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Seagrasses of the genus Posidonia can form an irregular seascape due to erosional

processes exposing thick walls of organic matter-rich soils. However, little is known

about the location and characteristics of these particular formations. Here we provide

comprehensive estimates of organic carbon (Corg) storage in Posidonia oceanica and

Posidonia australismeadows, while providing insight into their location and mechanisms

of formation, and highlighting future research directions. Erosional reef escarpments are

restricted to shallow highly productive P. oceanicameadows from the Mediterranean Sea

and P. australis meadows from the Indian Ocean, and sustain the existence of Corg-rich

deposits in surrounding meadows. The thickness of the mat escarpments can reach up

to 3m and their length can vary from few to hundreds of meters. Mechanisms of formation

appear to differ among sites, from naturally-induced escarpments by wave action and/or

tidal flow to human-induced escarpments by dredging activities. The inter-twined remains

of seagrass shoots within the sediment matrix consolidate the sandy substrate and hold

the exposed Posidonia mat escarpments together, maintaining a semi-rigid structure.

This phenomenon is unusual but of exceptional importance in marine biogeochemical

cycles, revealing the largest Corg sinks among seagrasses worldwide (ranging from 15

to 176 kg Corg m−2 in 2m-thick mats accumulated at 2–249 g Corg m−2 yr−1 over

300–3000 yr).

Keywords: ecosystem services, biogeochemical cycles, blue carbon, Posidonia oceanica, Posidonia australis,

Mediterranean Sea, Indian Ocean

INTRODUCTION

Seagrasses form dense and extensive coastal meadows extending from intertidal areas down
to 40 m depth worldwide except in the Antarctica (Green and Short, 2003). The meadows
are ecologically important as they support coastal communities essential for maintaining high
biodiversity levels (Hemminga and Duarte, 2000). Seagrasses also provide other key ecosystem
services such as shoreline protection against erosion by substrate stabilization and hydrodynamic
energy dissipation (Green and Short, 2003; Boudouresque et al., 2014), and by providing a source
of carbonate sand for beach formation (Canals and Ballesteros, 1997; Tigny et al., 2007).
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Additionally, and noteworthy, seagrasses capacity to sequester
and store organic carbon (Corg) contributes to the mitigation of
anthropogenic CO2 emissions (Fourqurean et al., 2012; Duarte
et al., 2013). In this sense, the leaf sheaths, rhizomes and roots
detritus of the Mediterranean endemic Posidonia oceanica form
a highly organic structure known as mat (Pérès and Picard, 1964;
Boudouresque and Meinesz, 1982). The organic-rich deposits
beneath the P. oceanica canopy can reach up to 13 m-thick and
6000 years of age, and contain massive carbon storage ranging
from 40 to 770 kg Corg m

−2 (Mateo et al., 1997; Lo Iacono et al.,
2008; Serrano et al., 2014); little is known about the Corg storage
and thickness of Posidonia australis mats (Paling and McComb,
2000). The mats of P. oceanica have started to be studied from
palaeoecological viewpoints only recently (Lo Iacono et al., 2008;
López-Sáez et al., 2009; Serrano et al., 2012, 2013; López-Merino
et al., 2015), while the study of P. australis mats is at its onset
(Rozaimi et al., 2013; Marbà et al., 2015; Serrano et al., 2016).

Several factors are involved in the accumulation of organic-
rich material in the P. oceanica mat, resulting from the
millenarian balance between material accretion (detritus and
sediment), decomposition and erosion (Duarte and Cebrian,
1996; Mateo et al., 1997, 2006; Pergent et al., 1997; Gacia et al.,
2002; Boudouresque et al., 2006). On the one hand, the rhizomes
can reach lengths over 1 m, with both plagiotropic (horizontal)
and orthotropic (vertical) growth (Pergent and Pergent-Martini,
1990), forming an extensive plant detritus network embedded
within an inorganic sediment matrix (Pérès and Picard, 1964).
On the other hand, plant detritus show a reduced decay inside the
mat (Serrano et al., 2012) due to the refractory nature of the plant
tissue (Kuo, 1978; Kuo and Cambridge, 1978; Harrison, 1989;
Klap et al., 2000) and the anoxic environment inside the mat
(Mateo et al., 1997, 2006). Although other seagrasses accumulate
Corg (Lavery et al., 2013), no records for the storage of massive
Corg have been reported so far for any other seagrass species but
P. oceanica (Fourqurean et al., 2012). However, large quantities of
decay-resistant organic matter have been reported for P. australis
and Thalassodendron ciliatum (Mateo et al., 2006).

Seagrass meadows typically form a relatively homogeneous
but highly diverse habitat in the near-shore environment, with
the upper and lower depth limits determined, generally, by
hydrodynamic conditions and light limitation (Duarte, 1991;
Collier et al., 2008). Under some circumstances, the erosion
of seagrass meadows can expose the mats creating erosional
escarpments (Pérès and Picard, 1964; Mateo et al., 1997). The
existence of exposed mat walls in P. oceanica meadows in the
Mediterranean Sea and their erosive mechanism of formation
were first described by Pérès and Picard (1964). However, the
existence of escarpments of remarkable dimensions (up to 3min
height), and their process of formation and evolution remains
largely unknown (Boudouresque et al., 2014). In this study,
we want to start filling this gap by providing new information
on P. australis (Indian Ocean) and P. oceanica (Mediterranean
Sea) mat escarpments. Aiming to identify and compare the
reef structures they form, we have collected literature data and
complemented it with the study of new mats in order to unravel
potential mechanisms of formation and carbon storage capacity,
providing our viewpoints based on existing knowledge, field

observations and expert judgment, discussing current advances
and future research directions.

MATERIALS AND METHODS

P. australis mats were sampled at Oyster Harbor, Big Lagoon,
Waychinicup Inlet, and Port Pirie in Australia (Image 1 and
Data Sheet 1). The Big Lagoon (Shark Bay) is a sheltered marine
embayment consisting in a deep central channel surrounded
by shallow seagrass meadows, while the Oyster Harbor and
Waychinicup Inlet are estuaries, and the Port Pirie is a large
marine embayment. The coring of the mats was carried out at
a water depth of 2–3 m on continuous meadows, within 10m of
mat escarpments (vertical coring).

Up to 3m-longmat cores were collected bymanual percussion
and rotation using 65mm-diameter PVC pipes. Compression
of sediments during coring was corrected by distributing the
spatial discordances proportionally between the expected and the
observed sediment layers (Glew et al., 2001). The overall degree
of core shortening was <30%. All results reported refer to the
decompressed depths.

P. oceanicamats were sampled at Mellieha Bay and Salina Bay
in Malta (Mediterranean Sea; Image 1 and Data Sheet 1). The
sites consist of relatively sheltered sub-tidal basins. The mat cores
were taken horizontally from exposed vertical mat walls (2–3 m
water depth on top of the mat wall), using hand-operated PVC
corers (100 cm long; 80mm diameter). Three horizontal cores
were sampled down the mat escarpment at 16, 73, and 145 cm
depth at Salina Bay, and at 10, 40, 80, 120, 160, 200, and 230 cm
depth at Mellieha Bay.

Cores were sealed and stored at 5◦C before processing. The
P. australis cores (vertical coring) were sub-sampled at 1 cm
intervals. The outermost 10 cm of the horizontal P. oceanica
cores were discarded to eliminate possible contamination with
recent material; the remainder material from each level was
homogenized and sub-sampled for analysis.

Samples were weighed before and after oven drying to
constant weight at 70◦C, and ground in a ball mill grinder.
For organic carbon (Corg) analysis, 1 g of ground sample was
acidified with 4% HCl, centrifuged (5min at 3400 rpm), and the
supernatant removed by pipette. The sample was then washed
with Milli-Q water, centrifuged, and the supernatant removed
again. The residual samples were re-dried and encapsulated for
Corg analysis using a Micro Cube elemental analyzer (Elementar
Analysensysteme GmbH) at the UC Davis Facilities. The content
of Corg (in %) was calculated for the bulk (pre-acidified)
sediment.

Fourteen samples of Posidonia sheath macro-remains, and
eight samples of shells were radiocarbon dated following
standard procedures (Stuiver and Pollack, 1977, Data Sheet
2). The sheath fibers and shells were rinsed in Milli-Q water,
sonicated for 5min to remove inorganic particles, and inspected
for attached contaminants. The samples were dried at 60◦C
before radiocarbon dating. The dates were calibrated using
CALIB 7.1 software with the MARINE13.14C curve (Stuiver and
Reimer, 1993; Reimer et al., 2013) and corrected for the local
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DeltaR by subtracting 30–91 years at Australia (Bowman, 1985;
Squire et al., 2013) and 70 years at Malta (Siani et al., 2000). Dates
are expressed as calibrated years BP. The calibrated ages were
used to produce age–depth models (linear regression).

Because the thickness of sampled mat varied among sites, we
normalized the substrate thickness over which the Corg stocks
and accumulation rates were calculated to allow comparisons.
The Corg inventories per unit area (kg m−2) were estimated
by multiplying the sediment dry bulk density (g cm−3)
by the Corg concentration, and then normalized to g Corg

m−2 (i.e., cumulative mass in a soil thickness of 2m). The
long-term accumulation rates (g m−2 yr−1) of Corg were
calculated by multiplying the average Corg concentration by the
sediment accumulation rates. Previously reported Corg stocks and
accumulation rates in other P. oceanicamat sediment cores were
also standardized to 2m-thick deposits and compiled in Table 1.
ANOVA was applied to test for any significant effect of species
composition (P. oceanica and P. australis) on average Corg stocks
and accumulation rates.

Lifetime observations of mat escarpments in Posidonia
meadows made by the authors of this manuscript are described.
The maximum height of the reef escarpments surveyed was
measured in situ and the length was estimated from combining
in situ observations and aerial imagery.

RESULTS AND DISCUSSION

Exposed reef escarpments are found in both P. australis and
P. oceanica meadows (Figure 1). However, reef escarpments
are not always present in seagrass and are restricted to highly
productive Posidonia meadows that have likely been located in
shallow (i.e., <5 m depth) and relatively protected areas for the
last 1000–4000 years (Data Sheet 2), which supported seagrass
productivity and stability. The formation of these erosional
structures appears to be related to hydrodynamic energy over
present or centennial time scales (as either continuous or pulse
events; Pérès and Picard (1964) or dredging activities, which
can erode the edge of the meadow exposing the organic-rich
deposits. The exposed face of seagrass mat is held together by
the inter-twined remains of seagrass tissues, avoiding collapse
and maintaining a semi-rigid structure, which is susceptible to
erosion (i.e., in consolidated sediments) and can lead to the
formation of vertical escarpments ranging from 1 to 3m in
thickness, and from <100m in length in P. oceanica to >500m
in P. australis meadows. Reports on escarpment of this size
are not common and have only previously been described in
the Mediterranean Sea, in particular in France (Molinier and
Picard, 1952; Picard, 1953; Boudouresque et al., 1980, 1985, 1990;
Boudouresque and Meinesz, 1982; Belsher et al., 2005), Spain
(Mateo et al., 1997; Ribera et al., 1997; Serrano et al., 2014),
and Italy (Mateo et al., 1997). Based on our observations we
describe the existence of P. oceanica mat escarpments in several
additional locations around theMediterranean Sea. Additionally,
we have described for the first time escarpments in P. australis in
Australia: Big Lagoon,Waychinicup Inlet, Cheynes Bay, and Port
Broughton (Image 1 and Data Sheet 1). Although, the dataset

FIGURE 1 | Erosional escarpment in a P. oceanica meadow in Es Pujols

Cove (Formentera, Balearic Islands, Spain) illustrating the organic-rich

soils (A,B), Erosional escarpment in a P. australis meadow in Big

Lagoon (Shark Bay, Western Australia; C,D). The water depth at the top of

the formation is 3m, the exposed face of the mat has a thickness of 2.7m and

the age of the base of the exposure is 1200 cal. yr BP. The water depth at the

top of the formation is 2m, the exposed face has a thickness of 2.5 m and the

age at the base of the exposure is 4000 cal. yr BP. Note the vertical rhizomal

growth of P. oceanica (B) compared to the horizontal rhizomal growth of P.

australis (D). Photo credit: M. A. Mateo (A), E. Ballesteros (B), P. Lavery (C),

and O. Serrano (D).

compiled provides a comprehensive summary, further studies
are required to identify and describe erosional escarpments in
seagrass meadows.

The mechanisms of formation of erosional escarpments
appear to differ among sites. In P. australis meadows at Big
Lagoon (Shark Bay), tidal currents (tides up to 2m) have created
a deep channel allowing water exchange between the lagoon
and the ocean. The channel passes through the shallow bank of
seagrass, with water flow eroding and exposing the seagrass mats.
At Cheynes Bay and Waychinicup Inlet (Albany), current and
wave action could also lead to the erosion of P. australismeadows
and the formation of reef escarpments up to 3m-thick. However,
severe river discharges could also explain the formation of mat
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TABLE 1 | Compilation of organic carbon (Corg) stocks and accumulation rates in P. oceanica and P. australis meadows.

Species Location Water depth (m) Mat thickness

studied (cm)

Mat acc. rates

(mm yr−1)

Corg acc. rates

(g m−2 yr−1)

Corg inventory (kg m−2)

P. oceanica aCala Culip (Spain)1 4 160 0.6 9 30

*bCampello (Spain)1 3 200 2.0 115 115

*bTabarca Is. North (Spain)1 5 170 1.1 62 113

*bTabarca Is. South (Spain)1 1.5 100 1.9 105 110

aMedas Is. (Spain)1 14 200 0.8 13 33

*bPortlligat (Spain)1 3 135 4.1 76 37

*bVillajoyosa (Spain)2 7 190 1.9 40 42

*aPortlligat (Spain)3 3 496 1.1 18 33

*aPortlligat (Spain)4 3 475 1.3 22 33

*bTalamanca Cove (Spain)5 2 270 2.3 202 176

*bEs Pujols Cove (Spain)5 2 270 1.7 103 121

*b Ischia (Italy)1 10 320 1.7 30 35

*bMellieha Bay (Malta)6 10 230 4.9 249 102

*bSalina Bay (Malta)6 2 154 4.0 133 67

Average ± SE 5 247 ± 36 2.1 ± 0.4 84 ± 20 75 ± 13

P. australis aOyster Harbor (Australia)6 2 150 0.49 4 15

*aWaychinicup Inlet (Australia)6 2 210 0.43 5 24

aPort Pirie (Australia)6 3 110 0.13 2 27

*aPort Broughton 2 200 2.5 40 32

*aBig Lagoon (Australia)6 2 280 0.51 7 29

Average ± SE 2.2 190 ± 29 0.8 ± 0.4 12 ± 7 25 ± 3

The Corg inventories and Corg accumulation rates are normalized to 2 m-thick mat deposits.

* Study sites with exposed reef-barrier formations.
aVertical coring in the top of the meadow.
bHorizontal coring in the mat escarpment.
1Mateo et al., 1997; 2Mateo et al., 2005; 3Lo Iacono et al., 2008; 4Serrano et al., 2012; 5Serrano et al., 2014; 6This study.

escarpments at Waychinicup Inlet. In P. oceanica meadows of
the Mediterranean Sea, where tides are <0.5 m, escarpment
formation is most likely related to waves and associated currents,
in particular during extreme storm events. Human activities
(e.g., dredging) that erode the base of the meadow, can also
led to the formation of mat escarpments. At Port Broughton
(Adelaide), and Sanitja Cove (Balearic Islands) dredging to clear
shipping channel and boating activities led to the formation of
mat escarpments.

Although, the mechanisms of formation of the Posidonia
escarpments could differ among places, their dynamics could
share some similarities (i.e., collapses due to erosion of its
base by hydrodynamic action) with the formation of cliffs in
rocky shores (Stephenson, 2000) or wrack banquettes along
the beaches (Mateo et al., 2003). It seems probable that
the hydrodynamic energy gradually erodes the base of the
escarpment until the top edge of the mat collapses and,
consequently, the meadow retreats (Pérès and Picard, 1964;
Boudouresque et al., 1980). The curve shapes present along
the base of the escarpments and the occasional presence of
loose fragments of mat with living seagrass at the base of the
escarpments supports this hypothesis. Further research aiming to
unravel the mechanisms of formation, dynamics and processes
within mat escarpments is required to test the hypotheses
described above.

According to the age-depth models, accumulation rates in
Posidoniameadows (i.e., mats close to the upper limit of seagrass
distribution) ranged from 0.13 to 4.9mm yr−1 (Table 1). The P.
australismeadows sampled in this study contained in average 25
± 3 kg Corg m

−2 (in 2m-thick deposits) accumulated at a rate of
12 ± 7 g Corg m

−2 yr−1 over 1000–3500 years, the largest stocks
recorded in seagrasses other than P. oceanicameadows (averaged
75 ± 13 kg Corg m−2 and 84 ± 20 g Corg m−2 yr−1; Table 1).
The comparison of Corg storage capacity and accumulation rates
by P. australis and P. oceanica meadows provide new insights
into the significant differences in Corg storage potential among
Posidonia seagrasses (P < 0.001 for both Corg storage and
accumulation rates). The Corg storage in P. oceanica and P.
australis meadows is exceptional compared to other seagrass
species (ranging from 0.6 to 12 kg Corg m

−2 in 1m-thick deposits;
Lavery et al., 2013; Campbell et al., 2015; Miyajima et al., 2015),
and the presence of an exposed mat escarpment provides an
early indication of rich Corg deposits beneath the surrounding
meadows. Although, in this study we only surveyed directly mat
escarpments (i.e., by horizontal coring) in Malta and Balearic
Islands, we assumed that the Corg contents measured in the mats
near the escarpments (i.e., by vertical coring) are representative of
the Corg content in meadows close to the upper limit of seagrass
distribution where escarpments can be found. The erosive nature
of escarpments implies that their edges have retracted over
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time, and the exposure of the escarpments to oxic conditions
and irradiance may lead to a shift in the Corg composition
and accumulation in these areas due to the growth of e.g.
algae and microbes compared to intact Corg stores underneath
the meadows, but scientific evidence is lacking to support this
hypothesis.

The three-fold higher Corg stores in P. oceanica compared to P.
australis could be attributed to the higher sediment accumulation
rates in P. oceanica meadows (2.1 ± 0.4mm yr−1), enhanced
by their vertical rhizomal growth (i.e., orthotropic) compared to
the horizontal rhizomal growth (i.e., plagiotropic) in P. australis
meadows (0.8 ± 0.4mm yr−1; Table 1; Gobert et al., 2006). In
Figure 1, we highlight the differences in the rhizomal growth
between the two Posidonia species. The higher mat accumulation
rate of P. oceanica meadows could also contribute to a greater
preservation of Corg stores after burial, as a result of more rapid
burial of Corg into anoxic conditions (i.e., typically occurring at
about 5 cm depth in the mat; Mateo et al., 2006). In addition,
the higher belowground biomass of P. oceanica (1610 g m−2;
Duarte and Chiscano, 1999) compared to P. australis (658 g
m−2; Paling and McComb, 2000) may contribute to the higher
Corg stores in the Mediterranean species. The geomorphological
setting (e.g., run-off, hydrodynamic energy and water depth)
in which seagrass meadows are found can influence the Corg

storage capacity of seagrasses (Serrano et al., 2015). Although,
the number of cores and species studied in coastal and estuarine
ecosystems was unbalanced (i.e., P. oceanica dominate in coastal
habitats and P. australis dominate in estuarine habitats) and
therefore we were not able to test the effects of coastal
geomorphology on Corg storage, further studies are required to
address its implications. According to the curve of the Holocene
sea level change inferred along the Mediterranean (Lambeck and
Bard, 2000) and Australian (Lambeck and Nakada, 1990) coasts,
the sea level was constant since 6000–4000 years ago. Thus,
assuming that seagrasses have been present at the same locations
since the Mid-Holocene, the maximum potential thickness of
seagrass mats is estimated to be 8 to 13m for P. oceanica and
3 to 5m for P. australis, based on the mat accumulation rates
compiled in our study. At these mat depths, the potential carbon
stocks would be 315–473 kg Corg m

−2 in P. oceanica and 40–60 kg
Corg m−2 in P. australis. Previous studies reported 691–770 kg
Corg m−2 in 8–13m thick deposits in P. oceanica based on the
exceptional meadows at Balearic Island (Serrano et al., 2014),
and from Rozaimi et al. (2016) it is possible to estimate 22–36 kg
Corg m−2 in 3–5m thick deposits in P. australis. However, the

ranges reported in our study encompass several meadows around
the Mediterranean Sea and Australia and therefore constitute
more comprehensive estimates of the Corg storage potential of P.
oceanica and P. australis.

In summary, we conclude that exposed mat escarpments
up to 3 m in height in seagrass Posidonia are unusual but
of exceptional importance in marine biogeochemical cycles,
preluding the largest carbon sinks among seagrasses worldwide.
Further surveys are required to identify additional seagrass
escarpments along the coasts, and to gain new insights into their
ecology and mechanisms of formation.
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