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We present a Hierarchical Bayesian version of Pollock’s Closed Robust Design for
studying the survival, temporary migration, and abundance of marked animals. Through
simulations and analyses of a bottlenose dolphin photo-identification dataset, we
compare several estimation frameworks, including Maximum Likelihood estimation
(ML), model-averaging by AICc, as well as Bayesian and Hierarchical Bayesian
(HB) procedures. Our results demonstrate a number of advantages of the Bayesian
framework over other popular methods. First, for simple fixed-effect models, we show
the near-equivalence of Bayesian and ML point-estimates and confidence/credibility
intervals. Second, we demonstrate how there is an inherent correlation among temporary
migration and survival parameter estimates in the PCRD, and while this can lead to
serious convergence issues and singularities among MLEs, we show that the Bayesian
estimates were more reliable. Third, we demonstrate that a Hierarchical Bayesian
model with carefully thought-out hyperpriors, can lead to similar parameter estimates
and conclusions as multi-model inference by AICc model-averaging. This latter point
is especially interesting for mark-recapture practitioners, for whom model-uncertainty
and multi-model inference have become a major preoccupation. Lastly, we extend
the Hierarchical Bayesian PCRD to include full-capture histories (i.e., by modeling a
recruitment process) and individual-level heterogeneity in detection probabilities, which
can have important consequences for the range of phenomena studied by the PCRD,
as well as lead to large differences in abundance estimates. For example, we estimate
8-24% more bottlenose dolphins in the western gulf of Shark Bay than previously
estimated by ML and AlCc-based model-averaging. Other important extensions are
discussed. Our Bayesian PCRD models are written in the BUGS-like JAGS language
for easy dissemination and customization by the community of capture-mark-recapture
(CMR) practitioners.

Keywords: bottlenose dolphin, mark recapture, Bayesian inference, hierarchical Bayes, multimodel inference,
individual heterogeneity, detection probability, abundance
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1. INTRODUCTION

We developed a Bayesian Hidden Markov Model (HMM) version
of Pollock’s Closed Robust Design (PCRD; Pollock and Nichols,
1990; Kendall and Pollock, 1992; Kendall and Nichols, 1995;
Kendall et al., 1995, 1997) for studying the survival, temporary-
migration, and abundance of marked animals. The PCRD is
an increasingly popular study design and model (Nicholson
et al.,, 2012; Smith et al., 2013; Brown et al., 2016). The PCRD
utilizes a hierarchical sampling strategy, including widely-spaced
“primary periods,” between which the population is open to birth,
death and temporary migration, and tightly-spaced “secondary
periods,” between which the population is assumed closed to
population changes.

The Robust Design is especially useful to increase the
precision and identifiability of parameters in a capture-mark-
recapture (CMR) model. Pollock (1982) suggested to repeat
sampling during periods of population closure in order to
increase the suite of estimable parameters and reduce bias from
unequal detectability (Pollock and Nichols, 1990; Kendall and
Pollock, 1992; Kendall et al., 1995). Later, temporary migration
processes were added and were shown to reduce biases that arise
due to non-random movement patterns (Kendall and Nichols,
1995; Kendall et al., 1997). Together, the PCRD sampling design
and modeling technique can improve estimation of demographic
and detection parameters, which in turn are crucial to accurately
estimate population abundance.

Another important development for temporary migration
CMR models was the recognition that they are a specific type
of the “multi-state” model (Brownie et al., 1993; Lebreton
et al., 1999, 2009). Conceptually, animals stochastically move
among many different latent states, such as alive and onsite,
temporary migrant, and dead, of which only the onsite state is
observable and available to be detected. While such a multi-state
formulation does not change the likelihood of the PCRD and
inferences thereof, it does provide a comprehensive framework
to unify many capture-recapture ideas, such as including other
geographic or reproductive states or recruitment processes
(Lebreton et al., 1999). Bayesian versions of the multi-state model
have existed (Dupuis, 1995), but practical application of such
models was difficult for ecologists because they required one
to custom-make Bayesian sampling algorithms. An important
development was the connection between the multi-state
framework and discrete state-space models (Clark et al., 2005;
Royle and Kery, 2007; Kery and Schaub, 2011), a.k.a Hidden
Markov models (HMM), the latter which have a long history in
Bayesian analysis. The main advantage of the HMM formulation
is the ability to simplify the three-factor joint likelihood of the
PCRD into latent-state transitions and conditional Bernoulli
observations, as we show below. In particular, the HMM process
is easy to implement in the popular BUGS language (Royle
and Kery, 2007; Kery and Schaub, 2011; Schofield and Barker,
2011).

There are many practical reasons why CMR practitioners
would be interested in a Bayesian and BUGS-friendly version
of the PCRD, including: (i) access to full posterior conditional
probabilities of model parameters, and any derived products

thereof; (ii) improved estimation performance under low sample
sizes; (iii) use of prior information; (iv) hierarchical model
extensions; and (v) the availability of a common Bayesian
procedure to diagnose poor model fit, whereas there are no
goodness-of-fit tests available for the PCRD in the Program
MARK (White and Burnham, 1999) family of applications.
While many of the above advantages generally pertain to
Bayesian analyses, researchers who use the PCRD or temporary
migration models should be especially interested in practical
Bayesian inference, given some of the inherent estimation
challenges of temporary migration (Bailey et al., 2010). In this
study, we explore how Bayesian models compare to Maximum
Likelihood (ML) based inference for simple “fixed-effects”
PCRD models, using both simulations and analyses of a real
dataset. In particular, we are interested in how both frameworks
perform in separating temporary migration from death, which
are only partially separable and identifiable, as we shall
demonstrate. Such issues commonly manifest during temporary-
migration CMR analyses in two forms: a priori prescriptions for
constraints on parameters, and parameter singularities during
ML estimation. Secondly, and perhaps most interesting for
researchers, we introduce a Hierarchical Bayesian (HB) version
of the PCRD. We demonstrate how HB offers a compelling
framework to unify and tackle some perennial challenges in
CMR modeling, namely, as a means to incorporate random-
effects, individual heterogeneity of detection probabilities, as
well as a way to address model uncertainty and multi-model
inference (in a restricted sense). Individual heterogeneity in
detection probabilities, if it exists and is ignored, is known
to cause negatively-biased population abundance estimates
(Carothers, 1973; Burnham and Overton, 1978; Clark et al.,
2005), and is, therefore, a primary preoccupation of most CMR
practitioners. Similarly, model selection and model uncertainty
are important to CMR practitioners faced with many fixed-
effects models with different time-varying and time-constant
parameter specifications. This challenge has resulted in the near
ubiquitous use of model-averaging by Information Theoretic
(IT) criteria, such as the AIC, and has even been dubbed a
“prerequisite for most mark-recapture studies” (Johnson and
Omland, 2004). However, IT-based model-averaging does not
escape the estimation issues of the underlying fixed-effect
models (such as problems with singularities). Alternatively,
we suggest HB and the use of random-effects on time-
varying parameters to achieve a certain type of smoothing
between the extremes of time-invariant and fully time-varying
parameters, and compare the results to AICc-based model-
averaging using a real dataset of bottlenose dolphins, Tursiops
aduncus.

2. METHODS

2.1. Organization of Manuscript

The article proceeds by comparing the Bayesian PCRD to
ML-based estimation in Program MARK (Program MARK;
White and Burnham, 1999), starting with a simple, non-
hierarchical model evaluated on 100 simulations. Secondly,

Frontiers in Marine Science | www.frontiersin.org

March 2016 | Volume 3 | Article 25


http://www.frontiersin.org/Marine_Science
http://www.frontiersin.org
http://www.frontiersin.org/Marine_Science/archive

Rankin et al.

Bayesian Pollock’s Closed Robust Design

we re-analyze a bottlenose dolphin (Tursiops aduncus) photo-
identification dataset from the western gulf of Shark Bay,
Western Australia (Nicholson et al., 2012), and compare slightly
different variants of the Bayesian PCRD, such as conditioning
on first-capture vs. full-capture modeling. Lastly, we demonstrate
a Hierarchical Bayesian (HB) PCRD and compare its results
to AICc-based multi-model inference, again using the dataset
from Nicholson et al. (2012). See the Appendices for JAGS
code and a hyper-link to an online tutorial with real
data.

2.2. Notation Used

We consider a single population of animals which undergoes
recruitment, death, and temporary migration among two
locations, onsite (i.e., inside a defined study area) and offsite.
We assume that the collective observation process of detecting,
capturing, marking, identifying, and releasing an animal is
instantaneous and modeled simply as “detections.” Detections
occur according to a nested sampling design with t € [1, ..., T]
primary periods, between which the population is assumed
“open” to migration/birth/death processes, and s; € [1, ..., ]
capture periods per t primary period, between which the
population is assumed closed. The number of secondary periods
may vary per primary period, and Spyax is the maximum number

of all St.

n is the total number of uniquely marked animals

encountered during the entire study.
N;: is the total number of individuals alive and inside
the study area (omsite) and available for capture
during the " primary period (only a subset of
these animals will actually be observed).
is the array of capture histories over all observed
individuals in T primary periods and Smax
secondary periods, with individual elements
indexed as y;;; = 1 if the i individual in
secondary period s; was encountered, and
yrs.i = 0 if not. If the detection probabilities
are equal within each primary period, then Y
can be simplified to dimension (n x T) where
each element is the total number of recaptures of
individual i in primary period ¢t (this is the set-up
for the simulations in Section 2.5 whereas the
dolphin analyses include the full n x T X Smax
array).
ps.t is the probability of detecting and (re)capturing
a marked animal in a secondary period s within
primary period . We will hereafter simply refer to
this observation process as “detection.”

¢: is the “apparent survival” between the t to t +
1 primary periods. We use the short-hand label
“survival” although the probability includes both
survival and not emigrating permanently.

y/ is the probability that an animal outside of the
study area (offsite) in primary period t — 1 will
stay offsite for period ¢ (i.e., they are unavailable for
detection at time t);

Y (X TXSmax).

v/’ is the probability that an animal inside the study

area (omsite) in primary period t — 1 leaves the
study area and is unavailable for detection at
time ¢.

The above parameters are standard in the Kendall PCRD
model (Kendall and Nichols, 1995; Kendall et al., 1997). For all
parameters, we can apply a number of constraints to facilitate
parameter estimation, especially time-invariant vs. time-variant
parametrizations, indexed as either 6. or 6; respectively. For
example, in Section 2.7, we run the model ¢.y/y/'pss, which
denotes: constant survival ¢.; constant probability for remaining
a migrant y’; time-varying probabilities of becoming a migrant
y/'; and capture probabilities which vary by secondary and
primary periods p;,. Particular to our full-capture history
Bayesian HMM formulation, we have additional nuisance and
latent variables:

m is the total number of individuals, both observed
and unobserved pseudo-individuals. This quantity
is fixed outside of the modeling exercise (m ~ 2 x
n), and is strictly a consequence of the parameter-
expansion data augmentation (PXDA) technique
of Tanner and Wong (1987) and others (Kery
and Schaub, 2011; Royle and Dorazio, 2012). This
quantity is not biologically meaningful; instead, it
is included to allow us to model the full-capture
histories and avoid conditioning on first-capture.
This augmentation allows us to model the entry
process and simulate the existence of individuals
who may have been onsite but never observed,
i.e., their capture histories are all zeros. Modeling
full-capture histories has important technical and
biological implications, as we discuss further
in Section 2.4 and in the Appendix Section
“Full-Capture Modeling, Recruitment Ratio, and
Conditioning on First Capture”.

: is the full array of capture histories, including

the extra all-zero entries that represent our

PXDA pseudo-individuals. The augmented Y is

constructed outside the modeling exercise and

constitutes the model’s data.

is a matrix of latent states. z;; € {I,2,3,4}

indexes individual 7 as being in one of four states

during primary period t. Latent states do not
change between secondary periods. The states

{1,2, 3, 4} are arbitrarily assigned to represent: {

not yet entered population, dead, offsite, onsite}.

Notice that only z; = 4 is available for capture,

being the only state that is alive and inside the

study area.

Y is the probability that an animal transitions from
zi—1 = 1toz; = 3 or z; = 4 between primary
periods t — 1 to t, i.e., from not-yet-entered to
alive. This parameter is roughly a “recruitment”
process, but in our specific dolphin applications
it has no direct biological interpretation for two
reasons: (i) the observable dolphin recruitment

Y(Wl>< T'X Smax)

Z(m>< T)
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process is confounded between birth, permanent
immigration and mark-accumulation (ie.,
dolphins acquire marks at highly variable rates),
and (ii) it is actually a “removal entry process”
for fixed m (Kery and Schaub, 2011; Royle and
Dorazio, 2012), and tends to increase over time
even for a constant geometric recruitment. If one
ignores the issues of confounded recruitment
processes, then researchers may be interested
in the derived quantity apparent recruits By
(births, immigrants) whose expectation is
E[B:] = my [T,y (1 — ¥).

At is the probability that new recruits start onsite;
in other contexts it may also be interpreted as
the proportion of new recruits who are born
locally vs. arrive as permanent immigrants. Of
the total number of recruits that transition out
of z = 1 into the population, we expect (1 —
A) will go to z = 3 (offsite) and A will go
to z = 4 (onsite). Generally, to be biologically
meaningful, this parameter requires extra data
(Wen et al.,, 2011). In this paper, we consider a few
different specifications for A¢, explained in more
detail in Section 2.4 and the Appendix Section
“Full-Capture Modeling, Recruitment Ratio, and
Conditioning on First Capture”.

Some other important observable quantities are: r;; =
> ! yis.i> the total number of encounters per secondary period;
Ry = Z?H[(thzlyt,s,i) > 1], the total number of unique
encounters per primary period; and Ry .,, the total number
of individuals seen at primary period #; and not seen again
until ;.

2.3. Overview of Pollock’s Closed Robust

Design and the Hidden Markov Model
For the PCRD, the HMM allows us to decompose the complex
multinomial distribution of capture histories @ into a series
of conditional univariate relationships that can be evaluated
simply. The key to this simplicity is the idea of a latent
state z; ;, which is not known, but can be given a probability
distribution and drawn for each Markov chain Monte Carlo
(MCMC) iteration. For example, if we know individual i is in
state omsite z;; = 4 at period ¢, then the observation error
for each secondary period is a simple Bernoulli process with
detection probability p;, i.e., P(y;s.ilzii = 4) = Bern(pss).
Similarly, the movement from one latent state to another (z;; —
Z44+1,i) is Markovian with a simple discrete distribution (see
matrix A below). The elegance of the HMM has led to its
extensive popularity across scientific disciplines (Murphy, 2012).
The HMM formulation also makes the PCRD easy to evaluate in
JAGS (Plummer, 2014) and other BUGS-like languages, whereas
traditional capture-histories have no obvious distribution in
BUGS-like languages. See the Bayesian PCRD JAGS code in the
Appendices.

In the HMM framework, we specify the PCRD generative
model with the use of matrices that relate latent states to

each other and to the observation error. The transition matrix
A; governs how individuals move from a state at time f to
t + 1 (columns to rows). The emission matrix B;; governs
whether individuals in certain states can be observed and with
what probability. A; can be time-invariant or indexed to each
primary period t. Similarly, B can be time-invariant or indexed
to each s; secondary period or assumed constant within each ¢
primary period. Each matrix is simplified by setting individual
cells to be functions of PCRD random variables. The elements
of A are made up of the demographic parameters (temporary
migration y, survival ¢, and the recruitment processes A
and ). For example, individuals who are offsite (column 3)
at time t — 1 will move onsite for time t with probability
A[4, 3] = ¢¢(1 — y/); or they will remain offsite with probability
A[3,3] = ¢y/; or they will die with probability A[2,3] =
(I — ¢¢). The elements of B are made up of the detection
probability p;. Certain constraints must be imposed, for example,
survival ¢, must be the same between both onsite and offsite
transitions.

Finally, to complete the model, we must specify prior
distributions for model parameters and initialize all individuals
to start in state zg ; = 1 at time t = 0. Estimation then proceeds
by running the JAGS MCMC sampler, which alternates between
imputing the latent states conditional on model parameters, and
updating model parameters conditional on latent states. The joint
stationary distribution of model parameters will converge to the
target posterior distribution.

not yet entered dead offsite onsite
not yet 1— Y 0 0 0
entered
At = dead 0 1 1— ¢ 1— ¢
offsite V(1 — A¢) 0 bevy byt
onsite Ykt 0 d(L—y)) (1 —y)
not yet entered dead offsite  onsite
observed 0 0 0 Dr.s
Bt,s -
unobserved 1 1 1 1 —pts
1

The most general model is represented as:

1fori=1,..,m

Cat(A¢[-, zp—1,4]) fori =1, ..., m;
t=1,..,T

PWrs.ilzti Brs) = Cat(Byl-, z1,]) fori=1, .., m;
ss=1,..,8;t=1,..,T

m St

T
(Al B Y. &) o ([T(TT(TTe0rslzes Bio)

i t=1 s=1

Panilzi-1is AD) )T (A) @

initialize: zg; =

Pz ilzi—1,is Ar)

where 7 (A) represents the joint prior distributions. See the
Bayesian PCRD JAGS code in the Appendix. The above
model Equation (2) considers animals’ full-capture histories.

Frontiers in Marine Science | www.frontiersin.org

March 2016 | Volume 3 | Article 25


http://www.frontiersin.org/Marine_Science
http://www.frontiersin.org
http://www.frontiersin.org/Marine_Science/archive

Rankin et al.

Bayesian Pollock’s Closed Robust Design

Alternatively, one can also condition on individuals’ first-capture,
which changes the likelihood for an animal’s first primary period,
and is described in more detail in the Appendix (Section “Full-
Capture Modeling, Recruitment Ratio, and Conditioning on
First-Capture”).

JAGS greatly simplifies the use of HMMs. Firstly, users
need only specify the generative model with priors on model
parameters, and not worry about the technical details of
the underlying algorithms used to sample from the posterior
distributions. The modeling task reduces to four steps: (i) specify
prior distributions for model parameters; (ii) initialize latent
states for all individuals (zo = 1 for not-yet-entered); (iii) specify
the Markovian state transitions between t = 0 to T; and (iv)
specify how observations (y;s; € 0,1) depend on the latent
states.

2.4. Full-Capture Histories and

Recruitment Ratios

In this article, we consider models that condition on an
animal’s first-capture vs. models that consider full-capture
histories, including the leading-zeros before an animal’s first-
capture at primary period t}. Both types of conditioning should
yield the same inferences about survival and migration, but
conditioning on first-capture absolves us from having to model
the arrival of individuals on the study site: we merely take
it as a given. In contrast, modeling full-capture histories is
desirable for a number of reasons, principally for inference
about recruitment, population rate of change, and births.
Another advantage is the ability to include random-effects at the
individual-level.

Individual heterogeneity in detection probabilities are perhaps
the most obvious and important random-effect to consider,
while ignoring such heterogeneity in p is known to negatively
bias population abundance estimates (Carothers, 1973; Burnham
and Overton, 1978; Clark et al., 2005). One challenge of
individual-level random-effects is that we should ideally include
not only those individuals who were detected, but also those
individuals who are a part of the population but were missed,
and, therefore, have no “first-capture” to condition upon. The
full distribution of individuals, both highly detectable (and
therefore more likely to be observed) and less-detectable (and
therefore more likely to be missed entirely), should be included
to accurately characterize the population. Full-capture modeling
gives us the ability to model those missed individuals and
make inferences about the true population. For these reasons
and more, ecologists should consider modeling full-capture
histories.

There are many ways to model full-capture histories (see,
for example, Pradel, 1996). In our case, we use a parameter-
expansion data augmentation technique of Tanner and Wong
(1987) to add a large number of all-zero capture histories
(i.e., pseudo-individuals) to the array of observed capture
histories (Royle and Dorazio, 2012; Keéry and Schaub, 2011),
as well as include a “not-yet-entered” dummy state. These two
related augmentation techniques allow us to represent both the
recruitment process (i transition from “not-yet-entered” to

“alive”) as well as represent those individuals in the population
who were not seen, either because of temporary migration and/or
low detection probability.

While recruitment models are fairly mature in the CMR
literature, recruitment poses a special challenge to the Bayesian
PCRD and temporary migration models that include an
unobservable state: not only do we require the additional
recruitment parameters v; and the augmentation by pseudo-
individuals, we also require a model for how new recruits decide
to recruit into either the unseen state (z = 3, offsite) or the
observable state (z = 4, onsite). For example, Wen et al. (2011)
required extra genetic information to parse recruits into being
either permanent immigrants or in-situ recruits (e.g., births).
This is represented as a parameter A; which is the probability that
a new recruit goes onsite as soon as they recruit to the marked
population, while 1 — X, is the probability that a new recruit goes
offsite as soon as they recruit to the marked population.

If one is not fortunate to have extra information to estimate
At (such as in Wen et al., 2011), then one must nonetheless
make an arbitrary decision about how to model the recruitment
ratio A;. Depending on the ecological context, a number of
sensible specifications are possible, and researchers who wish
to use the full-capture Bayesian PCRD should refer to our
discussion in the Appendix (Section “Full-Capture Modeling,
Recruitment Ratio, and Conditioning on First-Capture”). Briefly,
we offer three methods which depend on whether one believes
that recruits have the same migration dynamics as the already-
marked-population (as in our case study), and whether or not
the recruitment parameters should depend on information in the
migration parameters.

2.5. Simulations

We performed 100 simulations to compare the performance of
the Bayesian PCRD vs. ML-based estimation in MARK. We
compared the ability to estimate true simulation values of p, ¢, 3/,
and y”, as well as to investigate parameter estimate correlations.
For all simulations, we generated data according to a simple
four parameter model (¢.y/y/p..) with T = 5 primary periods
and §; = 4 for all primary periods. Each simulation used a
different set of true parameter values, which were drawn from the
following distributions: ¢. ~ Unif(0.8, 0.99); y/ ~ Unif(0.3, 0.8)
such that animals are more likely to stay outside the study
area once out; and y” ~ Unif(0.2, 0.7) such that animals are
more likely to stay inside the study area once inside; p;; ~
Unif(0.05, 0.26) resulting in an effective primary period detection
probability of p.g & 0.19 — 0.7. We modeled entry probabilities
with a birth-rate between 0.001 and 0.1 starting with half the
population entering at T = 1 (because MARK conditions on
first-capture, this birth-process was not estimated). The observed
population sizes were constrained to have: at least 30 observed
individuals and no more than 250 observed animals and at least
25 individuals seen at least twice. The range of parameter values
were designed to simulate a Tursiops system with high annual
survival and Markovian temporary migration (Smith et al., 2013).
The data-generating recruitment ratio was deliberately specified
to follow the eigenvector decomposition (explained in Section 2.4),
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but because MARK conditions on first-capture, this process was
not subject to scrutiny.

Bayesian parameter estimation was performed using the
rjags package (Plummer, 2014) in R (R Core Team, 2014).
All probability parameters were given a flat prior distribution
Beta(1, 1). Maximum Likelihood estimation was performed in
MARK (White and Burnham, 1999) with RMark 2.1.8 (Laake,
2013). Al MARK analyses used the time-invariant model
@.yy"p..).

For each true and estimated parameter, we calculated the
mean square error (MSE), the bias, and the empirical coverage
(the proportion of estimates where the true value was within the
estimated 95% credibility/confidence interval). We also estimated
mean correlation between parameter estimates.

2.6. Goodness-of-Fit and the Posterior
Predictive Check

For model-checking, we employ a Posterior Predictive Check
(PPC; Gelman et al, 1996). We use two different x2-like
discrepancy statistics for the closed and open portions of
the PCRD model szmhm and Xgetween’ respectively. Here,
the elements of the x? calculation correspond to sufficient
statistics for the open and closed portions of the model: (i)
the m-array for the open-population model (between primary
periods); and (ii) the vector of the number of captures per
secondary period, plus the total number of uniquely captured
individuals per primary period. The m-array is a sufficient
statistic for a simple open population model (Cormack-Jolly-
Seber) conditioned on first capture; whereas the latter component
is the minimally sufficient statistic for a closed population model
(Darroch, 1958). Commonly, PPC statistics are summarized
with a “Bayesian p-value,” which unfortunately cannot be used
for model selection and does not have meaningful rejection
thresholds, but nonetheless can help explore the adequacy of
a final selected model (Gelman, 2013). For example, we can
investigate individual elements of the discrepancy statistics and
compare their relative magnitudes to gain insights into which
assumptions of the PCRD may be violated, such as a failure of
population-closure among secondary periods or heterogeneous
migration parameters. The details about the PPC are in the
Appendix (Section “Posterior Predictive Checks”).

2.7. Shark Bay Dolphins 1:

Non-Hierarchical Bayesian PCRD

As a further validation of the Bayesian PCRD, we also
compared the parameter estimates from the Bayesian and
Maximum Likelihood methods by re-analyzing the data in
Nicholson et al. (2012). Nicholson analyzed 5 years of bottlenose
dolphin (Tursiops aduncus) CMR data from a long-term photo-
identification study in the western gulf of Shark Bay, Western
Australia. Details about the study area, survey design, photograph
processing, and dolphin population are in Nicholson et al.
(2012). The study consists of T = 5 sequential winters of
photo-ID surveys (primary periods), each with 5, 5, 10, 5, and
3 secondary periods respectively (assumed under population
closure). Nicholson did an extensive model selection exercise, but

in this section we consider only one model with: (i) constant
survival (¢.) with prior 7(¢.) = Beta(2,1); (ii) constant
probability of remaining a migrant (y) with prior 7(y/) =
Beta(1, 1); (iii) time-varying probabilities of becoming a migrant
y{ with prior 7 (y/', ..., y) = ]_[f:1 Beta(1, 1); (iv) primary- and
secondary-period varying probabilities of detection p; , with a
hierarchical prior specification described below. We selected this
model because it was strongly supported by AICc (i.e., AAICc <
1, see below). Furthermore, this model seems reasonable given
the general difficulty to separate ¢ and y’ in the PCRD, suggesting
we should hold them constant over ¢ while allowing time-varying
specifications for y;” and py ;.

We use a very weak hierarchical prior on the session-varying
detection probabilities (py ):

Pt,1, Pt,2s s Prs ~ Beta(ay, by)
ap, az, ..., a; ~ Ga(3, 2) (3)
bl, bz, veey bt ~ Ga(3, 2)

This specification allows for fully time- and session-varying
detection probabilities (p;;), but respects the hierarchical
relationship among detection probabilities within the same
primary period. We used a Gamma hyperprior (shape-rate
parametrization) for {a, bt}thl such that their prior modes were
all 1, resulting in flat Beta priors on all p;; parameters. Our
weak Gamma hyperparameters (shape 3 and rate 2) ensure that
the posterior distributions were almost entirely driven by the
likelihood.

In addition to computing the MLE’, we ran four different
Bayesian PCRD models with slightly different specifications for
the recruitment ratio A: eigenvector decomposition, in which
A+ were deterministic functions of ¥’ and y,’; one-step-back,
in which A; were estimated from the ratio of onsite vs. offsite
individuals in the marked population; random in which case A;
were time-varying random variables with prior 7w (Ay, ..., A5) =
]_[f:1 Beta(4, 4); first-capture, in which case no recruitment
process was involved, and we conditioned on individuals’ first-
capture (as in Program MARK). The Appendices include JAGS
code for the eigenvector and first-capture specifications.

For all models, we ran two MCMC chains for 200 000
iterations each, retaining 2000 samples to approximate the
posterior distributions. Chains were visually inspected for
adequate mixing and convergence; we also computed Gelman-
Rubin scale-reduction statistics (Brooks and Gelman, 1998).

2.8. Shark Bay Dolphins 2: Hierarchical
Bayesian PCRD

We performed an additional analysis of the western gulf Shark
Bay dolphins, comparing AICc-based model-averaged estimates
vs. a Hierarchical Bayesian (HB) model with time-varying
model parameters as random-effects, vs. another HB model with
individual random-effects for detection probabilities. The model-
average estimates are important because the AICc weights of the
top two ML models were just 0.394 and 0.354. This means that
there was a lot of model uncertainty and there was no clear top
model.
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We consider the Hierarchical Bayesian model as being
comparable to “multi-model inference” and “model selection,”
most commonly addressed in CMR studies with AICc weights.
Others have noticed this similarity (Gelman et al., 2004; Clark
et al.,, 2005; Schofield et al., 2009), and the connections have
been made more explicit in a recent review by Hooten and
Hobbs (2015). We motivate the comparison between HB and
AICc model-averaging, not for any theoretical similarity, but
for the practical purpose of shrinking the model estimates away
from the over-parametrized 6; models toward something simpler.
We use a shrinkage-inducing hyperprior (scaled half Student-t)
that, in lieu of strong evidence in the data, shrinks the variance
of time-varying random-effects toward zero. Furthermore, the
marginal posterior distributions are an integration over the
joint-distributions of all other hyper-variance parameters and
their concomitant time-varying random-effects; in plain speak,
our estimates include the extra variation due to a continuum
of plausible parameter-specifications, the extremes of which
are 6. to 6;. Practically, this latter view is very similar to,
albeit philosophically different from, IT-based model-averaging,
whereby final parameters estimates and intervals are weighted
between 6. to 6, according to “model weights.” When model-
averaging is simply a question of time-constant vs. time-varying
parametrizations, and not between different distributions, then
the comparison between Hierarchical Bayes and IT-based
model-averaging is apt for practical applications and ecological
inference. We focus on AICc-weights because, in our experience,
it performs well and is most popular with ecologists, despite
lacking a firm theoretical foundation for model-averaging
(Burnham, 2004; Hooten and Hobbs, 2015).

One concern that CMR practitioners may have for subjective
Hierarchical Bayesian modeling is the loss of strict objectivity:
we exploit priors that try to shrink variance parameters, and we
do this to different degrees for different parameters. Technically,
this is introducing bias (although Bayesians rarely claim to be
unbiased). However, we point out that few model-averaging
techniques are unbiased, and even the popular AIC is just one
type of Bayesian model with an informative prior on the £p-norm
of parameter values (Hooten and Hobbs, 2015). Secondly, the
set of ML-based PCRD models for model-averaging are often
assembled in a somewhat ad-hoc manner, such as the need for
arbitrary constraints on parameter values or the need to discard
models with singularities at boundary values. At best, this leads
to better results than single models, but at worse, it can obfuscate
the inference process. In contrast, we explicitly declare our beliefs
and motivate our specification a priori (see our specification
of the hyperpriors in the Appendix Section “Hyperpriors for
Hierarchical Bayesian PCRD”).

A useful starting point for such priors, based on our
simulations, is that we know that 3’ and ¢ are only partially
separable from each other. We also know that 3’ estimates are
typically highly uncertain and have poor empirical coverage.
Together, these insights from our simulations suggest that
irrespective of prior ecological knowledge about the mean of
{y/}L_, over all primary periods, we know that the variance
among {y/}L_, should be small and ideally shrunk to zero,
unless there is strong evidence otherwise. We also know from

simulation that other parameters generally have tighter intervals
and more accurate MLE’s, especially p;s; therefore, we should
use hyperpriors that do not overwhelm the likelihood, but
which nonetheless facilitate some shrinkage for our goal of
parsimony.

These priors beliefs are not about the parameter values
themselves, but about the estimation performance of the PCRD
model, and our experience with the dispersion of time-varying
parameters around their global mean. One typically also has
biological knowledge about a taxa’s life-history, and in our case,
we know that bottlenose dolphins are typically very long-lived.
We therefore, apply a stronger prior on mean survival, ug, ~
Unif(0.8, 1). Because small deviations in survival have a huge
impact on dolphin longevity, our prior is only “strong” in a naive
sense, but is actually diffused in terms of expected lifespan (from
4.98 to > 99 years).

A full description of our prior set-up is included in
the Appendix (Section “Hyperpriors for Hierarchical Bayesian
PCRD?”). Briefly, the main point is that we place a particular
type of hyperprior, the scaled half Student-t distribution, on the
dispersion parameter (0p) of each time-varying parameter (6;),
assuming that each 6; arises from a logit-Normal distribution.
The half Student-t distribution is particularly relevant in
situations when shrinkage of oy to zero is preferred, and
there are few groups (< 5) that make up the random-effects’
distribution (Gelman, 2006). We control the hyperpriors with
hyperparameters v and s, to control the shape and width of the
Student-t distribution. It is the shape of the half Student-t, being
peaked at zero with a long-tail, that provides a simple way to
control the amount of probability density at high values of oy,
and therefore control the extent to which high values are plausible
given sufficient evidence in the data. The desired effect is that
the variance of time-varying parameters are shrunk to zero (the
prior mode), in lieu of strong evidence in the data, effectively
yielding a time-constant parametrization. For those parameters
that can be reliably estimated, like ¥, and p; 5, our hyperpriors on
dispersion o are sufficiently weak. Whereas, for y/, which cannot
be easily estimated (even in time-constant parametrizations),
we apply a much stronger hyperprior on its dispersion,
making it much more likely that its variance will be small or
zero.

We also create an additional stage for the detection
probabilities, creating relationships both within and between
primary periods, and allowing for individual heterogeneity.

In order to check the sensitivity of the HB estimates to
our choice of hyperparameters, we also considered a few
different hyperparameters (described in the Appendix Section
“Hyperpriors for Hierarchical Bayesian PCRD”), called weaker
(1), weaker (2), and stronger. Briefly, these increase or decrease
the hyperparameters v and s to modify the shape of the half
Student-t hyperprior distribution.

All four HB models mentioned above allow individual
heterogeneity in detection probabilities, and we collectively refer
to them as heterogeneous-p(i) models, in contrast to our fifth
model. Our fifth model is referred to as homogeneous-p(i), which
lacks individual-level variation in detection probabilities. Using
the same HB framework, we can impose homogeneous detection
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probabilities with our hyperpriors by forcing the variance of
individuals random-effects (o)) to be close to zero: 7 (op(;)) o
T(o; 107°,20)I(o > 0), thereby fixing each individuals’ detection
probability to be the population-level parameter p; ;. This model
is useful to investigate the sensitivity of the final estimates to
individual heterogeneity in detection probabilities (Carothers,
1973; Burnham and Overton, 1978; Clark et al., 2005).

We compared these models to AICc model-averaged results
from MARK, averaging over 36 different PCRD fixed-effects
models including all combinations of time-variant and time-
constant specifications, and all combinations of Markovian (y’ #
y") and random (y' = y”) temporary migration. We imposed
the following constraints: (i) we set y. = y,, and y. = y/
for all models with time-varying Markovian migration; (ii) we
set ¢4 = @3 for all time-varying survival models. The former is
a common “default” constraint in temporary migration models,
while the latter was specifically necessary in order to acheive finite
intervals among yZ, y<, and ¢4 parameters, and is an example
of the arbitrariness of the model construction procedure that is
necessary for model averaging.

3. RESULTS

3.1. Simulations

Table 1 compares the performance of Maximum Likelihood
estimation vs. the non-hierarchical Bayesian models, over 100
simulations, while Figurel plots the results of individual
simulations, per parameter. The Bayesian method had lower
MSE for ¢, ', p, and population abundance parameters N;. The
Bayesian method had a higher bias for most parameters, except
p. There was no clear champion regarding empirical vs. nominal
coverage, where the Bayesian method had better statistics for
p and ¢, but worse for ¥’ and y”, and population abundance
parameters. Overall, the Bayesian method seemed to incur a little
bias toward the prior expectations. This bias was particularly
striking for y’, where especially high true values of /.. (e.g.,
Viwe > 0.65) resulted in posterior means close to the prior
expectations. Both ML and Bayesian methods had difficulty in
estimating ’, as revealed by the very large 95%CI for both
methods. However, the consequences were more severe for the

TABLE 1 | Estimation properties of Bayesian and ML-based models over
100 simulations.

MSE Bias Coverage

Bayesian ML Bayesian ML Bayesian ML
p. 0.0005 0.0005 0.0028 0.0071 0.94 0.92
¢. 0.0039 0.0080 —0.0297 0.0056 0.92 0.82
y! 0.049 0.070 —0.161 -0.043 0.73 0.88
v/ 0.017 0.013 —0.055 0.021 0.88 0.92
N4 192.7 211.6 —4.61 -2.38 0.90 0.93
Nsg 93.8 107.4 —-1.28 —2.18 0.93 0.94

MSE is the mean square error. Coverage refers to the proportion of simulations where
the true (simulated) value was within the estimated 95%Cl. See text for parameter
descriptions.

MLEs, in that 7 values would frequently be at boundary
values.

Much of the inaccuracies in MARK estimates were a result
of such boundary values. For example, 32% of qSMLE became
fixed at 1 and 15% of py;; became fixed at 0. The former
was much more likely to happen for high survival probabilities
(e.g dtrue > 0.95), while the latter did not seem to have
a strong pattern in relation to other model specifications,
but did seem slightly more common when values of y” <
0.5. While such boundary values may indeed be the value
which maximizes the datas likelihood, boundary estimates
are problematic because their confidence intervals span the
entire probability space, prohibiting meaningful conclusions and
prohibiting the use of model-averaging techniques. Singularities
never occurred in Bayesian models using Beta(1,1) priors.
Instead, for those simulations which had boundary-value MLEs,
the posterior densities merely took on more characteristics of
their prior, and were nevertheless unimodal with finite 95%CI
values.

Certain parameters showed moderate to high correlations
in the variance-covariance matrices (Table 2). ' and ¢ were
most strongly correlated, with mean coefficients 0.47 over all
simulations, for both ML and Bayesian estimates, and reaching
0.95 in some ML estimates. p and y” were also highly correlated
with mean coefficients >0.4 in both ML and Bayesian techniques.
However, despite the similarity in mean correlations, the range
and distribution of correlations were generally very different
between MLE and Bayesian models (Figure 2). For example, the
correlation between the pair (3, ¢) were somewhat uniform
between 0 and 0.95 for Bayesian estimates, whereas the ML
estimates clustered at two extremes: either 0 or around 0.9-
0.95. The correlations for the pairs (y”, ¢) and (y’, ") shared
a similar pattern, whereby ML correlations were more extreme
and clustered.

The sign and strength of parameter correlations also seemed
to depend on the values of other parameters. These three-way
relationships are too numerous to fully describe. However, it
seemed that many correlations depended on values of p and y”.
For example, with an effective detection probability of 0.69, the
correlation between the pairs (¢, p) was between [—0.1, 0] for
both ML and Bayesian methods, but strengthened to ~ —0.3
as the effective detection probability dropped to 0.22. Similarly,
an effective detection probability of 0.69 yielded a correlation
between (y”, p) of ~ 0.4, which strengthened to ~ 0.6 as the
effective detection probability dropped to 0.22. Surprisingly, an
opposite trend was seen between (¢, y’) in relation to detection
probability, such that increasing detection probabilities increased
the strength of correlation between (¢, y’). The other temporary
migration parameter y” also affected parameters’ correlations;
for example, the correlation between (3, y”) went from being
negatively correlated (* —0.2) to positively correlated (= 0.2) as
y” increased from 0.2 to 0.7. Likewise, the correlation between
(y',p) had mostly zero correlation and became positively
correlated (= 0.25) as " increased. Such three-way relationships
were smoother and more gradual among the Bayesian estimates,
whereas the ML values were much more extreme and clustered at
high values, especially for ¢, y’, and y”.
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3.2. Shark Bay dolphins 1:

Non-Hierarchical Bayesian PCRD

We analyzed the western gulf Shark Bay photo-identification
data and found that all point estimates and intervals of all
parameters and abundance estimates were nearly identical
between ML estimation and four different Bayesian models.
Figure 3 compares the state variables (¢,y’,y”) and derived
estimates of the population abundance, and the 28 detection
probabilities.

The four Bayesian full-capture models and one first-capture
model all produced nearly identical results, irrespective of the
specification of 1. However, the Aone_step-back model took greater
than 50 times longer to run than the Aeigenvector and Arandom
specifications for equal number of MCMC iterations.

The overall posterior predictive check p-values were: 0.300
(between-periods); 0.314 (within-periods); 0.244 (overall). While

these exact values are not calibrated and cannot be easily
interpreted, inspection of the individual elements of the m-
array discrepancy statistics suggest that there may be issues with
heterogeneous migration parameters (Table 3). In particular,
recapture’s in periods four and five had greater discrepancy for
cohorts from the 2nd period as compared to cohorts from the Ist,
3rd, and 4th periods, suggesting there may be sub-populations
with different migration dynamics. Inspection of the within-
period discrepancies suggested that there was no issue with the
assumption of population closure, given that all py;miy values
were ~ 0.5.

3.3. Shark Bay dolphins 2: Hierarchical

Bayesian vs. Model-Averaging
The top six fixed-effect models by AICc are listed in Table 4,
representing > 99.9% of the cumulative weights. Figure 4
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TABLE 2 | Correlation in parameter estimates, summarized over 100
simulations.

Maximum Likelihood

y' 0.212 (-0.53, 0.809) 0.47 (0, 0.966) 0.1 (-0.196, 0.386)
y" 0.364 (0, 0.876) 0.414 (0.188, 0.708)
¢ -0.052 (-0.399, 0.015)
Bayesian

y' 0.061 (-0.361, 0.453)  0.472 (0.043, 0.828) 0.134 (-0.164, 0.471)
y" 0.352 (0.112, 0.635) 0.465 (0.283, 0.683)
¢ -0.127 (-0.37, 0.025)

Mean correlation coefficients from parameter variance-covariance matrices. Values in
parentheses represent the 2.5th and 97.5th percentiles, estimated from 100 simulations.

compares the AICc model-averaged results to the different
Hierarchical Bayesian (HB) results. The different HB prior
specifications had nearly no effect on point estimates and
intervals; instead, we saw a larger effect due to including or
excluding individual random-effects for detection probabilities.
Therefore, the pertinent comparisons are between the
homogeneous-p; HB model vs. the heterogeneous-p; HB
models [which include four models called target, stronger, weaker
(1) and weaker (2)] vs. the MARK model-averaged estimates.
For example, the AICc model-average and homogeneous-p; HB
estimates had much more similar estimates as compared to the
four heterogeneous-p; HB models.

State parameters (y,$) were similar and had overlapping
68%CI across all models. However, the heterogeneous-p; HB
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FIGURE 2 | Correlation among parameters estimations over 100 simulations. The histograms compare the spread of correlations of parameter estimates by
Maximum Likelihood (red; run in MARK) vs. the Bayesian non-hierarchical models (black; run in JAGS).
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FIGURE 3 | Bayesian and ML-based estimates: comparing state variables, population abundances, and detection probabilities for the western gulf
Shark Bay bottlenose dolphins Tursiops aduncus. Comparison is among Maximum Likelihood estimation, and four different Bayesian Hidden Markov Models
that use slightly different specifications for the recruitment process. Points are maximum likelihood and posterior mean estimators; thick intervals are 68.2%
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TABLE 3 | Bayesian posterior predictive p-values for observed vs.
expected elements of the open population m-array.

Ty T3 Ty Ts Ts4
Ty 0.05(0.464) 0.67(057) 0.1(0.269) -0.98(0.47) -0.51(0.418)
Ty - 0.01(0.507) -1.13(0.714)  1.34(0.73) 0.32 (0.4)
Ts - - 0.09 (0.507) -0.1(0.213) -0.02 (0.316)
T - - - ~0.04 (0.203)  0.02 (0.203)

Mean residuals ( O—’EE ) and posterior-predictive check p-values in parentheses pppc. Rows
and columns index the intervals for animals released at the primary period by row and
not recaptured until the primary period indexed by columns. The final column represents
animals never seen again.

models had slightly lower y estimates than the homogeneous-p;
and model-average estimates, i.e., a lower probability to leave the
study area and remain outside. Model-averaged y; parameters

seemed to have slightly more among-year variability than all
HB models (both homo- and heterogeneous-p;), consistent
with the shrinkage-to-the-mean phenomenon imposed by the
latter. Also, the heterogenous-p; HB models had slightly
higher survival ¢ estimates than the homogeneous-p; HB
and model-averaged estimates, with much tighter credibility
intervals. All models showed little among-year variation in ¢,
values.

Detection probability estimates were most sensitive to
heterogeneous- vs. homogeneous-p; specifications: consider
that both model-averaged and homogeneous-p; HB estimates
consistently had p;, values which were 2 — 10 probability
units larger than the heterogeneous-p; HB models (albeit, with
overlapping 68%CTI’s in most cases). This is an important result
because there is nothing in the heterogeneous-p; HB models
that explicitly shrinks all the p; ; parameters toward low values
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TABLE 4 | Top six Pollock’s Closed Robust Design fixed-effect models by
AlCc.

Rank  Model Number of AAICc  Cumulative AICc
Parameters weights

1 dC)(y" ) =y O)p(t, s) 38 0.00 0.394

2 o()y" Oy (p(t, s) 39 0.22 0.748

3 o()y" Oy (Op(t, s) 411 2.84 0.843

4 sO(y" M) =v'M)p(. s) 40t 2.87 0.937

5 o)y" )y’ ()plt, s) 41% 3.96 0.992

6 oMy Oy (. s) 41Tt 7.77 >0.999

Only 6 of 36 models are reported. All 36 models were used in model-averaging. Additional
constraints: T vs=vyand y§ =y ¥ ¢5 = ¢4

(see the Discussion for why we think heterogeneous-p; would
result in lower detection probabilities). We have no strong
priors on the exact values or location of the p;; parameters;
instead, our hyperpriors were focused on the between-period
variability and within-period variability, and were deliberately
weakly informative. We also observed less variability among
detection probabilities within the same primary period in the
HB models, compared to the model-averaged p; s values which
were highly variable and nearly identical to the MLEs of fixed-
effect “full-models” [i.e., estimates from a p(t,s) fixed-effect
model]. Because we did not apply strong hyperpriors on the
dispersion of detection probabilities, we suspect this shrinkage
of detection probabilities to the mean-per-primary period is a
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for the western gulf Shark Bay bottlenose dolphins Tursiops aduncus. Comparison is among model-averaged fixed-effect models (by AICc weights), and four
different Hierarchical Bayesian Hidden Markov Models with slightly different hyperpriors. The model labeled as “target” is our intended model for inference. Points are
posterior mean estimators and model-averaged MLE; thick intervals are 68.2% Confidence/Credibility Intervals (~ + 1 S.E.); thin intervals are 95%Cls. ¢; are annual
apparent survival probabilities; yt/ are annual probabilities of remaining as a temporary migrant; yt// annual probabilities of becoming a migrant; py s are per-secondary
period detection probabilities; N are the annual population of dolphins available for capture.
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consequence of assuming they share a common distribution,
whereas ML and AIC methods assume they are completely
independent.

There was a clear connection between different detection
probabilities and population abundance. The effect of lower
detection probabilities in the heterogeneous-p; HB models as
compared to the the model-averaged and homogeneous p;
model is apparent: the heterogeneous-p; HB models estimated
between 8.2 and 24.7% more dolphins than model-averaging or
homogeneous-p; model, with a median of 16.6% for N, (95%CI:
4.5-33.1%).

In order to assess the effect of our choice of hyperpriors
on the posterior densities, Figure 5 compares the prior and
posterior densities of the op parameters controlling the 6;
random-eftects. In all cases, the o,/ and oy posteriors were

nearly identical to the target prior densities. Posterior densities
were more similar to each other than their prior densities,
suggesting that estimates were driven partially and significantly
by the evidence in the data. The variation in y” was much
higher than our prior expectations. The largest change between
prior and posterior densities occurred among the three densities
controlling detection probability [op(;), (1), Op(s)], and especially
for op(;), the dispersion among individual-level detection
probabilities. For instance, the posterior expectation of ;)
occurred in the 97.0th and 89.1th percentiles of the “target”
and “weaker priors (2)” prior densities respectively. In other
words, the data pushed the posterior mass away from the
priors’ expectation. Importantly, the posterior density of 0;) was
nearly identical among models, regardless of the different priors,
suggesting that our estimate of 0y(;) was mostly driven by the

o
o —— half-t hyperprior (target)
—— half-t hyperprior (stronger)

[te) —— half-t hyperprior (weaker 1)

- —— half-t hyperprior (weaker 2)
> half-t hyperprior (homogeneous-p;)
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o
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o

Op(s)

FIGURE 5 | Posterior densities and half Student-t prior densities for oy parameters controlling the dispersion of time-varying random-effects in a
logit-Normal hierarchy. Different boxes are different parameters. Different colored lines represent different prior specifications, such that the priors labeled target are
for our intended model for inference, while other colors inspect the sensitivity of the posterior to different priors. Thick lines are the priors; dashed-lines are the resulting
posteriors. See the Appendix for exact specification of priors. Heights of the lines are re-scaled to faciliate density comparisons.
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data. This gives very strong support for including individual-level
random-effects.

4. DISCUSSION

This study presents a Bayesian Hidden Markov Model (HMM)
version of the PCRD CMR model. We studied several
versions which are appropriate for different model objectives
and assumptions, such as conditioning on first-capture vs.
recruitment modeling, and a hierarchical random-effects version
vs. a non-hierarchical version. We studied the performance of
the Bayesian method as compared to Maximum Likelihood
estimation and model-averaging by analyzing simulated data as
well as a real bottlenose dolphin dataset. Our main contributions
and findings are the following:

e full-capture, non-hierarchical Bayesian PCRD models had
slightly better estimation performance than equivalent fixed-
effects ML estimation, mainly due to the latter’s susceptibility
to singularities (although there was no clear champion);

we explored the partial non-identifiability and high correlation
among parameter estimates, especially between y’ and ¢;
using real data from a moderately-sized bottlenose dolphin
population, we showed that inferences based on a fixed-effects
ML model and a Bayesian (non-hierarchical) model were
almost identical;

we showed that various Bayesian methods to model
recruitment and full-capture histories yielded nearly identical
conclusions, both compared among each other and compared
to a model that conditioned on first-capture; we motivate the
use of full-capture Bayesian models to facilitate important
extensions, such as individual-level random-effects;

we developed a Hierarchical Bayesian PCRD which can lead to
similar estimates as AICc model-averaging and serve as a type
of multi-model inference;

we showed how heterogeneity in detection probabilities can
lead to a 8-24% increase in abundance estimates, as compared
to ML and Bayesian models that assume homogeneous
detection probabilities;

we proposed two posterior predictive checks to help diagnose
poor model fitting, in lieu of a formal goodness-of-fit
procedure in popular CMR software.

4.1. Bayesian PCRD vs. MLE

A recurring result was the similarity and near equivalence
of estimates between the Bayesian and ML-based methods,
especially for simple “fixed-effect” models, but also among
different Bayesian specifications, such as conditioning on first-
capture and modeling the full-capture histories. This was
supported by simulations and by analyzing a moderately-sized
photo-ID dataset. In simulations, there was no unambiguous
winner in terms of estimation performance, and both MLE
and Bayesian estimates suffered from non-identifiability issues
between temporary migration y" and survival ¢. The frequency
and similarity of correlations among parameter estimates in
both ML-based and Bayesian PCRD points to a fundamental
limitation of the model to resolve estimates in survival, and

the issue warrants further study. While overall correlations
were similar between Bayesian and ML-based estimates, one
disadvantage of ML-based estimates was that their correlations
were clustered at extreme values, such as either 0 or 1,
which makes it difficult to diagnose such correlations post-hoc:
the extreme values give the impression that either everything
seems acceptable or is terrible. Researchers should attempt
to deal with such problems at the study-design stage, such
as increasing detection probability, increasing the number of
primary periods or integrating auxiliary data into the analysis,
especially observations of animals being alive or outside the
study area when they may otherwise be classed as being in an
unobservable state. For example, Bird et al. (2014) augmented
CMR data with observations based on a telemetry study which
included precise observations about when animals left the CMR
study area.

A significant disadvantage of using ML estimation in Program
MARK is its tendency for parameters to get stuck at boundary
values, especially ¢ = 1 and 7" = 0, such that CIs are undefined.
This happened in 35% of simulations for at least one parameter,
and, in our experience, is quite common for real data (but not in
the case of the western gulf Shark Bay dolphins). Notably, in those
cases where the MLE’s get stuck at boundary values, the posterior
distributions always had significant density away from the
boundaries. These issues seem to happen more at low detection
probabilities, high survival, and longer durations as a temporary
migrant. Similar issues were noticed by Bailey et al. (2010) in
multistate models with an unobservable state. We suggest that
researchers who study animals that are long-lived and difficult
to detect, such as marine mammals, should use Bayesian models
with mildly informative priors, such as Beta(1,1), to avoid such
singularities. It remains unclear whether reference priors and
“objective Bayesian” analyses will likewise exhibit such beneficial
behavior. However, there is evidence from the machine-learning
and classification disciplines, that mild priors are necessary
in situations of low sample sizes and multinomial models, in
order to achieve sensible and stable estimates: a phenomenon
called “Bayesian smoothing” (Murphy, 2012), whereby MLE’s
at unrealistic boundary values (0, 1) are pushed slightly toward
their prior expectations, in lieu of strong evidence. In the case of
CMR, low detection and high y values relative to the number of
primary periods can make it highly unlikely that one can observe
enough “re-entries” to reliably estimate survival and migration
processes.

4.2, Recruitment and the PCRD

Regarding our analysis of the bottlenose dolphin dataset, we
interpret the near equivalence of Bayesian and ML estimates as a
validation of the Bayesian HMM formulation and an opportunity
for further development. While it is generally true that Bayesian
posterior point-estimates should tend to the MLE values as
the sample size and evidence increases, the equivalence among
posterior expectations and ML estimates is not guaranteed in
complex hierarchical models that integrate over many parameters
(Hobbs and Hilborn, 2006). What is more interesting is the
equivalence among the different full-capture and first-capture
models: not only does this open the possibility of PCRD
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inference on recruitment processes (such as number of births
or the population rate-of-increase), but it also facilitates more
complex random-effects models, such as modeling individual
heterogeneity. We were particularly interested in comparing
slightly different specifications for the “recruitment ratio” (the
proportion of new recruits that go to either latent state), which
requires external data for reliable estimation (Wen et al., 2011),
or a sensible nuisance process that can, at best, not bias other
parameters. For bottlenose dolphins, we motivate the use of
a computationally simple “eigenvector decomposition” which
extrapolates a steady-state, unconditional probability of being
inside or outside of the study area based on the marked
population’s migration parameters. Such direct calculation of
the recruitment ratio from the marked population may only
be sensible in a limited number of scenarios, such as when
the recruits are not true ecological recruits, but are newly-
marked conspecifics. In other words, such “apparent-recruits”
share the same overall temporary migration patterns as their
marked conspecifics. For other taxa who are highly migratory or
whose apparent-recruits are true biological recruits, it would be
inappropriate to use information from the marked population’s
migration parameters to inform the recruitment ratio. In such
situations, a solution would be to include time-varying random
variables for the recruitment ratio. Such a nuisance process
would likely be driven entirely by the prior. Fortunately, Bayesian
models and MCMC techniques allow us to integrate over such
nuisance processes, which somewhat absolves us from worrying
about the nuisance parameters’ exact values. Therefore, the fact
that such processes are not suitable for inference does not worry
us, and we saw that the exact process did not bias or inflate
the uncertainty of the other parameters. In our case, marginal
point estimates and intervals among competing recruitment ratio
specifications were nearly identical.

4.3. Hierarchical Bayesian PCRD

The similarity between fixed-effects Bayesian and ML estimates
may not interest many modern CMR practitioners, but the
results are important to lay the groundwork for more elaborate
methods and other inference paradigms. For example, ecologists
are increasingly preoccupied with “model uncertainty” and
the sensitivity of their conclusions to arbitrary choices about
parameter specifications, e.g. time-constant 6(-) vs. time-varying
6(t). To this end, we propose a Hierarchical Bayesian (HB)
model as an alternative to the model-averaging methods
popular in contemporary CMR practices. We suggest the HB
method, not because of theoretical connections between the AIC
model-averaging and Hierarchical Bayes, but instead appeal to
the similarity in outcome between model-averaging and our
shrinkage-inducing hyperpriors: both methods intend to smooth
estimates between two extremes of 6(-) vs. 6(t). Others have
pointed out this similarity (Gelman et al., 2004; Clark et al., 2005;
Schofield et al., 2009), and Hooten and Hobbs (2015) describe
how many multi-model inference techniques can be re-expressed
as Bayesian models with particular priors.

We observed some slight differences between the HB models
and the model-averaged estimates. For example, the model-
average confidence intervals of survival estimates were nearly

double those of HB, and HB had slightly lower y; estimates
(which may be due to a bias in Bayesian y/ posteriors,
as suggested in our simulations). Most importantly, the HB
detection probabilities were shrunk toward the means of each
primary period, whereas the model-averaged estimates were
nearly identical to their fixed-effect values p(¢, s)mre. This
latter point is perhaps one of the most crucial findings in
this study, because population abundance estimates are very
sensitive to the detection probabilities, and we must exercise
some subjective judgment as to which model is most appropriate.
For example, if we think that detections within a primary
period are related to each other (e.g., by being co-correlated
with other annually-varying influences such as climate, field
crew, survey technology, etc.), then HB is most appropriate,
and the independence assumed by ML estimation uses too
many parameters. Under sparse data, over-parameterized PCRD
models can result in MLEs occuring at unrealistic boundary
values (e.g., pr.s = 1), with serious consequences for abundance
estimates. In other words, the act of assuming a common
distribution among detection probabilities, as compared to strict
independence, can influence estimates in Hierarchical Bayesian
models.

The ability of the Hierarchical Bayes to shrink time-varying
parameters away from MLEs toward something less dispersed
depends on the choice of the family of hyperprior distributions.
We chose a logit-Normal prior distribution for time-varying
state parameters and a scaled half Student-t hyperprior on the
logit-Normals’ dispersion parameters. This follows the work
of Gelman (2006) who popularized the scaled half Student-
t distribution for the dispersion parameters in Hierarchical
Bayesian models (but not necessarily for CMR). Gelman argued
for its use when shrinkage to zero is desirable and when there
are <5 grouping classes (consider that we have just three
estimable parameters of y/ to define a distribution). Other
common distributions on variance parameters, such as the
Uniform or the Inverse-Gamma, are known to inflate variance
when there are a small number of grouping classes. Currently,
there is little literature on the use of different hyperpriors on
random-effects in Hierarchical Bayes CMR models, and we
look forward to more research in this area, and especially
about explicit connections with other multi-model inference
paradigms.

Readers from a Frequentist or Objective Bayesian background
may be uncomfortable with what may be perceived as a
casual use of both strongly informative and uninformative
hyperpriors (Berger, 2006). It is a valid criticism which concerns
all practitioners of subjective Bayesian analysis. But, for a
practical mark-recapture problem, there are few alternatives
which are objective, especially not ML-based nor model-
averaging approaches. We defend our approach based on the
following arguments. First, our sensitivity analyses suggest that
slight variants of the hyperpriors did not change point-estimates
and intervals of the realized state parameters. Secondly, nearly
all Mark-Recapture analyses use model-averaging or model-
selection (Johnson and Omland, 2004), and such multimodel
techniques generally have a Bayesian interpretation; for example,
the best model by AIC can actually be derived from a Bayesian
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model under a particular prior (Hooten and Hobbs, 2015).
All model selection and model-averaging techniques depend
on subjective decisions, ostensibly as the choice of how to
score and rank models (e.g., AIC, BIC, QAIC, BMA), but
are implicitly about one’s preference for either maximizing
predictive performance vs. in-sample fit, and how to penalize
the effective number of parameters (Burnham, 2004; Hooten
and Hobbs, 2015). The use of the QAIC is even less objective
(White, 2002). Third, many subjective decisions are necessary
to build a set of viable PCRD models, such as constraining
parameters to avoid singularities, or by dropping singular models
altogether. At worst, the totality of such arbitrary decisions
can obfuscate the inference process. For example, in order
for us to get finite intervals for model-averaged ¢; and y/
and y,/, we had to apply more constraints than what is
prescribed in the literature. A real concern for science is the
temptation of picking one’s constraints or selection criteria
to agree with one’s hypothesis. Alternatively, the subjective
Hierarchical Bayesian approach forces us to explicitly declare our
beliefs a priori. Lastly, the hyperpriors we used were partially-
motivated by the limitations of the PCRD model to estimate
certain parameters, such as y;, especially under low samples sizes.
To this point, it is well-known in applied fields like machine-
learning that Bayesian priors are preferable to stabilize and
smooth unstable and unreliable ML estimates in multinomial
models under low sample sizes, ak.a “Bayesian smoothing”
(Murphy, 2012).

We juxtapose AIC-based model-averaging and HB in order
to highlight how HB offers a compelling alternative to the
fixed-effects model-selection problem: principly, through the
use of a hyperprior to govern the shrinkage between 6(t)
and 6(-) extremes. But, despite the similarity in estimates, the
two paradigms are otherwise very different: only HB offers
an intuitive, fully probabilistic model with posterior inference.
CMR practitioners will be particularly interested in the easy
ways to extend the HB model, such as incorporating individual
random-effects, and other similar problems where the AIC is not
defined.

4.4, Individual Heterogeneity

A much more significant impact on model estimates was the
inclusion or exclusion of individual-level detection probabilities,
rather than the exact values of our hyperpriors. Individual
detection heterogeneity is a well-known phenomenon and
perennial preoccupation of CMR practitioners (Carothers, 1973;
Burnham and Overton, 1978; Clark et al, 2005). Unlike
ML-based methods, heterogeneous detectability is a relatively
simple extension in Hierarchical Bayesian models. Importantly,
individual heterogeneity results in much lower mean detection
probability estimates as compared to models which assume
homogeneous detection probabilities, in both Bayesian or non-
Bayesian models. Because population abundance estimates are
sensitive to detection probabilities, this led us to conclude that
there are actually 8-24% more marked individuals in the western
gulf Shark Bay than previously estimated. We remind readers
that the lowering of detection probabilities from heterogeneous
detectability was not a consequence of a prior which intentionally

shrunk the mean p;; values to zero (we had no such prior).
Rather, we suggest that it was due to the full-capture history
and random-effects framework and their ability to deflate the
influence of outlier individuals. In other words, a CMR dataset
inevitably has an over-representation of those individuals who
are more detectable than others, and has an under-representation
of those individuals who are less-detectable on average. Low-
detectable individuals may be altogether absent from the dataset,
given that they are more likely to be missed (Clark et al,
2005). This is a type of censoring, and Bayesian models are
a well-known method to impute censored values and try to
recover the true uncensored distribution. Ignoring such missing
individuals will produce a “bottom-censored distribution” whose
mean detection probability will be artifically higher than the
true uncensored distribution; therefore, population abundance
estimates will inevitably be lower in CMR datasets which fail to
account for such “missingness.”

4.5. Future Work

Our proposed PCRD models are important to lay the foundations
for several extensions. We anticipate extensions for a variety of
challenges, such as increasing biological realism through mixture
modeling, or integrated modeling of different datasets. Mixture
modeling is particularly important because heterogeneity, in the
form of mixtures of multiple unknowable subpopulations, is
probably the rule in nature, rather than the exception. The latter
point, about integrated modeling, will also be very important
in the future, because a major result of our study was the
frequency of very high correlations among parameter estimates.
In both ML-based and Bayesian PCRD models, such correlations
impose limits on the reliability of estimates, especially survival.
Fortunately, the Bayesian framework and the flexible BUGS
syntax opens the possibility to easily integrate other datasets,
and one priority should be to remove some of the uncertainty
of the unseen state. For example, the use of other opportunistic
sightings or telemetry data outside the study area (Bird et al,
2014), can partially clarify the unseen “offsite” state, and
thereby help reduce the correlation in temporary emigration and
survival.
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