little is known, about the
subcellular distribution and the mechanistic modeling for
describing the nano-characteristics of toxicokinetics and
subcellular partitioning in aquatic organisms, especially for NP
size-dependent physiochemical properties and parameters.

Here we explore how the size-dependent metal NP affects
aquatic ecotoxicities based on subcellular and tissue residues.
We particularly demarcate challenges provided by NP toxico-
and pharmacokinetic modeling based on NP size-specific toxicity
at the subcellular, tissue, and physiological levels. The present
review is an attempt to describe the nano-characteristics of
toxicokinetics and subcellular partitioning in aquatic organisms
with the help of the mechanistic modeling for NP size-dependent
physiochemical properties and parameters.

SIZE-DEPENDENT TOXICITY

Most studies indicate that nanotoxicity depends on size,
surface reactivity, crystallinity, aggregation, and dissolution of
nanomaterials (Kasemets et al., 2009; Zhao et al., 2011). However,
Zhao et al. (2007) showed that particle size is directly correlated
with relevant factors that affect nanotoxicity in organisms. The
characteristics of waterborne metal NP have been reported in
several studies by using the single particle sized surface area,
aggregation, and zeta potential (Zhao et al., 2011; Shaw et al.,
2012; Isani et al., 2013). However, each study has inherent
limitations about how the different NP sizes can induce a variety
of particle properties that subsequently affect nanotoxicity.

How size of waterborne NP affects their toxicity on aquatic
organisms remains an important challenge.Most studies focus on
single size of NP to construct the relationship between metal NP
concentration and their adverse effects. Recently, several studies
have paid attention on investigation of behavior, mortality,
development, and histopathological effects of iron, zinc, copper,
and titanium NPs on zebrafish, medaka, and rainbow trout
(Griffitt et al., 2008, 2009; Chen et al., 2012, 2013; Shaw et al.,
2012; Isani et al., 2013).

To date, the studies regarding the physiological effects of
nano-sized waterborne CuNP on fish included 26.7 nm-zebrafish
(Danio rerio), 20–40 nm-carp (Cyprinus carpio), and 87- and
164 nm-rainbow trout (Oncorhynchus mykiss) systems (Griffitt
et al., 2008, 2009; Zhao et al., 2011; Shaw et al., 2012; Al-Bairuty

et al., 2013; Isani et al., 2013). Dose-response effects of size-
dependent metal NPs were also found in in vitro osteoblastic
MC3T3-E1 cells and PC12 pheochromocytoma cell studies,
indicating that the smaller metal NPs remained more toxic
than larger ones on cell toxicity (Carlson et al., 2008; Kim
et al., 2012; Prasad et al., 2013). Therefore, it is suggested that
nanotoxicological studies should take into account size effects
and surface properties of NP.

MODELING OF SUBCELLULAR
PARTITIONING

Previous studies indicated that subcellular distribution can
be used to describe the complex binding of metal ions in
different subcellular compartments with different metal ion-
binding ligands (Wang and Rainbow, 2006; Buchwalter et al.,
2008; Seebaugh and Wallace, 2009; Huang et al., 2010). They
pointed out that metal ions binding to target subcellular
compartments could reflect the metal toxicity and detoxification.
The critical sites of toxic action in the subcellular fraction
include a metabolically active pool (MAP) comprising organelles
and heat sensitive proteins and a metabolically detoxified pool
(MDP) comprising metal rich granules and metallothionein-
like proteins. The MAP is the target compartment that induces
toxic effects, whereas MDP controls the detoxifying capacity.
However, the subcellular partitioning of size-dependent NP
concentration has not been well investigated on toxic effects
to aquatic organisms. There are few studies on assessing the
subcellular effects of waterborne metal NPs in fish liver. Recently,
Fan et al. (2013) indicated that NP concentration distributions in
metal rich granules were the main target for ZnNPs, whereas Zn
concentration in organelles increased significantly after Zn ion
exposure.

If subcellular partitioning data of metal NP are available,
a one-compartmental toxicokinetic model can be used to
determine the size-dependent uptake and elimination rate
constants of metal NPs in MAP or MDP of tissue. On the
other hand, the estimated key toxicokinetic parameters of size-
dependent metal NPs are capable of describing NP accumulation
kinetics over time in MAP or MDP. Croteau and Luoma (2009)
have recently proposed a metal influx threshold (MIT) concept
to determine the kinetics of detoxification. MIT occurs when
metal influx is equal or larger than the combined rate of metal
loss in MAP exceeding the MAP influx threshold, resulting in
detoxification (Figure 1) (Croteau and Luoma, 2009). In light of
the MIT concept, the size-dependent metal NP detoxification in
aquatic organisms can be fully quantified.

Moreover, several researches indicated that metal subcellular
distributions controlled the assimilation efficiencies of metals
in predators fed with different prey (i.e., metal trophic transfer
level) (Dubois and Hare, 2009; He et al., 2010; Guo et al.,
2013). This implicated that metal subcellular distribution of
aquatic fish could also influence the human health risk
from metal-contaminated seafood consumptions due to the
trophic transfer of metals. The main subcellular distributions
of trophically available metals usually include organelles, heat
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FIGURE 1 | Scheme showing the CuNPs accumulative pattern between

MAP and MDP.

sensitive proteins, andmetallothionein-like proteins that can also
be used to predict the trophic transfer fraction (Wallace et al.,
2003). Cheung and Wang (2005) indicated that different metal
characteristics could be concentrated in insoluble or soluble
fractions. However, to our knowledge, there is no available
information concerning NP subcellular-related trophic transfer
level of freshwater fish.

Shaw et al. (2012) and Zhao et al. (2011) indicated
that accumulative levels have been found in different target
tissues under waterborne metal NPs and ion exposures. The
subcellular distribution could provide more clear information for
understanding the abilities of toxicity and detoxification of target
tissues between nano- and non-nano metal exposures. If the
critical subcellular distribution of metal NPs would be available,
the cellular causes of biomagnification in food chains could be
better understood.

PHYSIOLOGICALLY-BASED
PHARMACOKINETIC
MODELING-KINETICS OF TISSUE
DISTRIBUTION

Shaw et al. (2012) and Isani et al. (2013) indicated that gill and
liver of rainbow trout were the target organs for accumulating
CuNP. De Boeck et al. (2003), Peyghan et al. (2003), and
Soedarini et al. (2012) pointed out that liver was the key
site for homeostasis of accumulating Cu. However, gill could
uptake higher CuNP levels than liver (Griffitt et al., 2007; Zhao
et al., 2011). Notably, Kashiwada (2006) indicated that NP
could be capable of passing the blood-brain barrier and causing
brain damage in medaka. Health risk is significantly related to
the potential accumulation of NPs in individual factors. Until
now, most studies in dealing with NP accumulation in aquatic
organisms focused on waterborne exposure and tissue- specific
accumulation (Shaw et al., 2012; Isani et al., 2013). They did

not investigate the internal NP accumulation based on systemic
circulation to reach the tissues and organs. The NP distributions
within different organ systems by different exposure routes need
to be identified. Here, the toxicokinetic approaches incorporated
with physiological and biochemical parameters are capable of
describing the complete dynamics of NPs, especially for size-
dependent nanotoxic effect under sublethal exposures.

Physiologically-based pharmacokinetic (PBPK) models can
provide an effective tool to estimate the time course of chemical
accumulation in target organs/tissues of fish and could be useful
in quantitative risk assessment. The PBPK models can integrate
the physiological structures of organism and physicochemical
properties of toxicants and can quantitatively describe the kinetic
processes of absorption, distribution, metabolism, and excretion
(Krishnan and Peyret, 2009). The PBPK models have been used
in several aquatic fish species subjected to various chemicals;
e.g., cadmium in rainbow trout (Salmo gairdneri), dioxin in
brook trout Salvelinus fontinalis (Nichols et al., 1998), 1,1,2,2-
tetrachloroethane, pentachloroethane, and hexachloroethane in
lake trout (Salvelinus namaycush) (Lien et al., 2001), and arsenic
and copper in tilapia (Oreochromis mossambicus) (Liao et al.,
2005; Chen and Liao, 2014). However, those developed PBPK
models did not investigate the NP accumulation in fish.

In terms of metal NPs, a PBPKmodel is generally based on the
following assumptions: (i) each compartment is well-mixed and
homogenous in the distribution of toxicants and their chemical
speciation, (ii) all transport processes are mediated by blood
flow, (iii) uptake and elimination processes are described as a
first-order reaction, and (iv) there is a complete equilibrium of
metal NP between the dissolved phase and tissue. The essence
of almost all PBPK models can be described by a state-space
equation as:

d{Ci(t)}

dt
= [A]{Ci(t)} + [B]{u(t)}, (1)

where {Ci(t)} is the state variable vector describing metal NPs in
each target tissue (µg g−1), {u(t)} is the input vector of metal
NPs in the aquatic environment (µg L−1), [A] is the state matrix
describing the exchange rate between target tissues (L d−1), and
[B] is the constant input matrix describing the exchange rate
into target tissues (L d−1). The principle feature of the tissue
compartment model is schematized in Figure 2.

The essential physiological and physicochemical parameters
are needed to be estimated for constructing ametal NP-fish PBPK
model. Physiological parameters include blood volume and
organ/tissue weight that can be obtained from experimental data
in that exchange rates between tissues and blood compartment
are calculated as the fraction of cardiac output. One of
the crucial physicochemical parameter is the tissue partition
coefficientdefined as the area under the curve (AUC) of metal
NP in tissue/AUC of metal NP in blood for specific tissue. The
partition coefficient affects tissue accumulation levels in a PBPK
model (Brown et al., 1997).

Zhao et al. (2011) pointed out that the whole body
accumulation of waterborne CuNPs in the size range 20–40 nm
was higher than that of 1000–2000 nm Cu bulk exposure. Thus,
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FIGURE 2 | Scheme of a PBPK model for NPs in fish where QGw is the

gill-water exchange rate, QBi is the blood-tissue exchange rate, and ki
is the elimination rate.

NPs accumulation in fish should take into account the different
nano-sized effects to better understand the tissue accumulative
capacities and their dynamics. Lankveld et al. (2010) performed
the partition coefficients of size-dependent silver NP (20, 80, and
100 nm) in a rat PBPKmodel. However, this model did not reveal
the relationship between NP size and tissue accumulation. To
date, there are limited PBPK parameters for metal NPs in aquatic
organisms. Thus, we need to build a suitable model involving
particle size, surface charge, and tissue kinetic characteristics that

could well-describe the toxicokinetics of metal NPs in aquatic
organisms.

As there are very few studies on an integrated approach using
metal NPs characteristics, physiological, physicochemical, and
subcellular partitioning related parameters to assess health risks
in the aquatic environment. Specific parameters are required to
be used and quantified in experimental approaches, including
environmental to individual, organ-system to subcellular levels.
Thorough understanding of NPs at tissue, cell and subcellular
level is essentially required in the light of differential diffusion
property of different NPs through blood-brain barrier.

CONCLUSION

A comprehensive evaluation of aquatic nanotoxicology should
perform suitable experiments to obtain baseline data in order
to develop the mechanistic models for predicting the potential
accumulation and toxicities of NPs. It is equally important to
determine the relationships among metal NPs exposure, tissue
accumulation, and the fractions of the MAP and MDP in aquatic
organisms. The mechanisms representing adverse effects of metal
NPs on aquatic organisms usually include three elements: (i)
size-dependent exposure, (ii) toxicological susceptibility, and
(iii) recovery capacity. Generally, toxicological susceptibility
includes bioaccumulation (uptake and elimination) and coping
mechanism (detoxification, storage, and antioxidant).

To date there are limited studies that pursue an integrated
approach by using metal NPs characteristics, physiological,
physicochemical, and subcellular partitioning related parameters
to assess health risks in the aquatic environment. Specific
parameters should be used and quantified in experimental
approaches that include environmental to individual, organ-
system to subcellular levels. Further research is needed to
employ the effective systems-level oriented toxicokinetic model
that determines in a fully quantitative way to develop robustly
approximate relations, leading to new nanoecotoxicological
modeling opportunities. These efforts open up new possibilities
for assessing how environmental metal NPs characteristics affect
subcellular and tissue/organ responses in aquatic organisms.
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