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This paper assesses sea-level rise related coastal flood impacts for Emilia-Romagna

(Italy) using the Dynamic Interactive Vulnerability Assessment (DIVA) modeling framework

and investigate the sensitivity of the model to four uncertainty dimensions, namely

(1) elevation, (2) population, (3) vertical land movement, (4) scale and resolution of

assessment. A one-driver-at-a-time sensitivity approach is used in order to explore and

quantify the effects of uncertainties in input data and assessment scale onmodel outputs.

Of particular interest is the sensitivity of flood risk estimates when using datasets of

different resolution. The change in assessment scale is implemented through the use of

a more detailed digital coastline and input data for the coastline segmentation process.

This change leads to a 35-fold increase in the number of coastal segments and in a

more realistic spatial representation of coastal flood impacts for the Emilia-Romagna

coast. Furthermore, the coastline length increases by 43%, considerably influencing

adaptation costs (construction of dikes). With respect to input data our results show

that by the end of the century coastal flood impacts are more sensitive to variations

in elevation and vertical land movement data than to variations in population data in

the study area. The inclusion of local information on human induced subsidence rates

increases the relative sea-level by 60 cm in 2100, resulting in coastal flood impacts

that are up to 25% higher compared to those generated with the global DIVA values,

which mainly account for natural processes. The choice of one elevation model over

another can result in differences of ∼45% of the coastal floodplain extent and up to 50%

in flood damages by 2100. Our results emphasize that the scale of assessment and

resolution of the input data can have significant implications for the results of coastal flood

impact assessments. Understanding and communicating these implications is essential

for effectively supporting decision makers in developing long-term robust and flexible

adaptation plans for future changes of highly uncertain scale and direction.
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INTRODUCTION

Coastal flooding constitutes a major risk for coastal regions
throughout the world and this risk is expected to worsen
considerably during the twenty-first century with rising sea-
levels and as future societal development increases the number of
people and value of assets in the coastal floodplain (Hinkel et al.,
2014). Therefore, there is a growing need of coastal communities
and decision makers to access information on current and
future risks as well as on strategies for managing and reducing
risks. For instance, national and regional Mediterranean Coastal
Administrations have expressed needs for improved methods to
evaluate flood risk in Mediterranean coastal areas and to identify
comprehensive plans to reduce these risks in recent years (Lupino
et al., 2014).

Evaluating and managing coastal flood risk under climate
change, as well as climate risk in general, requires to consider
uncertainty about present and future risks as comprehensively as
possible, because not considering uncertainty may only partially
lead to maladaptation (Jones et al., 2014; Hinkel et al., 2015).
For coastal flooding, uncertainty relates not only to the amount
or rate of sea-level rise (SLR) and socio-economic development,
but also to the input data used in the analysis. While scenario
uncertainty is generally explored in coastal impact assessments,
data uncertainty has not received as much attention in the
literature (Le Cozannet et al., 2015). Initial work carried out
(Lichter et al., 2011; Mondal and Tatem, 2012) has shown that
variations in estimates of area and population exposure are
highly dependent on the input datasets. Hinkel et al. (2014)
found that coastal flood impacts are much more sensitive to
elevation data uncertainty than to, e.g., sea-level rise uncertainty
stemming from the choice of climate model. Generally, a
significant limitation of flood impact analysis on all scales is
the unavailability of free high-accuracy datasets (Gesch, 2009;
Mondal and Tatem, 2012; Neumann et al., 2015).

To our knowledge, there is, however, no study that has
explored the uncertainty of coastal flood risk assessment with
regard to the spatial scale of analysis and spatial resolution of
input data. Scale is bound to be an essential parameter in flood
risk analysis (de Moel et al., 2015) because different kinds of
population, elevation and vertical land movement input data sets
are available at different scales. Of particular interest thereby is
the sensitivity of flood risk when switching from data sets with
global coverage to local, high resolution ones, because the latter
are more accurate but only available for few regions. Comparing
flood risk attained between global and local datasets thus helps
to understand how accurate flood risk assessments are in regions
where local high resolution data are not available.

This paper contributes to improve our understanding of
the above uncertainties in the context of global coastal flood
risk assessment. We do this by taking the Dynamic Interactive
Vulnerability Assessment (DIVA) flood risk module from Hinkel
et al. (2014) and applying it to the Emilia-Romagna region in
Italy using two scales of analysis: (i) a low resolution one based
on the global coastline segmentation of Vafeidis et al. (2008) also
used by Hinkel et al. (2014); and (ii) a newly developed high-
resolution segmentation of the Emilia-Romagna region. The

exercise is directly related to a policy process taking place within
the EU-funded “Coastal Governance and Adaptation Policies in
the Mediterranean” (COASTGAP) project aiming at providing
policy-relevant guidance on local coastal flood impacts of climate
change.

Specifically, our research objectives are the following:

(1) Explore the sensitivity of coastal flood risk estimates to the
effects of different coastlines and segmentations

(2) Explore the sensitivity of coastal flood risk estimates to
different population and higher resolution elevation and
vertical land movement input datasets

The remainder of this paper is structured as follows. Section
Study Area, Methods, and Data provides an overview of the
study area, the coastal flood impact model, the segmentation
process as well as the sensitivity analysis approach used in this
paper. Furthermore, the underlying datasets as well as future
climate and socio-economic scenarios will be described. Section
Results presents the sensitivity analysis from a selected number of
simulation outputs of impacts due to different input datasets and
segmentations. Finally, key findings are evaluated and discussed
in the Discussion Section.

STUDY AREA, METHODS, AND DATA

Overview
The determination of the effects of scale and sensitivity of
impacts to different segmentations and input data follows a
multi-level step procedure. The first step was the downscaling
process of the assessment units using a more detailed coastline
and segmentation process in order to create a data structure
that enables the model to run and to be able to quantify the
improvements of a more detailed coastline and segmentation.
The second step was the calculation of exposure using different
vertical land movement, elevation and population datasets,
leading to the six datasets of various combinations of four
uncertainty dimensions shown in Table 1. In a final step, the
DIVA coastal flood module was used to assess potential flood
impacts in terms of the following three parameters:

(1) Potential floodplain extent of the 1-in-100-year extreme water
level [in km2]

(2) The average number of people flooded annually through
extreme water level events [people/year]

(3) The average annual damage caused by coastal flooding [in
million US$]

These model outputs are used in order to determine the
sensitivity of the model.

Study Area
Emilia-Romagna is situated in the southern part of the Po
basin in northern Italy (see Figure 1). It is inhabited by 4.4
million people and covers an area of 22,124 km2. The gross
domestic product (GDP) per capita in Emilia-Romagna is 24,396
Euro (Istat, 2009), which is higher than the national average
(20,043 Euro). The coastal strip is often higher in elevation
than the hinterland, of which more than 100,000 ha are below
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TABLE 1 | Datasets used to investigate the sensitivity of coastal impacts

to the four uncertainty dimensions (coastline segmentation, elevation,

population, and vertical land movement).

Coastline

segmentation

Digital elevation

model

Population Vertical land movement

High-resolution

segmentation

LiDAR LandScan Peltier (2000) + 2

mm/year delta subsidence

LiDAR GRUMP Peltier (2000) + 2

mm/year delta subsidence

SRTM LandScan Peltier (2000) + 2

mm/year delta subsidence

SRTM GRUMP Peltier (2000) + 2

mm/year delta subsidence

LiDAR LandScan PInSAR

Global

segmentation

SRTM GRUMP Peltier (2000) + 2

mm/year delta subsidence

sea-level (Preti et al., 2009). The low-lying coastal strip is
characterized by different levels of human modification and
development. The level of modification is ranging from natural
to urbanized areas (93 km of the coast or 71% are urbanized).
The coastline of urbanized regions has remained relatively stable
due to human intervention such as hard shoreline protections
or beach nourishment (Armaroli et al., 2012). Hard shore
protection, mainly offshore breakwaters, protects 60% of the
coastline from flooding and erosion (Nordstrom et al., 2015).
The entire region is currently experiencing a sediment deficit
which is a result of decreasing fluvial sediment transport caused
by stabilization of slopes and hydraulic works along the river
bed. Furthermore, there is a current interruption of long-shore
sediment transport due to shore protection structures. More
than 10 million m3 of sediment was replenished to the beach
of Emilia-Romagna between 1983 and 2012 (Montanari and
Marasmi, 2014). The dominant coastal type is considered to be
sandy beach with an average width of 70 m (emerged beach).
Wave energies are normally low in Emilia-Romagna. The wave
height is generally below 1.25 m (91%), but storms from the
south/southeast (Scirocco) and northeast (Bora) result in high
waves and storm surge levels. According to Houtenbos et al.
(2005), the relative sea-level rise is higher in Emilia-Romagna
than the global eustatic component due to subsidence. Along
the Emilia-Romagna coastal area, the degree of subsidence
due to natural causes entails a few millimeters per year, while
the anthropogenic subsidence has reached high speeds of 50
mm/year in the 80’s. Main drivers to cause anthropogenic
subsidence include underground extraction of water and natural
gas. The Integrated Coastal Zone Management (ICZM) effort in
the Emilia-Romagna region started in 2002 and ended with the
emanation of ICZMGuidelines approved by the Regional council
in the beginning of 2005. They represent the tool to address
all coastal activities toward economic, social and environmental
sustainability, in compliance with EU Recommendation of the
30th May 2002. According to Preti et al. (2009), the touristic use
dominates nearly 85 km of the coast. With more than 36 million
overnight stays per year, Emilia-Romagna is one of Italy’s most
attractive tourist destinations.

Methods
Calculating Flood Risk
We used the DIVA (Dynamic Interactive Vulnerability
Assessment) coastal flood module (Version 5.0.0) as presented
in Hinkel et al. (2014) in order to calculate coastal flood impacts
over the next century. The DIVA model operates on data
attributed to coastline segments. Global applications of DIVA
used a segmented coastline of the world, which comprises 12,148
units of variable length (average of 70 km) based on Vafeidis et al.
(2008). Every segment represents a uniform response to SLR
within the coastal system. More than 80 physical, ecological and
socioeconomic parameters (e.g., uplift/subsidence in mm/year
or coastal population) of the world’s coastal zone (excluding
Antarctica) are spatially referenced to these units. DIVA is driven
by climatic and socioeconomic scenarios which will be described
in chapter Sea-Level Rise Scenarios and Socio-Economic
Scenarios. One important innovation introduced by DIVA is
the explicit incorporation of a range of adaptation options, as
impacts do not only depend on the selected climatic and socio-
economic scenarios but also on the selected adaptation strategy.
Possible adaptation strategies in the DIVA modeling framework
in order to reduce coastal flood risk are the construction of dikes.

DIVA’s flooding module uses a cumulative people and asset
exposure function in order to estimate the potential socio-
economic impacts of coastal flooding. In order to get the
potential number of people living below a certain elevation
level and therefore prone to flooding, a digital elevation model
(DEM) was combined with a spatial population dataset (a more
detailed description of the calculation can be found in Section
Exposure Data). Based on extreme water levels given for different
return periods in the DIVA database (Vafeidis et al., 2008) the
potential exposed area and number of people living in these
areas is calculated using a bathtub approach. The extreme water
levels within the DIVA database were calculated based on the
methodology described in Hoozemans et al. (1993). Relative
sea-level rise is then added to the current extreme water level
probability distribution, leading to shorter average return periods
of flood levels. Hinkel et al. (2014) compute the number of people
flooded by only making the binary distinction between flooded
and not flooded. The estimation of the value of assets on a given
elevation is done by multiplying the number of people with the
GDP per capita times an empirically estimated GDP-to-assets
ratio of 2.8 taken from Hallegatte et al. (2013). The amount of
damage depends on the depth by which the asset is flooded.
Hinkel et al. (2014) uses a depth-damage function in order to
calculate the fraction of assets that will be damaged when flooded
by a certain depth. The depth-damage function reflects the fact
that the damage rate decreases with increasing water levels. It is
assumed that a flood depth of 1 m destroys 50% of the assets.
According to Hinkel et al. (2014), this assumption is a good
indication based on the information available to date. If dikes are
present, a damage of 0 is assumed for floods lower than the actual
dike height. By default, a dike is constructed if at least 1 person
per km2 lives on the coast. The dike height is calculated based
on a demand for safety function, which depends on the GDP
per capita and population density. Following this function, dikes
are built and upgraded for each coastline segment in each time
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FIGURE 1 | Study area—Emilia-Romagna. (A) Italy (B) Emilia-Romagna.

step (5 years) until 2100. Future exposure is attained by applying
national population andGDP growth rates of the socio-economic
scenarios (Hinkel et al., 2014). A more detailed description of the
coastal flood module used in this study can be found in Hinkel
et al. (2014).

Coastline Segmentation
In order to downscale the assessment scale of DIVA it was
necessary to refine the existing coastline and segmentation.
The segmentation is an essential step in order to generate a
data structure that enables the model to run, and it defines
the scale of assessment. The original DIVA segmentation was
based on a digital global coastline data set (ESRI, 2002), with
a cartographic scale of 1: 3,000,000. As this level of scale is
too general for the purpose of a sub-national study due to
the loss of important coastal features, a more detailed digital
coastline was employed (see Section Coastline Segmentation
Data). This coastline was then segmented into units, based
on the original concept of McFadden et al. (2007) and
using the following parameters relevant for coastal-flood risk
assessment and management (1) administrative boundaries,
(2) the geomorphic structure of the coastal environment, (3)
the expected morphological development of the coast given
sea-level rise, and (4) population density. We extended those
parameter to also include (5) river mouths as these often
have a much greater RSLR due to subsidence than other
areas.

Sensitivity Analysis
A sensitivity analysis aims at exploring how much model outputs
are affected by changes in input data (Saltelli et al., 2000).
We used a simple One-Driver-At-a-Time (OAT) approach. This
single factor approach is undertaken by modifying one input
variable, e.g., the elevation data, while keeping all remaining

inputs consistent. This enables us to explore and to systematically
quantify the impacts of different assumptions on the calculated
flood impacts. Sensitivity is calculated as the difference between
the impacts in 2100. It is a useful method in order to identify key
drivers which strengthen the understanding and interpretation of
the DIVA modeling framework. In this study we do not quantify
how interactions between input factors affect the variability of the
model results, as the generation of input data for each point in the
uncertainty space considered is computation and labor intensive.
For each data point a large number of processing steps is required
as the coastline needs to be segmented and the database needs
to be populated with e.g., population, vertical land movement,
and elevation data. Therefore, deriving more data points for
conducting a general sensitivity analysis was not possible within
the scope of this study.

Data
Sea-Level Rise Scenarios
We uses regional SLR scenarios of Hinkel et al. (2014), which are
based on the Representative Concentration Pathways (RCP) 2.6,
4.5, and 8.5 and comprise the following twomain components:

(1) The steric contribution, produced by the Hadley Global
Environment Model2—Earth System (HadGEM2-ES; Collins
et al., 2008).

(2) Land ice contribution consisting in the mass contribution of
glaciers and ice caps, based on Marzeion et al. (2012). The
mass contribution of the Greenland ice sheet and peripheral
ice caps taken from Fettweis et al. (2013) and the mass
contribution from the Antarctic based on Levermann et al.
(2012). By combing the three mass contributions a low
(5th percentile), medium (50th percentile), and high (95th
percentile) land-ice scenario was created (see Table 2). These
scenarios also consider gravitational, rotational, and local land
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TABLE 2 | Global mean sea-level rise in 2100 with respect to 1985–2005.

Scenario Model Steric [cm] Mass [cm] Total [cm]

Glacier Antarctica Greenland Sum

RCP2.6 HadGEM2-ES 14 14 (14, 15) 7 (2, 23) 0 (0, 0) 21 (16, 39) 35 (29, 52)

RCP4.5 HadGEM2-ES 18 17 (16, 19) 8 (2, 29) 7 (5, 8) 32 (23, 56) 50 (41, 75)

RCP8.5 HadGEM2-ES 29 22 (20, 26) 10 (2, 41) 12 (10, 14) 44 (31, 81) 72 (60, 110)

The median and, in parentheses, the 5 and 95% percentiles are provided (Hinkel et al., 2014).

uplift effects that results from changes in ice masses and ocean
circulations. To implement these effects, the model of Bamber
and Riva (2010) was used which considers a uniform mass
reduction over the ice sheets.

For this study, we use three SLR scenarios that sample the full
uncertainty space covered by Hinkel et al. (2014). A lower bound
scenario (RCP2.6 combined with the 5% quantile of ice-melting
projections), hereafter referred to as low SLR, a medium scenario
(RCP 4.5 combined with the median), referred to as medium
SLR, and an upper bound scenario (RCP8.5 combined with the
95% quantile), referred to as high SLR. The sea-level scenarios for
Italy vary between 31 (low SLR scenario) and 122 cm (high SLR
scenario) by the end of the twenty-first century (see Figure 2).
For every coastline segment, the relative sea-level rise is generated
by linking the regional sea-level rise values with the vertical land
movement.

Socio-Economic Scenarios
Three socio-economic scenarios have been used, based on
the IPCC Shared Socio–economic Pathways (SSP) storylines
(O’Neill et al., 2014), to present a range of potential future
development directions in the Emilia-Romagna region. The SSP3
storyline assumes a high population growth and a slow economic
development and represents a fragmented world. In this storyline
the world is separated into extreme poverty, moderate wealth and
a bulk of regions that struggle to maintain living standards for a
rapid growing population. The SSP5 represents a conventional
development which is oriented toward economic growth. The
population growth is generally low. SSP2 assumes medium
growth in socio-economic development worldwide.

The amount of assets and people that will be located in
the coastal zone determines the future exposure to coastal
flooding. In DIVA the two variables population growth and GDP
growth are the main drivers to determine future socio-economic
development. The total population of Italy ranges between 22.8
and 75.4 million (see Figure 3) and the GDP per capita between
27,716 and 160,602 US dollar by 2100 (see Figure 4) following
the SSP storylines. Those growth rates are applied to the exposure
data in order to estimate future coastal flood impacts. According
to the global flood risk assessment conducted by Hinkel et al.
(2014), the flood costs are highest for SSP5 (economic growth)
and lowest for SSP3 (security), reflecting the socio-economic
growth rates developed by Kc and Lutz (2014). In order to cover
the full range of uncertainty and future pathways, SSP3 and SSP5
have been chosen as well as SSP2 which reflects a world with
medium assumptions.

FIGURE 2 | The average relative sea-level rise for Emilia-Romagna

under all sea-level rise scenarios.

Coastline Segmentation Data
For this study the coast has been resegmented using a more
detailed digital coastline (see Supplementary Figure 1 for a
comparison between the global and detailed coastline) and
data. We selected the Global Administrative Areas (GADM,
http://www.gadm.org/) level 01 coastline and corrected artifacts
related to the format (e.g., “pixelization” of coastline) using
a smoothing algorithm (polynomial approximation) and a
tolerance of 100 m.

The availability of consistent datasets on coastal morphology
and characteristics is a common limitation for global-, regional-,
and national-scale impact assessments. Due to the lack of
consistent coastal morphologies and geological characteristics
data for the Emilia-Romagna region, an independent consistent
data set was generated with Google earth. Google earth provides
free satellite images and aerial pictures (Chang et al., 2009) for
the whole study area. Based on the concept described in Scheffers
et al. (2012), seven different classes [(i) sandy, (ii) unerodible,
(iii) pebble, (iv) rocky with pocket beaches, (v) sandy with wave-
breakers, (vi) muddy, and (vii) fortified coast—see Figure 5] have
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FIGURE 3 | Total population of Italy for each storyline used in this study.

been classified based on visual interpretations of Google Earth
imagery and location-tagged photographs from the web-service
Panoramio which offers geographically tagged photographs from
users. The coastline was split every time the type of coast changed.
The coastal plain characteristics were segmented with the help
of the geomorphic structure data developed by McGill (1958).
The parameter provides information about the geomorphology
and elevation of the coast. The third biophysical parameter is
the river mouth layer. This layer was created with the help
of Google earth as well. The population density information
splits the coast into two classes, (i) urban/human settlements
and (ii) rural (see Figure 5). This indicates variations in the
population distribution of the Emilia-Romagna coast which is
essential for the assessment of vulnerability to SLR, as e.g.,
dikes are only build where people are actually living. This
spatial dataset was derived with the help of satellite image from
Google earth. Furthermore, according to McFadden et al. (2007),
institutional and governmental arrangements play an important
role in defining the response of coastal systems to an accelerated
sea-level. The inclusion of the political system (GADM level 03)
is therefore important as different political and administrative
controls react differently to SLR in terms of adaptation strategies.
Finally, the created layers, described before, were overlaid in
order to create segments that represent a uniform response to
sea-level forcing.

Exposure Data
The segmentation creates units for the analysis (data structure)
to which information (e.g., elevation or population data) is
attached. Hence, after the segmentation the DIVA database was
populated and updated with the help of the data provided from
the COASTGAP partners or with the DIVA data. Topography

FIGURE 4 | GDP per capita in Italy for each storyline used in this study.

or elevation is one of the main parameters that determine
the vulnerability of coastal zones to sea-level rise. In order
to assess areas exposed to inundation, two different digital
elevation models were used. First, the freely available (1) Shuttle
Radar Terrain Mission (SRTM) digital elevation model (Jarvis
et al., 2008). It has a vertical resolution of 1 m and spatial
resolution of 03 arc seconds (∼90 m at the equator). The
SRTM (datum wgs84) employs an imaging radar system. It is
important to note that the elevation represents the height of
the first reflective surface. In open terrain, the SRTM elevation
will represent the ground elevation, but in vegetated or urban
areas the ground-elevation might be overestimated. According
to Gesch (2009), this mix of ground elevation and non-bare
ground elevation in SRTM data could be a source of error in
inundation mapping in vegetated and urban areas (Baugh et al.,
2013; Lewis et al., 2013; Griffin et al., 2015). The second data
set used is the (2) Light detection and ranging (LiDAR) digital
elevation model (datum wgs84) with a spatial resolution of 5
m and a vertical accuracy of (±)20 cm which was provided
by the Emilia-Romagna region. LiDAR employs the airborne
laser scanning technique which can resolve a point density of
2 points per m2. Both the 90 and 5 m-resolution data have
been used in order to calculate the exposure of areas. A simple
“bathtub approach” in which a grid cell becomes flooded if it
is below a certain elevation has been used. In order to reflect
surface flow connections, an eight-side-rule has been used, where
the grid cell becomes a flooded grid cell if the cardinal and
diagonal directions are connected. Following this approach, a
mask that represents areas hydrologically connected to the sea
was created. Afterwards, buffer zones per coastline segment
have been produced in order to calculate the number of pixel
flooded per segment. The zones also extend seaward, in order
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FIGURE 5 | Results of the high-resolution segmentation model. (A) Coastal settlements. (B) Coastal typology classification.

to ensure the inclusion of population mismatching which is
important in order to calculate exposure of people. As local
population data was unavailable, two different global population
data sets have been used in order to calculate the exposure
of people. The population count datasets of LandScan (2006)
(Bright et al., 2007) and the Global Rural Urban Mapping
Project (GRUMP 2000) (Center for International Earth Science
Information Network - Ciesin - Columbia University et al.,
2011) were obtained. Both have a spatial resolution of 30
arc seconds and are based on census population counts. The
main differences are the base year, administrative levels of
input data and the modeling approach used to allocate and
disaggregate these data (Mondal and Tatem, 2012). The total
global population between those two population datasets varies
by around 8% (Lichter et al., 2011), mainly due to the different
base years. In this study, this deviation has been recalculated
afterwards to the common base year 1995, using the growth
rates of the SSP scenarios. The LandScan global population
project allocated annual midyear population estimates, usually
at province level, based on weightings derived from land cover,
roads, slope, urban areas, and high resolution imagery analysis.
It represents an “ambient” population distribution and hence,
presents a highly modeled population distribution. In contrast
to that, GRUMP was produced by population census data from
administrative units and was originally developed in order to
reallocate census population counts to urban and rural areas.
People were not only redistributed based on areal weighting,
but urban populations were also reallocated based on night-time
light as GRUMP defines population distribution according to
where people actually live (Mondal and Tatem, 2012). Exposure
was calculated by combining the information on elevation data
with the population distribution data. The number of people at
risk was calculated by summarizing population per elevation per

increment, per coastline segment. Those values were stored as
attributes to the coastline segment.

Vertical Land Movement Data
Vertical land movement is a downward (subsidence) or upward
movement (uplift) of the land relative to sea level. Subsidence
often occurs in regions associated with alluvial sediments, such
as deltas (Ericson et al., 2006) as in the case of the study area,
Emilia-Romagna. In this study we compare the vertical land
movement of global modeled datasets, which are often used in
flood risk assessment, with higher resolution local datasets, which
are often not available for flood risk assessments because they
are expensive to generate. In particular we consider a global
model of glacial isostatic adjustment of Peltier (2000) together
with an estimated 2 mm/year subsidence for delta regions as
used by Hinkel et al. (2014). Human-induced subsidence rates
were not considered. However, it is an important parameter
for regions such as Emilia-Romagna where human-induced
subsidence due to extraction of water, oil, and gas (Armaroli
et al., 2012) is an issue. Data that include both natural and
human-induced subsidence were available for this study through
the COASTGAP partners. The data were generated from the
Permanent Scatter Interferometric Synthetic Aperture Radar
(PSInSAR). According to Ferretti et al. (2001), the PSInSAR
is a surface displacement observation technique based on
conventional radar interferometry. The data was provided by
the Emilia-Romagna region in a raster format with a spatial
resolution of 100 m. The coastal vertical land movement was
calculated by combining the area below 3 m with the PSInSAR
data. The coastal vertical land movement was calculated by
averaging the rates per zone. Afterwards, the values were joined
to the coastline segment. Table 3 shows the Peltier (2000) + 2
mm/year delta subsidence and PSInSAR values used in this study.
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TABLE 3 | Comparison between mean, maximum and minimum values of

the globally modeled and locally measured vertical land movement data

for the study area.

mm/year Mean Min Max

Peltier (2000) + 2 mm/year delta subsidence 0.14 0.15 0.14

PSInSARs 4.88 0.59 19.62

Positive values indicate subsidence while negative values indicate uplift.

RESULTS

Segmentation
For the Emilia-Romagna coastline the global segmentation
produced three segments with an average segment length of 40
km (minimum length 5.5 km, maximum length 98.8 km, total:
121.5 km). In comparison, the high-resolution segmentation
generated 113 segments with an average length of 1.5 km
(minimum length is 0.03 km, maximum length is 11.2 km, total:
174.6 km). Thus, the coastline length increased by 43% (53.1
km). The high-resolution segmentation has a 28-fold increase
compared to the global DIVA assessment scale referring to the
average length of segments. In the global DIVA database the
entire coast of Emilia-Romagna was characterized by a sandy
coastal morphology and urban settlements while in the new
version a more detailed distinction (e.g., 57 segments or 86 km
represents coastal settlements, 55 km are classified as sandy plus
59 km as sandy with wave breaker—see Figure 5) was made. The
comparison of the different segmentation models indicates that
the new segmentation approach increased not only the length
of the coast but also the spatial representation of impacts in the
Emilia-Romagna region (see Figure 7).

Sensitivity to Segmentation
Using the high-resolution segmentation, the 100-year floodplain
has an extent of 3309 km2 (using the SRTM elevation model),
assuming a high SLR, in 2100. That covers 15% of the entire area
of Emilia-Romagna. The potential flood area extent differs by 789
km2 depending on the scale and resolution of assessment in 2100
(see Table 4). This situation shows that even if the underlying
data (SRTM) remains the same, the total local values deviate due
to the different scale of analysis. The main reason for that is the
creation of buffer zones (see Supplementary Figure 2) which were
used in order to calculate the exposure statistics per increment.
The average number of people potentially flooded annually
through extreme water level events is presented in Figure 6 and
in Supplementary Table 1. The results depend on the coastal
topography, population, and adaptation strategy, as well as sea-
level rise and socio-economic developments. Assuming that there
are no protection measures in place, the number of people
flooded varies between 90,909 and 511,198 people in 2100, using
different assessment scales.

In the worst case, the choice of one particular assessment
scale over another can result in an additional difference of 2.6%
concerning the total population of Emilia-Romagna at risk. The
spatial distribution of the people at risk per coastline segment
for both assessments scales is presented in Figure 7. The detailed

FIGURE 6 | Average annual people flooded from 2000 to 2100 under all

SLR scenarios.

TABLE 4 | Sensitivity of coastal flood impacts to the four uncertainty

parameters in 2100 (SSP5, high SLR).

Uncertainty

dimension

Area of the 100-year

floodplain [km2]

Number of people

flooded annually

Flood cost

[million/US$]

Elevation 1049 (46%) 119,839 (33%) 37,368 (49%)

Vertical land

movement

93 (4%) 91,458 (18%) 19,826 (26%)

Population – 26,476 (08%) 576 (0.8%)

Segmentation 789 (31%) 113,349 (28%) 279 (0.2%)

The impacts represent an average difference while only one of the listed parameters is

modified at a time.

coastline represents the spatial distribution of people at risk more
realistically, due to the more refined assessment scale and the
increase of units.

Impacts are also very sensitive to population density threshold
that determines when dike building starts. Setting this threshold
is a normative decision depending on the risk preferences of
coastal societies. If this threshold is set to 1 person per km2,
the entire coastline of the Emilia-Romagna is protected by dikes
for both assessment scales (see Table 5). Considering a dike
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FIGURE 7 | Comparison of the spatial distribution of the expected number of people flooded annually using the global and high-resolution

segmentation in 2100 (SSP2, High SLR).

TABLE 5 | Protected coastline length and cost of dikes for different dike

construction thresholds using two different assessment scales in 2100

(medium SLR).

Dike building

threshold

1 People/

km2
10 People/

km2
100 People/

km2

High-resolution

segmentation

Dike [km] (%) 174 (100%) 164 (94%) 112 (64%)

Dikecost [millions

US$/year]

2.4 2.3 1.5

Global

segmentation

Dike 121 (100%) 121 (100%) 104 (86%)

Dikecost [millions

US$/year]

1.7 1.7 1.4

construction threshold of 10 people per km2, 94% of the coast will
be protected via dikes using the high-resolution segmentation
assuming a medium SLR in 2100. In contrast, no change in the
protection length was observed in the study area using the global
assessment units. A threshold of 100 people per km2 decreased
the dike length by 36% using the detailed coastline and by 14%
using the global coastline segmentation. The flood cost varies up
to 279 million US dollar due to the change in the assessment
scales. To conclude, the change in assessment scale, namely the
increase of segments and length, showed a high sensitivity in this
study (see Table 4 and Supplementary Table 2).

Sensitivity to Elevation Data
The coastal flood impact calculation showed the highest
sensitivity to the change in the elevation data in this study (see
Table 4 and Supplementary Table 3). The estimated areas exposed
to coastal flooding are smaller with LiDAR DEM than those
calculated with the SRTM DEM. This leads to an increase in

the exposed area and potential coastal flood impacts. The choice
of one particular elevation model over another can translate to
a difference of more than 1049 km2 of the current potential
100-year floodplain (see Table 6). The floodplain increases by
4–26% in 2100 (referring to 2015), depending on the elevation
model and sea-level rise scenario chosen (see Supplementary
Table 4). The differences of potential impacts using different
digital elevation models decrease toward the end of the century
when using a higher SLR scenario. This situation occurs due to
the large differences between two elevation models in the area
below 5 m. Those low-lying areas mainly influence the extent
of the 100-year floodplain. Hence, the influence of the data sets
used is higher under a low sea-level rise due to the fact that the
elevation data differs the most at low elevations, as illustrated in
Figure 8.

The potential of people exposed to annual coastal flooding and
the average of annual damage caused by coastal flooding showed
a high sensitivity to the change in elevation data (see Table 4).
The potential impacts of coastal flooding are higher using the
SRTM elevation model due to increasing areas at risk of coastal
flooding (as shown in Table 6). The difference of 33% in the
potential flood area leads to an increase of 49% in flood costs and
to a 46% higher amount of people at risk compared to the impacts
calculated with the LiDAR elevation model.

Sensitivity to Vertical Land Movement Data
The inclusion of measured data on human induced subsidence
rates in the vertical land movement data led to an increase of
relative sea-level rise (see Table 7). In 2100, an additional relative
sea-level rise of 60 cm is reached, using the PSInSAR data which
has a higher influence than the low and medium sea-level rise
scenarios used in this study. This leads to a significant increase in
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FIGURE 8 | Comparison of the SRTM90 and LiDAR digital elevation data for the Emilia-Romagna region.

TABLE 6 | 100-year floodplain under three different SLR scenarios using

LiDAR and SRTM (today and in 2100).

Potential flood

area (km2)

2015 2100

Low SLR Medium SLR High SLR

LiDAR 1783 1958 2033 2260

SRTM 2819 3060 3126 3309

Sensitivity 1036 (58%) 1102 (56%) 1093 (53%) 1049 (46%)

The sensitivity is calculated based on the difference between various potential flood areas.

the potential impacts as it increases the exposure of people and
area to coastal flooding due to the landward displacement of the
flood extent.

The expected annual number of people flooded is highest
using the PSInSAR vertical land movement data under SSP5,
reflecting the highest population numbers, and a high SLR.
The influence of the change in data is highest under the
low SLR scenario and lowest under the high SLR scenario in
2100. Impacts intensify throughout the century under all socio-
economic scenarios. Using the PSInSAR vertical land movement
data, including human induced subsidence, impacts are up to
25% higher (e.g., flood cost) than those estimated using the DIVA
values, which only account for natural processes.

Sensitivity to Population Data
Model outputs were least sensitive to variations of population
data (see Table 4). The estimated number of exposed people
using GRUMP is smaller than those calculated with LandScan.
The total amount of population for Emilia-Romagna using the
LandScan dataset is 0.7% higher than using the GRUMP (total

population of Emilia-Romagna using GRUMP: 4016951 and
LandScan: 4046404). Due to the different reallocation methods
and administrative levels of input data (explained in Section
Coastline Segmentation Data) the number of estimated people
exposed to coastal flooding differs with respect to the two
datasets. In an area of around 15%, which represents the
potential 100-year flood plain of Emilia-Romagna using the
SRTM elevation model, ∼10% of the total population of Emilia-
Romagna is living in the flood plain and therefore is potentially
at risk to the 100 year surge. The expected number of people
annually flooded due to the switch in datasets differs by 26,476
people (8%) in 2100. The potential coastal flood cost differs by
576 million US dollar (0.8%; see Table 4).

DISCUSSION

Effects of Different Coastlines and
Segmentations to Coastal Flood Impact
Assessment
Within the framework of the COASTGAP project and for the
purpose of the current analysis, the DIVA assessment scale has
been downscaled to be applicable at a sub-national scale. The
distribution of features along the coast, the scale of the coastline
and the defined classes for each parameter as well as available
data used in order to segment the coast, determines the number
of segments that were produced. The main effect due to the
change in scale of the coastline was the increase in coastal
length which influences adaptation cost (construction of dikes)
considerably. The change in assessment units (segmentation),
namely the increase of segments and the decrease of segment
average length led to a high sensitivity of model outputs in this
study. The main difference results from the creation of buffer
zones which depend on the shape of the coast and segment
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TABLE 7 | Comparison of relative sea-level rise values using the old DIVA and the PSInSAR values.

RSLR [m] Peltier, 2000 PSInSAR

Low SLR Medium SLR High SLR Low SLR Medium SLR High SLR

2000 0.00 0.00 0.00 0.03 0.03 0.03

2050 0.16 0.21 0.34 0.48 0.52 0.66

2100 0.31 0.54 1.22 0.91 1.15 1.82

(see Section Coastline Segmentation Data and Supplementary
Figure 2) that was used in order to calculate the exposure
per segment. Using the global segmentation model and buffer
zones, parts of the flood extent are potentially added to the
neighboring administrative unit as the segments are quite large.
Hence, one main improvement of the refined segmentation is
the increased spatial accuracy of impacts on a sub-national scale
as the number of segments and zones increase (see Figure 7).
Thus, impacts are more concentrated and spatially accurate
than before. This improves the assessment by making future
predictions more realistic than before and suggests that the
refined segmentation is more appropriate to be used when more
detailed data (e.g., population) become available or underlying
normative assumptions, such as dike building computation,
are adopted for more detailed application. Thus, even if the
underlying data improve, model algorithms/assumptions may
also need to be adjusted to represent sub-national to local
processes more realistically.

The aim of the COASTGAP project was to develop adaptation
policies to reduce risk along the coast and to create new common
tools and opportunities for coastal zone development in the
Mediterranean. The developed approach can be used to support
this development as it would enable consistent and comparable
coastal flood impact assessments for local policy makers with
limited data availability. The approach can also be useful for
the implementation of the provisions of EC Directive 2007/60
in the assessment and management of flood risks which entered
into force in 2007 (2007/60/EC). In particular, the Directive
now requires Member States to assess if all water courses and
coastlines are at risk from flooding, to map the flood extent,
assets, humans at risk in these areas and to take adequate
and coordinated measures to reduce this flood risk. These
requirements can be realized by applying the DIVA modeling
framework for the respective calculations. On a more refined
scale it is more realistic to identify hot spots, for instance where
people are at risk of coastal flooding (see comparison Figure 7)
or calculate adaptation needs. This simplifies the identification
of priority regions that are highly vulnerable to SLR and need
further research effort. Future work could be a scoping study
in the Mediterranean using a downscaled version of the DIVA
model in order to serve the need for basic information to
politicians and decision-makers on the overall risk situation in
the coastal zone and pinpoint hot spots. Finding the appropriate
spatial scale which is most relevant for the objective of the
research question or decision makers is highly important as
vulnerability to SLR in the coastal zone is scale-dependent (Sterr,
2008; Fekete et al., 2010). It is important to keep in mind that a

more detailed method to calculate coastal flood impacts requires
more effort per unit of an area. The developed approach could
be a starting point to close the gap and assess impacts and risk at
an intermediate scale using a global coastal flood impact model.
Furthermore, the link between different spatial scales could be a
promising future research area as it would enable rapid coastal
flood impact assessments with limited data and enable consistent
and comparable coastal flood impact assessments worldwide (de
Moel et al., 2015).

Model Sensitivity to Input Data
Results of the study showed a high sensitivity to the change in
elevation input data, which is consistent with previous studies
(e.g., Poulter and Halpin, 2008; Lichter et al., 2011; Hinkel et al.,
2014). Nevertheless, it is difficult to compare those studies as
the estimates of area and population exposure in the coastal
zone vary depending on the scale (global to local), input datasets
(e.g., SRTM, Globe, Aster, LiDAR), methods (e.g., hydrological
connectivity rule) and objectives of the study. According to
Gesch (2009), the identification of areas exposed to a certain sea-
level rise scenario improves considerably when higher-resolution
and -accuracy data, such as LiDAR data, are used. He found
the inundation area to be two times higher when the vertical
accuracy of coarser elevation datasets, such as GTOPO30, is
considered in the calculation of area exposure. In contrast to that,
the LiDAR-based exposure calculation increases by only 14%
when the accuracy of the elevation model is considered. Previous
coastal impact studies have primarily used SRTM data due to
the fact that these cover nearly the entire world and are freely
available. The results of the present study showed a significant
difference between the LiDAR (high resolution data) and SRTM
digital elevation model. The SRTM data produced a much larger
potential coastal floodplain than the LiDAR DEM, contrary to
what was initially anticipated as the SRTMdigital elevationmodel
is a surface model and the elevation represents the height of the
first reflective surface. In contrast to that van De Sande et al.
(2012) reported a four times smaller coastal floodplain using
STRM data instead of LiDAR in a delta region in Nigeria (Lagos
State and Lagos City). Therefore, it is important to evaluate and
quantify data differences in order to improve our understanding
of global digital elevation datasets and how these influence flood
risk assessments.

If one compares the SRTM with land use data, such as the
CORINE land use cover (see Figure 9), it becomes obvious that
low elevation values occur over agricultural and low-vegetation
areas, while high-elevation values occur in forests and cities.
This effect can be accounted for in local studies by, for example,
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FIGURE 9 | Comparison of the SRTM90 digital elevation data and CORINE land cover data in Emilia-Romagna.

reducing the elevation values of SRTM by the average height of
vegetation derived on the basis of field measurements (Kaiser
et al., 2011) or other sources of spatially distributed vegetation
height data (Baugh et al., 2013). However, additional factors may
also influence the elevation values of the model. Although the
overestimation of elevation values, for instance in urban areas
or vegetated terrain, is well documented in the literature (e.g.,
Hofton et al., 2006; Rodríguez et al., 2006), some studies have
found SRTM to underestimate elevation values (Jarvis et al.,
2004). For example, in a study conducted in two vegetation-
free areas in Iowa and North Dakota (USA) Kellndorfer et al.
(2004) reported absolute errors of−4.0 and−1.1 m, respectively.
Notably, most studies express the vertical accuracy in absolute
values (e.g., Gorokhovich and Voustianiouk, 2006; Berry et al.,
2007) and do not specify an over- or under-estimation of SRTM
values. In this study, an overestimation of the potential coastal
floodplain is observed using the SRTM elevation data, suggesting
a negative bias in the data, which leads to much higher potential
impacts. Understanding the effects of the use of elevation models
of different resolution and accuracy would be of high value for
coastal flood impact assessments as the choice of the digital
elevation model can significantly influence the assessment of
coastal flood impacts, as shown in this study. Importantly, high-
resolution and -accuracy data cannot be employed for global or
regional studies due to computational constraints and lack of
such data.

Human-induced subsidence which leads to higher relative
sea-level rates is a major source of uncertainty in coastal flood
impact assessment as data is hardly available. The results indicate
that the flood risk estimates for the region considered here have
a moderate sensitivity to vertical land movement input data,
as these can significantly influence the relative sea-level rise.
In our study relative sea-level rise increased on average by 5

mm/year using data that include human-induced subsidence
(PSInSAR data). This is in line with the study conducted by
Syvitski et al. (2009), who estimated a relative sea-level rise of
4–60 mm/year, for the Po delta (the Po delta is the northern
boundary of the study area). Furthermore, Taramelli et al. (2015)
estimated coastal subsidence of 7–9 mm/year in the Ravenna
coastal area and Bevano River. This study was undertaken in
regions where there is intensive mining activity (freshwater or
hydrocarbon) and the subsidence rates can be higher than ameter
per century. This increase in relative sea-level rise leads to a
significant increase in exposure of people and areas to coastal
flooding due to the landward displacement of the flood extent,
and thus in the exacerbation of potential impacts. This study
indicates that the global results of Hinkel et al. (2014) using
global vertical land movement data underestimates impacts due
to the non-consideration of human induced subsidence even in
non-delta regions like Emilia-Romagna.

In order to calculate potential coastal flood impacts a further
uncertainty source is the distribution of people (and assets) along
the coastline. Flood risk estimates showed a relevant but small
sensitivity to changes in population input data. A similar trend
was observed at global scale by Hinkel et al. (2014). Nevertheless,
relative flood impact can differ substantially per segment,
administrative unit or country, even if the total numbers do not
differ significantly. The GRUMP model distributes people much
more uniformly than the Landscan model. Figure 10 shows
the comparison between the GRUMP and LandScan difference
grid in comparison with the urban areas of the MODIS land
cover data. Here, it can be seen that LandScan allocates higher
population values in urban areas and human settlements. This
explains why LandScan distributes more people to the coast
than GRUMP in this study as popular tourist resorts, such as
Ravenna and Rimini, are part of the floodplain. Thus, in order
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FIGURE 10 | Comparison of the GRUMP-LandScan difference grid to the urban areas of the MODIS land cover data.

to interpret the flood risk estimates correctly it is important to
keep the different representations/ assumptions of population
distributions in mind. However, both population models seem to
be useful in order to calculate coastal flood impact trends. For
a more robust evaluation of the global datasets high-resolution
data would be necessary.

Overall, the largest uncertainty when looking at the present
day situation is the elevation data, as shown in previous work
(Lichter et al., 2011; Hinkel et al., 2014). Different elevation
datasets can have substantial effects, increasing or decreasing
the floodplain area by factor 2–3. Our analysis confirms these
findings. In our case study the DEM is the most important
factor for assessing current exposure and risk. For assessing the
future impacts of coastal flooding, sea-level rise is the most
important factor, which is also in accordance with Hinkel et al.
(2014). Nevertheless, in our case study sea-level rise is strongly
influenced by human induced subsidence, which, as shown by
previous work (Nicholls, 1995), is usually a local phenomenon
often occurring in megacities. Thus, a further insight from our
study is that exposure and risk are increasing in the heavily
subsiding broader Emilia-Romagna region, although no major
city is located in this region.

CONCLUSION

This study presented an assessment of sea-level rise impacts
on the coastal region of Emilia-Romagna using different input
datasets and assessment scales. The first objective of the study
was to explore the potential benefits of the use of a more refined
coastline and segmentation. The high-resolution segmentation
improves the potential coastal flood impact representation as
future predictions are more concentrated and spatially explicit.
This study is a first approach to downscale the DIVA assessment
scale and data for sub-national applications and refines the
existing segmentation model and database; and a first step to

downscale global coastal flood impact assessments for specific
areas. Downscaling global coastal flood impact models could
be a promising future research area as it would enable rapid
coastal flood impact assessments for local policy makers with
limited data and resource availability. Furthermore, identifying
links between spatial scales can enable consistent and comparable
coastal flood impact assessments and would constitute a useful
tool for global actors (e.g., Re-insurers, European flood directive,
World Bank).

The second objective of the study was to explore the model
sensitivity to different input data on elevation, population, and
vertical land movement when assessing coastal flood impacts.
This study indicates that the lack of high-accuracy elevation and
vertical land movement data remains a significant constraint in
global coastal flood impact analysis. We must also note that
coastal flood impact assessment also includes other sources of
uncertainties that should be investigated in future work, such as
the spatial (Lewis et al., 2013) and temporal variability (Quinn
et al., 2014) of extreme water levels and their implications
in coastal flood impact assessment. Understanding the whole
range of uncertainties and communicating their implications is
essential for the development of long-term robust and flexible
adaptation plans for future changes of highly uncertain scale
and direction. Further work aims to assess the sensitivity
of different input datasets and scale of analysis in different
regions, in order to gain a more complete understanding of
the use of global datasets in flood-impact modeling and the
sensitivity of the DIVA flooding module to input data and
scale.
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