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The growth ofCalanus finmarchicus nauplii was studied through three spawning seasons

(2007, 2009, and 2011) using flow-through tubes. Natural seston was collected every

second day and added as food source using a peristaltic pump. A mixture of cultured

microalgae supplied in surplus concentration was used as a control treatment. No

significant correlation between growth and food concentration measured as Chlorophyll

a (Chla) or particulate organic carbon (POC) was detected, but the growth rate was

significantly related to the content of EPA (20:5n-3) and DHA (22:6n-3) in the seston.

The growth rate was overall higher for nauplii fed cultured microalgae compared to

the nauplii fed natural seston. Although the nauplii fed algae cultures were fed surplus

food, the growth did vary between the growth periods. Furthermore, the growth rate

for nauplii fed natural seston and for nauplii fed cultured algae were positively related,

suggesting that the maternal condition and the food quality experienced by the mothers

could explain some of the variation in naupliar growth rate. We present lipid class data

on C. finmarchicus eggs from field samples that, contrary to previous studies, showed a

high content of wax esters. Fatty acid analyzes of eggs, nauplii stages, and copepodites

from field samples showed that eggs and nauplii have a similar fatty acid composition

and that the main increase in the content and share of DHA and EPA was from nauplii

to copepodite. The secondary production measured as naupliar growth was compared

to the secondary production measured as carbon specific female egg production rate.

The secondary production measured as egg production was generally higher than

the secondary production measured as naupliar growth early in the spring, whereas

the opposite situation was observed during post-bloom situations in late spring/early

summer.

Keywords: secondary production, growth rate, Calanus finmarchicus, DHA, EPA, food concentration, zooplankton

INTRODUCTION

Calanus finmarchicus is the dominating copepod in the North Atlantic and Barents
Sea (Conover, 1988). It is a vital link between marine primary production and higher
trophic levels as an important food source for planktivorous fishes, whales, gelatinous
zooplankton, carnivorous zooplankton and bottom dwellers like sponges, and corals
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(Payne et al., 1990; Dommasnes et al., 2004; Tönnesson et al.,
2006; Blachowiak-Samolyk et al., 2007;Watling, 2007; Dalpadado
et al., 2008; Ohman et al., 2008; Dodds et al., 2009). Eggs and
nauplii stages of copepods are the most important food source
of many larval fishes and therefore of great significance in their
recruitment (Kane, 1984; Runge, 1988; Planque and Batten,
2000).

In order to quantify food transfer in trophic levels, estimation
of zooplankton secondary production is inevitable. This is
done mainly by studying cohort development; either by sorting
individual nauplii or by creating an artificial cohort based on size-
fractionation (Winberg, 1971). Measurement of egg production
can be used to estimate secondary production, under the
assumption that female copepods use all their assimilated energy
to create offspring. The energy incorporated into produced eggs
thus is a direct measure of secondary production (Kiørboe and
Johansen, 1986; Poulet et al., 1995).

The stages of egg production, hatching success, and
subsequent growth of naupliar stages are critical stages for
development for calanoid copepods, and high rates of egg
production are therefore not always followed by an increase
in copepodite abundance (Jonasdottir et al., 2008). Different
mechanisms are proposed to explain this, including cannibalism
(Bonnet et al., 2004; Basedow and Tande, 2006), predation (Eiane
et al., 2002; Ohman et al., 2004, 2008), food limitation (Koski
et al., 2010), and toxic effects from diatoms (Ianora et al., 2003).
The nutritional value of the food, and specifically the content of
long-chain polyunsaturated n-3 fatty acids (LC-n-3 PUFAs) in
the food, particularly eicosapentaenoic acid (EPA, 20:5n-3) and
docosahexaenoic acid (DHA, 22:6n-3), have been shown to be
beneficial for reproductive rates of copepods (Pond et al., 1996;
Jonasdottir et al., 2002, 2005; Evjemo et al., 2008).

The hatching and the growth through the two first nauplii
stages is also sensitive for maternal effects. Higher hatching
success and protein content are found in offspring of females
subjected to high food availability and high contents of essential
fatty acids in their food (Koski et al., 2012). The reproduction
rate of C. finmarchicus in the Trondheimsfjord was found to be
closely linked to food concentration, essential fatty acid content
of the seston and also to the content of specific fatty acids (DHA,
EPA) in female copepods (Leiknes, 2016).

The oil sac in female copepods is in close proximity to the
gonads, and the lipid content of females generally decreases as
they produce eggs. The eggs are known to have a high number
of yolk granules with lipovitellin (peptides, phospholipids, and
cholesterol), and lipid droplets (wax esters or triacylglycerols).
The embryo utilizes these yolk granules for energy and
biosynthesis of membranes and hormones (Lee and Walker,
1995). However, previous studies on lipid class composition of
eggs from Calanus helgolandicus and C. finmarchicus are scarce
and have shown substantial variability (Lee et al., 1972b; Gatten
et al., 1980; Ohman and Runge, 1994).

The first two naupliar stages of C. finmarchicus do not feed at
all and depends solely on egg yolk for its nourishment. Hence,
the growth measured as individual dry weight or carbon content
is negative (e.g., Harris et al., 2000). They spend most of their
egg yolk and some lipid droplets in their first molts, but start to

gain weight from nauplii stage III onwards. The main storage
lipid increments take place during copepodite stages CI–CV.
The growth stages of C. finmarchicus has been mainly studied
in laboratory (Corkett et al., 1986; Tande, 1988; Campbell et al.,
2001b) and mesocosm experiments (Harris et al., 2000; Hygum
et al., 2000a,b). The growth rate was shown to be affected by
temperature and food availability (Møller et al., 2012), although
it appears that naupliar stages are less sensitive to low food
concentrations than copepodites (Hygum et al., 2000a). Although
the conversion of storage lipids into eggs by female copepods
and subsequent growth and development of nauplii has shown
to be sensitive for the availability of specific polyunsaturated
fatty acids, relatively little work is done on lipid and fatty acid
composition of copepod eggs and early nauplii stages (Kattner
et al., 2007).

This study aims at evaluating effect of food quantity and
quality on growth of C. finmarchicus nauplii. Since previous
studies has shown that development of eggs, nauplii, and
copepodites are sensitive to fatty acid composition via maternal
effects and food, a further aim for the study was to survey
the development of fatty acid content and composition in C.
finmarchicus eggs, nauplii, and copepodites, and lipid class
composition for C. finmarchicus eggs. A high content of essential
fatty acids in eggs, nauplii, and copepodites could further indicate
a high affinity for these fatty acids. As previously mentioned,
the secondary production can be measured both from somatic
growth and from egg production experiments. We wanted to
compare the two zooplankton production measurements to
discuss whether or not the results are comparable.

MATERIALS AND METHODS

C. finmarchicus females were collected through three spring
seasons; 2007, 2009 and 2011, from two locations in the
Trondheimsfjord, sampling stations Munkholmen (N 63◦27′, E
10◦20′; 2007) and Trollet (N 63◦29′, E 10◦18′; 2009 and 2011;
Table 2). Samples for fatty acid analysis of Calanus eggs, nauplii,
and copepodites were collected during the same cruises, but with
additional sampling during cruises in 2007 and 2010 (Tables 1,
2). During cruises in 2007, we used two different plankton nets;
a plankton net with mesh size 500 µm (diameter 1.5m, length
10m) with a non-filtering cod end and a plankton net with 70
µm mesh size (diameter 1m, length 7m). The nets were hauled
horizontally at 10m depth at a speed of ∼0.5m s−1 for 20min.
The coarse-meshed net was used to collect female C. finmarchicus
and the fine-meshed net was used for collecting eggs and nauplii.
In 2009 and 2011, females were sampled with repeated vertical
net hauls from 50m depth to surface using a modified Nansen
net with 200 µm mesh size and a large, non-filtering cod end. In
2007 and 2010 smaller stages of copepods were collected with 70
µmnet. The copepodites and nauplii were carefully transferred to
25 L tanks containing surface water and brought to the laboratory
for further sorting within 1 h after sampling.

The various stages of C. finmarchicus for lipid analysis were
separated by successive filtration of the material collected with
70 µm net. A filtration tower with 25 different mesh sizes of
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TABLE 1 | Size fractions and the percent distribution by biovolume for the fractions selected for fatty acid analysis.

Category Size fraction (µm) Distribution (% biovolume)

Egg Nauplii (N) Cop. Cosc. Ceratium

Eggs (17.02.2010) 80–150 84.5 1.4 9.6 2.0 2.5

Eggs (25.02.2010) 80–150 86.7 1.2 1.3 10.7 0.1

Eggs (10.03.2007) 140–150 47.7 9.9 42.4

NII–NIII (19.03.2007) 106–110 2.7 46.9 15.9 34.5

NIII–NIV (19.03.2007) 200–300 0.2 51.3 48.5

CII–CIII (12.04.2007) 400–600 100

CIII–CIV (12.04.2007) 600–1300 100

CIV–CV (12.04.2007) >1300 100

Cosc., Coscinodiscus; N, nauplii; Cop., copepodites and roman numbers indicates stages.

TABLE 2 | Sampling dates for females and fatty acids (FA), number of females incubated, dates for growth experiments, incubation temperatures (◦C) and

concentration of Chla (µg L−1), and particulate organic carbon (POC, µg C L−1).

Growth period Sampling date, females Sampling date, FA Females incubated Date (start-end) Temp. Chla POC

10.03.2007

GP 1.1 19.03.2007 19.03.2007 134 25.03–03.04 6.5 4.56 ± 0.19 419± 18.2

GP 1.2 12.04.2007 12.04.2007 58 18.04–28.04 6.0 1.72 ± 0.42 226± 30.6

GP 1.3 20.04.2007 45 26.04–06.05 7.0 2.05 ± 0.19 224± 31.8

GP 1.4 08.05.2007 83 14.05–20.05 9.5 2.07 ± 0.83 186± 24.1

GP 2.1 24.02.2009 65 02.03–11.03 6.5 1.07 ± 0.37 225± 49.5

GP 2.2 13.03.2009 65 19.03–28.03 6.5 1.63 ± 0.07 329± 5.2

GP 2.3 30.03.2009 68 06.04–15.04 6.5 1.09 ± 0.10 288± 21.2

GP 2.4 18.05.2009 75 24.05–01.06 7.5 1.53 ± 0.20 294± 34.9

17.02.2010

25.02.2010

GP 3.1 06.03.2011 120 12.03–21.03 7.0 1.12 ± 0.33 227± 19.6

GP 3.2 23.03.2011 45 29.03–07.04 7.0 2.32 ± 0.05 222± 18.4

GP 3.3 25.04.2011 48 01.05–10.05 8.5 5.38 ± 0.03 258± 7.1

GP 3.4 10.05.2011 36 16.05–25.05 7.5 3.81 ± 1.11 nd

polyethylene sieves (diameter 10 cm) were used for this. The
sample (>70µm) was poured into the successive filtration device
at the top and thoroughly washed with 10 µm filtered seawater.
The major part of the content in each tube was allowed to drip
of. The material was transferred into sterile plastic vials (20mL)
and stored at−80◦Cunder N2 atmosphere for further analysis. In
order to estimate biovolume of organisms present in the fatty acid
samples, a subsample taken from each sieve was fixed with acidic
Lugol (1% final concentration). The abundance and biovolume
of different organisms present was calculated from microscope
counts using either a stereoscopic microscope (Leica MZ6) or
an inverted microscope (Leica DM IRB), depending on the size
of the dominating organisms. From the sampling in 2007, our
experience was that many of the sieves contained similar content.
We therefore used a simplified filtration setup with fewer sieves
to separate eggs in 2010 (Table 1).

Analysis of total lipids and fatty acid methyl esters (FAME) in
the seston and in copepods was done according to Bergvik et al.
(2012a) and analysis of lipid classes according to Bergvik et al.

(2012b). During the sampling in 2010, we were able to obtain
an almost pure sample of copepod eggs (Table 1) in quantities
sufficient for analysis of both FAME and lipid classes (minimum
20mg dry weight).

For egg production rate experiments; active, undamaged
female copepods (n = 36–134, Table 2) were selected under
stereomicroscope and incubated individually in petri dishes
(diameter 55mm) containing 20mL GF/F-filtered seawater. The
copepods were incubated in darkness in a temperature controlled
room at 15◦C for 48 h. The petri dishes were inspected for
copepod eggs every 24 h. In order to avoid egg cannibalism,
females were moved to a new petri dish if eggs were present.
The individual Calanus females were fixed in ethanol, and we
separated C. finmarchicus from C. helgolandicus based on the
curvature of the fifth pair of swimming legs (Fleminger and
Hulsemann, 1977). C. helgolandicus never constituted more than
10% of the total number of Calanus females incubated. The
C. helgolandicus females were removed from the calculations,
but were too few to be included as a separate species in our

Frontiers in Marine Science | www.frontiersin.org 3 March 2016 | Volume 3 | Article 33

http://www.frontiersin.org/Marine_Science
http://www.frontiersin.org
http://www.frontiersin.org/Marine_Science/archive


Leiknes et al. Somatic Growth in C. finmarchicus Nauplii

experiments. The eggs collected from female C. finmarchicus
were further incubated for 96 h before enumerating nauplii.

The nauplii were mixed homogenously and transferred in
equal numbers to flow-through Plexiglas tubes, for growth
experiments. We used plexiglas-tubes (3 × 21 cm, volume
142mL) submerged in a temperature controlled water bath and
a multichannel peristaltic pump (Ismatech IPC) to supply water.
The upper part of each plexiglas-tube (1 cm)was kept above water
level. While water was added at the top of each tube, the base
was fitted with a 20 µm plankton mesh to prevent nauplii from
escaping. The overflow from the water bath was drained through
a tube placed at the surface of the water bath. The flow rate of food
suspension added to each tube was adjusted at 960mL day−1. The
nauplii were supplied with food from natural seawater collected
at 3m depth at Trondhjem Biological Station pier (N 63◦ 26′, E
10◦ 20′). Some nauplii cultures were fed cultured microalgae (see
below) suspended in filtered sea water. The food was supplied
from 10 L Pyrex bottles, and each fresh batch was prepared every
second day. The incubation temperature of the experiment was
adjusted to mimic in situ temperature at 3 m depth, measured at
the start of the incubation.

To remove any stray eggs or nauplii from natural seston
suspension offered as food in our experimental set up, water
was reverse filtered with 55 µm plankton mesh. Subsamples of
the screened natural seawater were filtered onto GF/F-filters for
further analyses of Chla, particulate organic carbon (POC) and
nitrogen (PON). Chla was extracted in methanol and quantified
using a fluorometer (Turner Designs) according to Strickland
and Parsons (1972). POC and PON were analyzed with CN-
analyzer (Costech ECS model 44010). We also collected seston
sample (<55 µm) for fatty acid analysis by means of a flow-
through centrifuge. A complete description of the sampling
method of seston and lipid analyses are described elsewhere
(Evjemo et al., 2008; Bergvik et al., 2012a).

During the last two sampling seasons (2009 and 2011)
we included a separate treatment where the nauplii were fed
a mixture of equal carbon amounts of Rhodomonas baltica,
Isochrysis galbana, andDunaliella tertiolecta. The algae were kept
in exponential growth phase on F/2-medium by replacing 50%
of the medium each day (Guillard, 1975). The total biomass
of added algal mixture was 150 µg C L−1. This mixture of
microalgae was chosen because it is used to maintain a multi-
generation culture of C. finmarchicus at NTNU Sealab (Hansen
et al., 2007).

The growth rate of nauplii was calculated by measuring
change in biovolume with time. Incubated nauplii were sedated
with carbon dioxide, by adding a solution of crystallized Na2CO3

in filtered seawater. The solution was administered drop by
drop to petri dishes containing nauplii until they were sedated.
Pictures were taken using a digital camera (Sony DFW-700) fitted
to an inverted microscope (Leica DRM).The pictures of dorsal
side of the nauplii were taken; length (L) and width (W) were
measured to calculate the biovolume using the standard formula
of a half elliptic sphere:

Biovolume (Vt,µm
3) =

π∗L∗W2

12
(1)

Instantaneous specific growth rates of nauplii (IGRnau, d
−1) were

calculated from average biovolume at the beginning (V0 ) and the
end (Vt ) of the growth periods. Time (t) in Equation (2) refers to
the incubation time in days.

IGRnau (d
−1) =

ln Vt

V0

t
(2)

To compare secondary production as somatic growth of nauplii
with secondary production measured by egg production rate,
we used data from same sampling dates. The carbon-specific
secondary production was calculated, a carbon-content of 45%
of dry matter for female C. finmarchicus (Båmstedt, 1986), and
an average egg carbon content of 0.23µg C egg−1 (Hirche, 1990).
Instantaneous adult growth rates (IGRfem, day

−1) were calculated
using the equation of Hopcroft and Roff (1998):

IGRfem (d−1) =
ln

(

WEggs+ WFemale

WFemale

)

t
(3)

WFemale and WEggs are the carbon specific masses of females and
eggs, respectively and t is the incubation time in days.

The Shapiro-Wilk test was used to test for normality. Since
an overall goal of the study was to evaluate effect of food
quantity and food quality on the growth of C. finmarchicus
nauplii, variables assumed to influence the growth were added to
amultiple regressionmodel (Table 3). A generalized linearmodel
(GLM) with forward selection was used to define the variables
best explaining growth rate. The model was run separately both
with original growth data and with temperature-normalized data
using a Q10-value of 2.7 (Hirst and Bunker, 2003). Systat 13 was
used for the GLM analyzes, Sigmaplot 13 was used for correlation
analysis, regression analysis and graphs.

RESULTS

The higher Chla concentration were observed during growth
periods (GP) 1.1, GP 3.3, and GP 3.4, with concentrations of
4.6, 5.4, and 3.9 µg Chla L−1, respectively (Table 2). During

TABLE 3 | Multiple regression coefficients and their significance for the

model describing factors affecting the growth rate of nauplii [growth =

constant + EFA (mg g−1 DW)].

Variable Coefficient SE F-ratio P

N = 12 Constant 0.017 0.013

R2 = 0.591 EFA In 0.014 0.005 7.923 0.020

Adj. R2 = 0.550 Chla Out 0.837 0.387

POC Out 0.589 0.465

EPA Out 0.678 0.434

DHA Out 0.678 0.434

TFA Out 0.477 0.509

% EPA Out 0.037 0.852

% DHA Out 1.080 0.329

Essential fatty acids (EFA) are the sum of EPA and DHA, TFA is total fatty acids.
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the remaining growth periods, the Chla concentration fluctuated
between 1.1 and 2.3 µg Chla L−1. The POC- concentration
showed no correlation with the Chla-concentration (P >

0.05). The total lipid content (TL) and total fatty acid (TFA)
concentrations of seston<55 µm showed pronounced variations
between growth periods (Figure 1A). The TL was highest during
GP 1.1 and 3.4, and lowest during GP 3.1 and 3.2. The
TFA concentrations also followed a similar pattern, and overall
averages for TFA and TL were 16.0 ± 2.9 and 70.5 ± 8.6 (mg
g−1 DW), respectively. The dominating fatty acids of the seston
were 14:0, 16:0, 18:0, 16:1n-7, 18:3n-3, 18:4n-4, 20:5n-3 (EPA),
and 22:6n-3 (DHA). Some taxonomic group specific fatty acids,

like the diatom fatty acid 16:1n-7 varied from 0.26 (GP 1.3) to
13.0mg g−1 DW (GP 3.4), and the flagellate fatty acid 18:4n-3
varied from 0.22 (GP 3.1) to 2.1mg g−1 DW (GP 3.4). The highly
unsaturated fatty acids EPA and DHA constituted on the average
13.6 and 7.5% of TFA, respectively (Figures 1B,C). The non-fatty
acid fraction was not further analyzed, but microalgae normally
contain variable amounts of fatty alcohols (Antia et al., 1970),
sterols (Patterson, 1971), pigments, and glycolipids (Meireles
et al., 2003).

It was difficult to obtain pure samples of eggs and nauplii of
C. finmarchicus after the onset of the spring bloom. Therefore,
all lipid and fatty acid data for nauplii are from 19.03.2007,

FIGURE 1 | Fatty acid profiles of the seston, <55 µm for the different growth periods listed in Table 2. (A) Total lipids content. (B) Quantitative content (mg

g−1 DW) of different groups of fatty acids. Important essential fatty acids (EFAs; DHA; and EPA) are separated. The total height of the bars represents the total fatty

acid content. (C) Relative content of the different groups of fatty acids (% of total fatty acids).
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whereas egg samples were collected even earlier in the season
(Table 1). The data for copepodites are from 12.04.2007. The
concentrations of TL and TFA of eggs and nauplii differed
between sampling dates. The eggs from 25.02 contained almost
twice the amount of TL and TFA as those from 17.02 and 10.03
(Figure 2). The nauplii stages NII–III showed a slightly higher
TL- and TFA-content than NIII–IV and copepodite stages CII–
III, but the TL- and TFA-content increased in the later stages
CIII–IV and CIV–V.

The nauplii and eggs showed a variable TFA-content and a
variable content of fatty acids. The fatty acid composition of
different nauplii stages was similar to those of eggs, but TFA- EPA
and DHA-contents were much higher in the copepodite stages.
The average content of EPA and DHA in nauplii was 10.2 and
5.7mg g−1 DW in NII–III, and increased to 18.8 and 13.0mg g−1

DW in CIV–V (Figure 3).
The lipid class analyses of C. finmarchicus eggs showed

pronounced differences between sampling days, with highest
content of most lipid classes in the eggs sampled at the 25.02
(Figure 4). Both samples contained high amounts (Figure 4A)
and percentage fractions of WE (Figure 4B, >80% of TL),
variable amounts and fractions of TAG; less and more
stable amounts and fractions of phosphatidylethanolamine
(PE), phosphatidylcholine (PC) and free fatty acids (FFA).The
variability was accordingly most pronounced for neutral storage
lipids.

The specific growth rate of C. finmarchicus nauplii exhibited
some variability, but showed an increase through the growth
season, with growth rates close to zero in early March, average
values around 0.08 day−1 in late March, and 0.12 ± 0.02
day−1 in May (Figure 5). For all growth periods except GP
2.4 and 3.4, average growth rate was significantly higher for

FIGURE 2 | Total lipids and total fatty acids content (mg g−1 DW) in

eggs, nauplii, and copepodites of C. finmarchicus.

nauplii fed with cultured microalgae than for nauplii fed
on natural food source alone (pairwise T-test, p < 0.05,
Figure 5).

Higher content of green matter was observed in guts of C.
finmarchicus nauplii fed with surplus microalgae compared to
those fed on natural seston. The growth rates in the nauplii fed
cultured microalgae in excess were found to be different between
growth periods (p < 0.001, one-way ANOVA). Nauplii from GP
3.3 fed surplus food had the highest growth rate (0.19 ± 0.003
d−1), whereas nauplii from GP 2.1 and 3.2 had the lowest growth
rates for the nauplii fed surplus food, both with a growth rate of
0.060 d−1. The growth rate of the nauplii fed cultured microalgae
increased with increasing growth in nauplii fed natural seawater
(r2 = 0.670, slope 0.924± 0.265, p= 0.013, Figure 6), suggesting
that 67% of the variability of the growth rate in nauplii fed
cultured microalgae was explained by the recent feeding history
of the mothers.

The somatic growth in nauplii was best predicted from the
content of essential fatty acids (EFA) in the seston (Table 3).
Temperature-normalized data gave a slightly better fit for the
regression between EFA and growth, but the model could only
describe 59% of the variation in growth.

Both the effect on growth of EPA, DHA and EFA in the
food could be described by a saturation hyperbola [EPA: r2 =

FIGURE 3 | Fatty acid profiles of eggs, nauplii, and copepodites of

C. finmarchicus. (A) Quantitative fatty acid content (mg g−1 DW). (B)

Relative content (% of total fatty acids). The samples from 17/2 and from 25/2

contained a fraction of unknown fatty acids not included in the figure.
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FIGURE 4 | Content of the different lipid classes: phosphatidylethanolamine (PE), phosphatidylcholine (PC), wax ester (WE), triacylglycerol (TAG), and

free fatty acids (FFA) in C. finmarchicus eggs. (A) Quantitative content (mg g−1 DW). (B) Relative content (% of total lipids). Error bars equals standard error

(n = 2).

FIGURE 5 | Scatterplot of biovolume-specific growth rates (day−1)

through three seasons (mean ± SE). Filled symbols indicate nauplii fed

natural seston (Nat), open symbols indicate nauplii fed cultured algae (Cul).

Asterisk indicates growth periods where there is a difference between growth

of nauplii fed natural seston and cultured microalgae (Student T-test, p <

0.05).

0.493, half-saturation constant (K) = 2.25 ± 1.75, p = 0.0109,
Figure 8A, DHA: r2 = 0.508, half-saturation constant (K) =

0.778 ± 0.643, p = 0.0093, Figure 8B, EFA: r2 = 0.656, half-
saturation constant (K)= 6.006± 5.033, p= 0.0014, Figure 8C].

There was a tendency for higher naupliar growth with higher
Chla-concentration (Figure 7), but there were no significant
relationships between growth and the concentration of Chla
(Pearson coefficient 0.497, p = 0.103) or POC (Pearson
coefficient 0.163, p = 0.632). The growth rates of the nauplii

showed pronounced variability both for low and high female
growth rates, and the values deviated from the 1:1 line in many
growth periods (Figure 9). The growth rates of mothers and
offspring were accordingly not significantly correlated (Pearson
correlation coefficient 0.129, p= 0.69).

DISCUSSION

One main conclusion from our study was that food quantity
and/or food quality limited the instantaneous growth rate of
nauplii fed natural seston (IGRnau, d

−1). The IGRnau increased
significantly (p< 0.05, Figure 8) with increasing content of DHA
and EPA in food. To our knowledge, this has not been reported
for nauplii of C. finmarchicus in previous investigations. The
contents of DHA and EPA in the food have repeatedly been
shown to have a positive effect on rate of egg production of
later stages of copepods (e.g., Evjemo et al., 2008; Jonasdottir
et al., 2009). The variability in DHA- and EPA-contents of
suspended particulate matter (<55 µm) is mainly results from
species composition of plankton. Diatoms generally have low
DHA and high EPA contents, whereas dinoflagellates and smaller
pigmented flagellates have highDHA and variable concentrations
of EPA (Ackman et al., 1968; Hallegraeff et al., 1991; Reitan et al.,
1994; St. John and Lund, 1996; Mansour et al., 1999). In addition
to these, taxon-specific differences, sensitivity of microalgae to
inorganic nutrients can also determine the content of DHA and
EPA (Reitan et al., 1994).

Another factor, not further evaluated, is varying
concentrations and consumption of detritus particles. When
comparing measured POC-concentrations with carbon in
microalgae calculated from Chla-concentrations (C:Chla
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FIGURE 6 | Growth in nauplii fed natural seston (d−1) vs. nauplii fed

cultured microalgae (d−1). Dots indicate average, error bars standard error.

Lines indicate linear regression line with 95% confidence interval.

FIGURE 7 | Biovolume-specific growth rate (d−1) of nauplii of

C. finmarchicus vs. Chla < 55 µm (Pearson correlation coefficient

0.497, p = 0.103).

conversion factor of 64 µg C:µg Chla, Vadstein et al., 2004);
Chla-containing fractions were varying from 24 to 72% of total
POC-concentration. There are, to our knowledge, no published
papers on C. finmarchicus nauplii feeding on detritus particles
and previous reports on Calanus spp. adults feeding on detritus
are scarce and the results are contradictory (Paffenhöfer and
Strickland, 1970; Carlotti and Radach, 1996; Dilling et al.,
1998). We therefore suggest that nauplii grazing selectively
on phytoplankton and ciliates (Turner et al., 2001; Irigoien
et al., 2003) might have experienced higher DHA- and EPA-
concentrations in their actual food than what we measured in the
seston samples, because dead matter is likely lower in these fatty
acids than live plankton (Suroy et al., 2014).

Contrary to other studies (Campbell et al., 2001b) IGRnau was
not significantly correlated with food concentration measured
as Chla or POC in the present study, in agreement with the
suggestion that the nauplii were mainly DHA- and EPA-limited.
Moreover, IGRnau of nauplii fed cultured algae were throughout

higher than those of the nauplii fed natural seston. The IGRnau

of nauplii fed cultured algae was typically 12–493% higher than
the IGRnau for nauplii fed natural seston (Figure 5). The mixture
of cultured algae was not analyzed for fatty acids, but contained
algae with known and complementary fatty acid composition.
Rhodomonas balticum has a high amount of EPA, DHA, 18:3-
n3, and 18:4-n3 (Olsen et al., 2014), Isochrysis galbana has a high
content of DHA, 18:2n-6, 18:1, and 16:1 (Custódio et al., 2014),
and Dunaliella tertiolecta has a high content of 18:3-n3, 16:4-n3,
18:1, and 16:0 (Lee et al., 2014).

We found that the DHA-content was similar in eggs and
nauplii NII–III ofC. finmarchicus, on average 5.4± 0.20 (mean±
SE) mg DHA g−1 DW (9.8% of TFAs, Figure 3). In copepodites
CII–III, the average DHA-content had increased to 13.8 ± 0.83
mg DHA g−1 DW (31.8% of TFAs, Figure 3), in agreement
with earlier results for this stage of C. finmarchicus (Evjemo
et al., 2003). There was no further increase in quantitative DHA
content with increasing developmental stage beyond CII–III, but
TL and TFA contents were steadily increasing. The fatty acid
composition for copepodite stage V throughout the reproductive
season is reported elsewhere (Bergvik et al., 2012a). The main
pattern of variation in absolute and relative DHA contents
showed an increase in DHA through the reproductive season
that was related to fatty acid composition of the feed. DHA
and EPA are normally not synthesized in significant rates in
C. finmarchicus (Sargent and Whittle, 1981; Bell et al., 2007).
A low capacity of synthesis combined with a high content of
DHA reflects high dietary requirements for DHA, and a variable
content of DHA in the feed makes it likely for DHA to become
a critically essential component for the animals. We therefore
suggest that in the present study, availability of DHA in food of
C. finmarchicus nauplii limited the growth rate of nauplii. This
has been shown for other copepods (Breteler et al., 2005) and
fish larvae, which are classified as carnivore zooplankton (Ruyter
et al., 2000; Tocher et al., 2001).

The treatment that involved use of cultured algae as food

for nauplii was intended to serve as a positive control. The
added food was always kept at concentrations assumed to be
above saturation for C. finmarchicus nauplii (150 µg C L−1,
Campbell et al., 2001b). As temperature did not vary widely
between sampling dates, we expected that IGRnau was similar
for experiments with nauplii fed surplus cultured food. However,
IGRnau was not equal for different growth periods (Figure 5),
and we observed that there was a significant relationship between
IGRnau of nauplii fed cultured algae and those fed natural seston
(r2 = 0.67, p = 0.013, Figure 6). This suggests that variation
in maternal condition and the food quality experienced by the
mothers explain some of the variations in naupliar growth rates.
Our presented results on lipid class and fatty acid compositions
of C. finmarchicus eggs suggested that both the content of TL and
TFA can vary quite strongly and that this might reflect variable
nutritional states of the females. The lipid classes forming lipid
droplets in the eggs are wax esters and/or triacylglycerides (Lee
et al., 2006). In our study we found both WE and TAG in eggs of
C. finmarchicus, whereas previous investigations have reported
phospholipids (Ohman and Runge, 1994) and TAG (Lee et al.,
1972b; Gatten et al., 1980) as themain lipid classes. Another study
found PL as the main lipid class, and PL is the main lipid class
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FIGURE 8 | Scatterplot of temperature-normalized growth rates

(day−1, mean ± SE) of nauplii vs. (A): the content of EPA, (B): the

content of DHA and (C): the content of EFA in the seston (mg g DW−1).

Lines indicate regressions (2-parameter hyperbola) with 95% confidence

intervals.

FIGURE 9 | Scatterplot of the secondary production in C. finmarchicus

calculated from somatic growth in nauplii (d−1) vs. secondary

production calculated from egg production (d−1).

in lipovitellin (Lee and Walker, 1995). There could potentially be
some contamination from copepodites andCoscinodiscus present
in egg samples used for lipid class analyzes (Table 1). However,
the copepodites consisted of early copepodites of small copepod
species (Pseudocalanus sp. and Microcalanus sp.) known to have
a very low content of wax esters (Lischka and Hagen, 2007).
Marinemicroalgae in general do not contain wax esters (Lee et al.,
1972a). Therefore, copepodites and Coscinodiscus in egg lipid
class samples would have a diluting effect rather than additions
to the total WE content observed.

The high variability in lipid content and storage lipids in eggs
could be a result of different nutritional states of females. The
egg samples from our study were from February and early March
before females started feeding. The storage lipids in these females
must therefore have originated from previous season in the form
of WE (Sargent and Falk-Petersen, 1988). The egg samples in the
studies of Gatten et al. (1980), Lee et al. (1972b), and Ohman
and Runge (1994) were sampled during summer when females
had been fed satiated food concentrations. It is likely that these
females had lowWE contents and that they therefore transferred
less WE to the eggs. As indicated in Table 1, both egg lipid class
samples could be contaminated,mainly by copepods (17.02.2010)
and the diatom Coscinodiscus sp. (25.02.2010). The copepods
present in the egg sample were mainly smaller copepodites of
Pseudocalanus sp and Microcalanus sp. known to contain WE
(Norrbin et al., 1990; Schnack-Schiel, 2001; Peters et al., 2006;
Parrish et al., 2012), but diatoms in general do not contain WE
(Lee et al., 1971). A simple calculation assuming a WE content
of 60% of TL for the copepodites (Peters et al., 2006) and 0%
for nauplii, Coscinodiscus sp. and Ceratium sp. show that the
WE content in the Calanus eggs could be >90% of TL for both
samples. This is higher than in previous studies and even high
compared to copepodites of various calanoid species (Lee et al.,
1972b; Sargent and Henderson, 1986; Schnack-Schiel, 2001).
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It has been shown that WEs are converted to TAG for
reproductive needs when copepods leave diapause (Jonasdottir,
1999; Richardson et al., 1999).This is likely to happen, but our
results suggested that WE can also be transferred directly to
eggs, at least before the spring bloom. During this period the
females usually have low food availability and high lipid reserves
in the form of WE. The WE contents of eggs may influence
mortality and growth rates through egg and first nauplii stages.
We nevertheless suggest that the high variability of lipid and
lipid class composition in eggs could be critical factors for
hatching success and mortality of nauplii and needs to be further
investigated.

The measured growth rates obtained for C. finmarchicus
nauplii were in the lower range of what has been reported in
previous studies (Hygum et al., 2000a; Campbell et al., 2001b),
but were similar to those found for Centrophages typicus nauplii
(Calbet et al., 2000) and for C. finmarchicus copepodites obtained
for shipboard incubations (Campbell et al., 2001a). Our relatively
low IGRnau values may originate from a varying efficiency in
ingestion and assimilation of food particles. In earlier feeding
selectivity experiments (Turner et al., 2001; Irigoien et al., 2003;
Castellani et al., 2008), nauplii of C. finmarchicus were found to
select among food particles smaller than 55 µm. We therefore
assume that we did not remove any potential food particles for
nauplii by screening water on 55µm. In a feeding study of nauplii
ofC. helgolandicus (Rey et al., 2001), the ingestion rate was higher
for nauplii offered big algae (Prorocentrum micans, ESD 26–
27 µm) than smaller algae (Isochrysis galbana, ESD 4–5 µm),
however growth rate was higher in nauplii fed the smaller algae.
Others have shown that C. finmarchicus nauplii in stages NIV
to NVI can select among diatoms, ciliates and dinoflagellates,
depending on the species composition of the microplankton
community (Turner et al., 2001; Irigoien et al., 2003; Castellani
et al., 2008). Field data from a nearby sampling station show
that the microplankton community in general was dominated
by diatoms during the spring bloom whereas small flagellates,
ciliates, and dinoflagellates were dominant during the post bloom
periods (Leiknes, 2016). This suggests that the nauplii offered
natural seston could experience low availability of smaller food
particles although chlorophyll a and POC-data indicated surplus
food.

The observations of reproductive rates of C. finmarchicus
females together with somatic growth of nauplii made it possible
to compare the two different methods for estimating secondary
production. It was then kept in mind that the start of the
somatic growth period was 5 days after the sampling date of
females. There was considerable scatter around the 1:1 line. The
secondary production by female C. finmarchicus was higher than
the naupliar growth early in the production season during the
spring bloom, whereas naupliar growth was higher during post-
bloom situations in May. This might suggest that females utilized
different food items than nauplii, as suggested by other authors
(Hansen et al., 1994; Gismervik et al., 1996), and/or that the
females were fueling the reproduction by internal lipid stores.
It is noticeable that the four dates with the highest IGRnau in
nauplii fed natural seawater were situations dominated by small
flagellates (Leiknes, 2016).

In summary, the specific growth rate of nauplii varied during
seasons because of variations in food quality. The contents of
EPA and DHA in seston were the variables that had the strongest
effect on the naupliar growth rate in our study, but no variable
explained more than 66% of variation in naupliar growth rate.
The regression analysis indicated that both the EPA-content
and DHA-content (and hence, the EFA-content) in the food
reached saturation (Figure 8).The pronounced difference in IGR
between the nauplii fed natural seston compared to cultured
algae in periods of the productive season indicated periods of
food limitation, either by food quantity or food quality. Food
availability, measured by Chla or POC, could not explain the
variability in growth rate.

Our lipid class analyses on eggs from the early spawning
of C. finmarchicus showed high WE contents and differed
from earlier reports on lipid class compositions of eggs. We
therefore propose that C. finmarchicus females can pass on
WE to eggs directly without converting WE to TAG, contrary
to what is previously reported (Lee et al., 1972b). Since
the previously published lipid class analyzes originate from
summer samples, it would be very interesting to follow the
lipid class composition on C. finmarchicus egg through the
spawning season. We also suggest that further studies should
try to evaluate to what extent growth and mortality of C.
finmarchicus nauplii is affected by such maternal effects, or if
food quality or quantity of first feeding nauplii stages is most
important.

There were at times big differences between secondary
production estimated by egg production measurements and
by somatic growth. This suggests that it is not sufficient
to use a single approach to assess the state of entire
copepod community, but that both approaches should be
applied simultaneously. In addition, wide range of growth
rates found in a narrow temperature variation (6.5–9.5◦C)
suggested that other factors should be considered in production
models.
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