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Climate change is driving changes in the physical and chemical properties of the ocean

that have consequences for marine ecosystems. Here, we review evidence for the

responses of marine life to recent climate change across ocean regions, from tropical

seas to polar oceans. We consider observed changes in calcification rates, demography,

abundance, distribution, and phenology of marine species. We draw on a database of

observed climate change impacts on marine species, supplemented with evidence in

the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. We

discuss factors that limit or facilitate species’ responses, such as fishing pressure, the

availability of prey, habitat, light and other resources, and dispersal by ocean currents.

We find that general trends in species’ responses are consistent with expectations from

climate change, including shifts in distribution to higher latitudes and to deeper locations,

advances in spring phenology, declines in calcification, and increases in the abundance

of warm-water species. The volume and type of evidence associated with species

responses to climate change is variable across ocean regions and taxonomic groups,

with predominance of evidence derived from the heavily-studied north Atlantic Ocean.

Most investigations of the impact of climate change being associated with the impacts

of changing temperature, with few observations of effects of changing oxygen, wave

climate, precipitation (coastal waters), or ocean acidification. Observations of species

responses that have been linked to anthropogenic climate change are widespread, but

are still lacking for some taxonomic groups (e.g., phytoplankton, benthic invertebrates,

marine mammals).
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INTRODUCTION

Anthropogenic greenhouse gas emissions have resulted in
profound changes in the physical and chemical properties of
the ocean that have serious implications for marine species,
with concomitant risks to marine industries dependent on
those species (Hartmann et al., 2013; Rhein et al., 2013;
Hoegh-Guldberg et al., 2014; Pörtner et al., 2014). The global
ocean has absorbed 93% of the extra energy arising from
anthropogenic greenhouse gas emissions, resulting in an increase
in average global sea surface temperatures since the beginning
of the twentieth century, that approaches 1◦C (0.89◦C over
the period 1901–2012; IPCC, 2013). The ocean has also taken
up ∼30% of anthropogenic carbon dioxide (CO2) that has
been released into the atmosphere, decreasing ocean pH,
and fundamentally changing ocean carbonate chemistry in all
ocean regions, particularly in the cooler, high latitude waters
(IPCC, 2013). Other chemical and physical changes in the
ocean attributed to anthropogenic forcing include declines in
dissolved oxygen concentrations (Andrews et al., 2013) and
alteration of ocean circulation (Cai et al., 2005; Wu et al.,
2012). These anthropogenic changes represent risks to marine
life and ecosystems (Poloczanska et al., 2013; Gattuso et al., 2015;
Nagelkerken and Connell, 2015).

General expectations for biological and ecological responses
to warming oceans include poleward distribution shifts, earlier
spring events and delayed autumn events at mid to high
latitudes, and reductions in body sizes of marine ectotherms
(O’Connor et al., 2014; Pörtner et al., 2014). Ocean acidification
is expected to reduce calcification in marine calcifiers such as
corals and coccolithophores as well as influence a range of other
processes such as growth and reproduction (Kroeker et al., 2013).
Meta-analyses, applied across diverse species and ecosystems,
have provided strong evidence of global fingerprints of recent
climate change on natural systems including those in the ocean
(Parmesan and Yohe, 2003; Rosenzweig et al., 2008; Poloczanska
et al., 2013). Marine organisms have, on average, expanded
the leading edges of their distributions by 72.0 ± 13.5 km per
decade (generally polewards), while marine phenology in spring
has advanced by 4.4 ± 1.1 days decade (Poloczanska et al.,
2013). Yet responses are variable among taxonomic groups and
among ocean regions, suggesting biological interactions, as well
as marine ecosystem functions and the goods and services marine
systems provide, may be substantially reorganized at regional
scales.

Many factors can influence responses to changes in the
environment, including species’ generation time, dispersal ability,
physiological tolerances, habitat and food preferences, and the
composition of existing or receiving communities in the case
of range shifts (O’Connor et al., 2009; Gerber et al., 2014;
Alexander et al., 2015; Nagelkerken et al., 2015). Marine species
often have complex life-cycles, as many have a dispersive
planktonic stage, with distinct life stages potentially occupying
different habitats, each with different exposures and sensitivities
to changing climate (Rijnsdorp et al., 2009). The detection and
attribution of biological responses to climate change is thus
challenging given the idiosyncratic responses of species and

populations at local and regional levels, the potential for changes
in species interactions, and uncertainty in climatic trends at
regional or local scales (Brown et al., 2011; Parmesan et al., 2011;
Hansen et al., 2015). Organisms are subjected to the multiple
interacting aspects of a changing climate, the effects of which
may be synergistic or even antagonistic depending on species
sensitivities and ecological processes (Fulton, 2011; Seabra et al.,
2015). The picture is further complicated by the interaction of
climate change with many other human pressures at regional
and local scales that affect our oceans, such as fishing pressure,
eutrophication, and habitat modification (Halpern et al., 2008).
Furthermore, modes of climatic variability, e.g., Pacific Decadal
Oscillation (PDO), Atlantic Multi-decadal Oscillation (AMO)
and El Niño-Southern Oscillation (ENSO), which are major
drivers of regional ecology, influence statistical uncertainty in
climate change signals at regional scales (Bindoff et al., 2013). The
interplay of these modes of variability can have strong influence
on marine ecosystems. For example, the Gulf of Alaska and
Bering Sea fluctuated from one of the warmest years in the
past century (2005) to one of the coldest (2008) in the space
of 3 years driven by the modes of ENSO and PDO and other
factors, with associated changes in plankton, fish and seabird
communities (McKinnell and Dagg, 2010; Batten and Walne,
2011). Considerable evidence exists for thresholds in individual
species and ecosystem responses to regimes of climate and
extremes of weather associated with altered ecosystem structure
and function (Smith, 2011). For example, a marine “heatwave”
event off Western Australia during the austral summer of 2011
which was due to a combination of a record-strength Leeuwin
Current, a near-record La Niña event and anomalously high air-
sea flux into the ocean, resulted in a reduction in habitat-forming
macroalgae and a tropicalization of fish communities (Pearce and
Feng, 2013; Wernberg et al., 2013).

Here, we consider the observed responses of marine
ecosystems and species to climate change across oceans, from
the boreal regions with their highly seasonal peaks in primary
production to oligotrophic tropical seas. The ocean represents a
vast region that stretches from the high tide mark to the deepest
oceanic trench (11,030 m), and occupies 71% of the Earth’s
surface. In our discussion of ecological responses and knowledge
gaps, we restrict our focus to pelagic and mesopelagic waters,
and for continental shelf systems we also include the benthos
and intertidal. Evidence of climate-change impacts is sparse in
the deep sea due to logistical challenges of working in this
environment which, when coupled with the size of the habitat,
requires fuller consideration than we could have committed in
this review.

We draw on a marine climate-change impacts database
(hereafter “MCID”), comprising 1900 observations of marine
ecological impacts of climate change from 235 peer-reviewed
publications and including examples where responses were
equivocal (not consistent with theoretical expectations under
climate change) or zero (Poloczanska et al., 2013). We also
refer to the information, synthesis and conclusions of the
“ocean chapters” of Fifth Assessment Report (AR5) of the
Intergovernmental Panel on Climate Change (IPCC), namely
Chapter 3 (Observations: Ocean) of Working Group I (Rhein
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et al., 2013) and Chapters 6 (Ocean Systems) and 30 (The Ocean)
of Working Group II (Hoegh-Guldberg et al., 2014; Pörtner
et al., 2014). These are available from a single site (https://ipcc-
wg2.gov/publications/ocean/). Below, we discuss observations
of ecological responses in the ocean (changes in abundance,
distribution, phenology, demography, and calcification). We
discuss factors that limit or facilitate ecological responses, such as
the availability of prey, habitat and other resources, or dispersal
by ocean currents. We consider the consequences of large-scale
change in ocean ecosystems and conclude by identifying key
knowledge gaps.

MARINE CLIMATE CHANGE IMPACTS
DATABASE (MCID)

We use the Marine Climate Change Impacts Database (MCID)
analyzed in Poloczanska et al. (2013) which comprised of
1735 observations of marine ecological impacts of climate
change from 208 peer-reviewed publications. To develop MCID,
Poloczanska et al. synthesized all available studies (published
during 1990–2010) of the consistency of marine ecological
observations of change that were tested, or at a minimum
discussed, in relation to expected impacts of recent climate
change. We updated MCID with a further 27 publications
published during 2011–2015, giving a total of 1900 observations
from 235 publications (Figure 1; Supplementary Tables S1–
S3). We extracted information on the taxonomic group, study
period, location, class of response, and statistical significance of
the observed change (Poloczanska et al., 2013). We included
instances of marine taxa responding in a direction consistent
with theoretical expectations under climate change, in a
manner inconsistent (equivocal) with expectations, and taxa
demonstrating no response as long as the observation was
considered in relation to climate change. Data were available
for every ocean, however most reports were from Northern
Hemisphere temperate oceans.

To be included in our database, a study had to meet three
criteria: (i) authors inferred or directly tested for trends in
biological and climatic variables; (ii) data after 1990 were
included thus recent climate change effects considered; and (iii)
observations spanned at least 19 years in order to minimize the
chance of bias resulting from short-term biological responses to
natural climate variability. We included data from continuous
data series [number of years with datapoints n(yr) > 80% of
timespan of study in years], comparisons of two periods in time
[n(yr) < 20% of timespan and clustered at the start and end of
timespan] and intermittent data series [20% < n(yr) < 80% of
timespan], if they met our criteria. We did not restrict our search
to only studies that applied a statistical test of a relationship
between observed climate change and observed biological
response. Most studies supplied multiple lines of evidence
from theory, process-understanding, historical overview and
experimental and field results, to contextualize findings of a
response to climate change. From each paper, we classified
responses into classes: calcification, demography, abundance,
distribution, and phenology. If species were encountered more

than once within each response class for each ocean region, we
retained only the observation from the longest time series ormost
robust analysis (regionalization is shown in Figure 1 and details
given in Hoegh-Guldberg et al., 2014).

Rates of change for distribution and phenology, in kilometers
per decade or days per decade, were obtained from individual
studies in the database where possible, either directly as
reported in the text, calculated from figures, or by contacting a
study’s authors. For distribution shifts, positive values (km per
decade) indicate an expansion of distributions and negative, a
contraction. For phenology, positive values indicate a delay (days
per decade) and negative an advancement. Null responses (0 km
or days per decade) were also recorded.

LONG-TERM OBSERVATIONS

Long-term observations of ecological responses to climate change
are rare and biased toward high-latitude spring-bloom systems
of the Northern Hemisphere (Edwards et al., 2010; Richardson
et al., 2012; Poloczanska et al., 2013). Even here, long-term
data sets are biased toward European and North American
shelf waters (Figure 1). These shelf seas, which include the
North Sea, Mediterranean Sea, and Labrador-Newfoundland
Shelf, are among the longest- and most intensively-studied
marine regions and are also among the fastest-warming of
ocean regions (Belkin, 2009) (Table 30-1 in Hoegh-Guldberg
et al., 2014). Responses to climate change are widely reported
from these regions, particularly the north-east Atlantic high-
latitude spring-bloom system (41% of MCID), where many
long-term survey and monitoring programs are in operation.
Several of these are multi-species programs, including fisheries
catch records, fisheries-related surveys (e.g., van Hal et al.,
2010), regional scientific surveys (e.g., Genner et al., 2004) and
Continuous Plankton Recorder surveys (e.g., Beaugrand, 2009)
The Continuous Plankton Recorder survey (CPR), in operation
since 1931, monitors near-surface plankton communities and
has provided valuable insight into climate responses of lower
trophic levels across the open ocean (Edwards and Richardson,
2004; Richardson and Schoeman, 2004; Beaugrand et al., 2009;
Edwards et al., 2010). Other programs in the north-east Atlantic
that have sampled intensively over many years at local sites, such
as the Helgoland Roads program (since 1962; Wiltshire et al.,
2010), or research programs of the Marine Biological Association
(earliest records from 1888; Southward et al., 2005), provide
evidence of change across multiple taxonomic groups, higher
trophic levels and adult life stages. Examples from other ocean
regions, include the California Cooperative Oceanic Fisheries
Investigations programme (CalCOFI) which samples plankton
in the California Current upwelling system. Programmes such as
Continuous Plankton Recorder and CalCOFI were initiated from
a desire to understand the population dynamics of commercial
fish stocks (Southward et al., 2005).

Equatorial and southern hemisphere regions are sparsely
observed with respect to long-term biological variables. The few
exceptions include a long history of marine records from coastal
waters of south-eastern Australia in the south-west Pacific high-
latitude spring-bloom system (Pitt et al., 2010; Johnson et al.,
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FIGURE 1 | Global distribution of marine ecological impacts across ocean regions. Distribution of climate change responses (including equivocal and no

responses) in the abundance, distribution, phenology, demography, and calcification of marine species from the marine climate-change impacts meta-database of

Poloczanska et al. (2013) updated with recent literature. The proportion of consistent (dark blue), equivocal (light blue), and no change (pale yellow) observations

shown for each region. Numbers are total numbers of observed responses in each region—no number means no regional observations. Taxonomic groups with 10 or

more observations in each region are indicated with symbols. Descriptions of taxonomic groups and criteria for selection of observations are given in Poloczanska

et al. (2013). Regional temperature increase (all months) over 1950–2009 is shown in three categories: low (yellow 0.1–0.3◦C), medium (orange 0.3–0.6◦C), and high

(red 0.6–1.0◦C). The ocean separated into regions based on ecosystem structure and productivity, as well as key oceanographic features. HLSBS, high latitude spring

bloom system; EBUS, eastern boundary upwelling system; SES, semi-enclosed sea; CBS, coastal boundary system. A full description of ocean regionalization and

the calculation of regional warming increases are given in Hoegh-Guldberg et al. (2014) (Figure 30-1 and Table 30-1) and (Hoegh-Guldberg et al., 2014).
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2011; Last et al., 2011) and from the Benguela eastern boundary
upwelling system (Yemane et al., 2014). Many southern seabirds
are well studied at their breeding colonies, such as penguin
breeding colonies in Australia (south-west Pacific high-latitude
spring-bloom system, e.g., Chambers et al., 2013) and Antarctica
(Southern Ocean, e.g., Forcada and Trathan, 2009).

Although reef-building corals are conspicuous for their
sensitivity to recent thermal stress, in terms of mass coral-
bleaching, few observations for reef-building corals were
included inMCID (3%). This likely reflects a scarcity of published
long time series from these systems, despite a good mechanistic
understanding of mass coral reef bleaching and mortality in
response to thermal stress (Hoegh-Guldberg, 1999). However,
retrospective studies, represented by analysis of cores taken from
living corals (Lough, 2010), as well as baselines constructed from
sediment cores for calcifying plankton (Moy et al., 2009), are
supplying valuable information on both past local climates and
biological responses of these organisms.

ECOLOGICAL RESPONSES ACROSS
OCEAN REGIONS

Ecological responses to climate change are varied and many
(Parmesan and Yohe, 2003; Parmesan, 2006; Pörtner et al., 2014).
Observations related to abundance and distribution (including
depth shifts) of marine species were widely reported in MCID
(41 and 40%), while less evidence exists for changes in phenology
(14%), demography (3%), and calcification (2%), largely due
to the historical emphasis on certain measurements in marine
research. Suites of these responses occur in concert, for example,
coincident shifts in phenology and demography (Beaugrand,
2009). Observed responses of species to climate change across
ocean regions show considerable variability both within and
between taxonomic groups (Figures 2, 3; Poloczanska et al.,
2013). Species responses are complex and likely tempered
by ecological characteristics, trophic interactions and resource
availability, as well as other anthropogenic stressors, such as
pollution and fishing. Fishing is a pervasive stressor in marine
ecosystems (Worm et al., 2009; Branch et al., 2010) and its effects
appear to increase sensitivities of ecological responses to climate
change (Hsieh et al., 2008; Rijnsdorp et al., 2009; Hermant et al.,
2010; Bates et al., 2014a).

Light is an abiotic factor that strongly influences the response
of some marine species to climate change, particularly at
higher latitudes. Seasonal fluctuations in the intensity, duration,
and spectral composition of light change with latitude, and
act as important phenological cues for a range of marine
species, sometimes in combination with temperature. Light
regime thresholds likely trigger events such as reproduction and
migration (Davenport et al., 2005), in addition to temperature
thresholds. Thus, temperature-driven shifts in distribution and
phenology of species can be constrained by the influence of
the seasonality of light on photoperiod, particularly at high
latitudes (Figure 4; Saikkonen et al., 2012; Sundby et al., 2016).
For example, in polar oceans, extreme light seasonality results in a
short annual window of primary productivity and therefore food

availability, thus restricting the potential for temperature-driven
invasion of the high Arctic waters by species from lower latitudes
(Kaartvedt, 2008).

Sensitivity of marine ectotherms (the majority of marine life)
to temperature is well established. Thermal tolerance windows
of marine fish and invertebrates roughly match the ambient
temperature variability driven by climate regime and seasonality
(Pörtner et al., 2014). The widest windows are found in species at
temperate latitudes, where seasonality in temperature is strong.
Polar species have the narrowest thermal windows and low
energy-demand lifestyles, making them particularly sensitive
to relatively small changes in temperature. Tropical species
also have relatively narrow thermal windows and some species
inhabit the warmest waters globally thus are near physiological
temperature tolerance limits (Storch et al., 2014). The thermal
range tolerated by a species can vary among life stages, with
early stages (e.g., egg and larvae) generally being more sensitive
(Pörtner and Peck, 2010). Similar sensitivities of early life stages
are observed in response to changes in other environmental
variables such as pH (Kroeker et al., 2013). Most observational
studies consider just a single aspect and metric of climate change,
generally annual mean sea surface temperature change (Brown
et al., 2011; Poloczanska et al., 2013; Seabra et al., 2015), while
the combined and indirect effects of environmental stressors on
species and ecosystems are understudied and less well understood
(Crain et al., 2008; Wernberg et al., 2012; Nagelkerken et al.,
2015). Evidence suggests that sensitivities of fish and other
ectotherms to temperature are generally increased when exposed
to additional climate-change stressors such as reduced oxygen
or ocean acidification and vice versa (Pörtner and Peck, 2010;
Deutsch et al., 2015).

The ability of a species to colonize new areas as physical
and chemical environments change will be regulated by rates of
reproduction and dispersal, allied with the intrinsic capacity for a
species to colonize and establish in new habitats and ecological
communities. Factors such as high dispersal ability and large
geographic ranges are hypothesized to influence the ability of
a species to extend its range (O’Connor et al., 2012). Although
some generalizations with regard to life-history and ecological
traits are evident (Bates et al., 2014b), studies applying trait-
based approaches to predict range expansions generally show
low explanatory power (Angert et al., 2011; Pinsky et al., 2013).
However, a study from south-east Australia identified species’
traits common among range-shifting species, in particular
swimming ability (thus dispersal potential), omnivory and initial
range size (thus ecological generalization) (Sunday et al., 2015).

While the multiple factors that influence a species’ ability
to track climate change make simple prediction difficult, the
use of multiple lines of evidence can inform understanding
of species responses and increase confidence in the role of
climate change (O’Connor et al., 2014; Hansen et al., 2015).
Such lines of evidence include simple predictions holding true
(e.g., abundance of warm-water species should increase and cold-
water species should decrease), field and experimental studies
showing species and populations are sensitive to past warm
and cool periods (Southward et al., 1995; Hawkins et al., 2009)
and theoretical tests of population models showing predicted
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FIGURE 2 | Observed shifts in species distributions (km per decade) by (A) ocean regions and (B) taxonomic groups. Data from Poloczanska et al. (2013)

updated with recent literature (2011–2015). Colored bars are consistent with expectations under climate change, black bars are equivocal, and zero values are no

change. A description of ocean regions are given Fig 30-1 in Hoegh-Guldberg et al. (2014). Total number of observations = 659.

outcomes in nature (Poloczanska et al., 2008; Wethey and
Woodin, 2008). In some cases, these lines of evidence provide
understanding of the underlying mechanism(s) driving change,
such as seasonal temperature thresholds for reproduction and
recruitment success (Ling, 2008; Wethey et al., 2011). Below we
discuss the evidence for changes in calcification, demography,
abundance, distribution, and phenology.

Calcification
Ocean acidification will challenge marine calcifiers to grow
and maintain their tests, shells and skeletons made from

calcium carbonate. Experimental studies generally show
negative responses of heterotrophs and calcified autotrophs
to acidification, although results are highly variable and, of
concern, show a trend overall toward enhanced sensitivity
when thermal stress increases (Harvey et al., 2013; Kroeker
et al., 2013; Nagelkerken and Connell, 2015). Observations of
changing calcification are sparse in MCID (2%), with studies
from tropical corals in the Indian (including Red Sea), Pacific and
Atlantic (Caribbean) Oceans dominating (36 of 40 observations);
the remaining 4 observations were of phytoplankton in the
north-east Atlantic (Halloran et al., 2008; Iglesias-Rodriguez
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FIGURE 3 | Observed shifts phenology (days per decade) by (A) ocean regions and (B) taxonomic groups. Data from Poloczanska et al. (2013) and updated

with recent literature (2011–2015). Colored bars are consistent with expectations under climate change, black bars are equivocal, and zero values are no change. A

description of ocean regions are given Figure 30-1 in Hoegh-Guldberg et al. (2014). Total number of observations = 257.

et al., 2008) and zooplankton in the west Indian Ocean coastal
boundary system (de Moel et al., 2009).

The skeletons of corals, contain valuable information on
past environmental conditions and the calcification rates of
species (Lough, 2010). Generally, cores from massive corals
(e.g., Porites spp.) and sections from branching corals have
revealed declines in calcification and/or growth rates (26 of
36 observations) consistent with expectations from warming
and/or ocean acidification. The extension rates, calcification

rates and skeletal density of corals are inter-related and need
to be considered in combination to assess coral responses to
changed environmental conditions (Lough and Cooper, 2011).
Evidence of ocean acidification effects are currently scarce with
temperature effects presently dominating. For example, in some
cases, observed declines in coral calcification and/or growth rates
have been ascribed solely to increasing temperature as thermal
conditions exceed optimal conditions for growth, rather than the
combined effects of warming and acidification. Examples come
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FIGURE 4 | Interaction among regional warming, latitudinal shifts, and seasonality in light for three hypothetical marine species. Dark blue line = current

(1980–2005) zonal (5◦ latitude bands) mean annual sea surface temperature (SST) from Hadley Centre Sea Ice and Sea Surface Temperature data set (HadISST).

Light blue line = future (2075–2100) zonal mean annual SST using ensemble data given in García Molinos et al. (2015). Temperature data for the Northern

Hemisphere. Orange line = seasonal change in daylength, from the equator (no change) to polar seas (24 h daylight in summer to 0 h in winter) modified from

Saikkonen et al. (2012). The shaded areas and arrows indicate shifts in latitude and daylength experienced as a species tracks its thermal niche. Species A lives in the

tropics (29◦C), to track its thermal niche requires a relatively large latitudinal shift (>10◦) but experiences an intermediate change in light seasonality (∼1 h). Species C

is a sub-polar species (4◦C), it requires an intermediate shift in latitude (∼3◦) to track its thermal niche but experiences a large change in light seasonality over this

distance (>7 h). Species B lives in temperate regions (13◦C) and experiences an intermediate change in light seasonality (<1 h) over an intermediate change in latitude

(∼3◦) as it shifts distribution to track temperature.

from the Andaman Sea (in the Indian east coastal boundary
system), the Red Sea and waters of Western Australia in the
Indian Ocean (Cooper et al., 2008, 2012; Tanzil et al., 2009;
Cantin et al., 2010). Similar mechanismsmay explain the increase
in growth and/or calcifications rates observed in a few Porites
colonies off western and eastern Australia. These are consistent
with expectations from warming as regional temperatures rise
toward optimal temperatures for coral growth (Cooper et al.,
2012; D’Olivo et al., 2013).

Cores taken from tropical corals from the Great Barrier Reef
off eastern Australia show decreased growth rates since the
early 1970s, initially ascribed to the combined effects of ocean
acidification and thermal stress (De’ath et al., 2009). However,
subsequent investigation suggests that temperature and land-
based effects (nutrient and sediment loading of coastal waters)
presently dominate over the signal from ocean acidification
(D’Olivo et al., 2013). Mid- and outer-shelf reefs, removed from
the major effects of river systems, exhibit a long-term (60 year)
increase in calcification potentially related to the warming of
minimum temperatures, which benefits calcification (D’Olivo
et al., 2013). Of concern, these reefs appear to be undergoing a
transition to declining rates of calcification, raising concerns that
thermal stress is starting to emerge and/or the impacts of ocean
acidification are starting to manifest.

Despite experimental evidence indicating sensitivity of many
taxonomic groups to ocean acidification (Harvey et al., 2013;

Kroeker et al., 2013; Nagelkerken and Connell, 2015), little
observational evidence of observed responses to recent ocean
acidification exists outside of reef-building corals. Changes in
the plankton species are currently dominated by sensitivity to
temperature change as well as the effects of nutrient availability
and predation (Beaugrand et al., 2012; Beare et al., 2013). No
relationship has been found between extensive data (60 years)
of marine planktonic calcifiers in the north-east Atlantic and
pH trends. However, longer-term perspectives are drawn from
retrospective analysis of calcifying plankton and do indicate some
impacts of recent ocean acidification. Studies of sediment cores
reveal a decrease in shell mass of the planktonic foraminifera,
Globigerinoides ruber, in the western Arabian Sea over ∼250
years, as would be anticipated with recent ocean acidification (de
Moel et al., 2009). A decline in shell mass, compared to specimens
that are some 50,000 years old, was also found in Globigerina
bulloides using sediment cores in the Southern Ocean (south of
Australia) and ascribed to recent ocean acidification (Moy et al.,
2009).

The lack of empirical evidence for changes in calcification
is not surprising, given the very recent emergence of ocean
acidification as a concern and the slow development of
technologies for long-term monitoring of ocean acidification
(Andersson et al., 2015). However, experimental and theoretical
evidences indicates that ocean acidification is a major risk
to marine ecosystems (Gattuso et al., 2015). Projections of
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changing temperature and ocean acidification, coupled with
physiological thresholds, plus key information from large scale
mesocosm studies (Dove et al., 2013) suggest that many reef-
building corals globally will be severely impacted by ocean
acidification within decades (Hoegh-Guldberg, 2004). Studies at
volcanic CO2 seeps and eruptions reveal a reduction in the
abundance of calcifying invertebrates, including scleractinian
corals and algae, along pH gradients (Hall-Spencer et al., 2008;
Fabricius et al., 2014; Gil-Díaz et al., 2014). Further, herbarium
records show a long-term (over three decades) decrease in
calcification of the brown algae Padina pavonica from the
Canary Islands coincident with a decrease in the pH of local
ocean surface waters (Gil-Díaz et al., 2014). More broadly, a
variety of lines of evidence from experimental and modeling
studies indicate that ocean acidification will affect marine
organisms over the twenty-first century, but the resulting long-
term consequences for marine species’ population dynamics and
ecosystem functioning are yet to be identified and are areas of
current research focus (Andersson et al., 2015; Riebesell and
Gattuso, 2015).

Demography
Climate change will influence the demographics of marine
species through differential effects on reproduction, growth
and survival thus species abundance and population growth.
Hypotheses regarding the response of populations to climate
change include declines in recruitment/breeding success for
populations near the equatorward edges of their ranges as
temperatures warm, and corresponding increases near the
poleward edges, although these will be tempered by a range
of biotic and abiotic factors and differences in individual
physiological responses (Poloczanska et al., 2013). Evidence of
climate change impacts on demography of marine species, as
recorded in MCID (3% of database), arises primarily from
studies of recruitment variability in exploited fish and mollusc
stocks and aspects of breeding for seabirds. Of the demography
observations, 54% were measurements of reproductive success
and productivity, 34% of observations were observations of
growth and size parameters of organisms, and 12% were
mortality measurements.

Recruitment may be a key process in driving population
responses, in fish at least, to climate change (Rijnsdorp et al.,
2009). Most fish spawn millions of eggs, and recruitment is
influenced by growth and mortality integrated across the egg,
larval, and post-larval phases, which can be highly sensitive
to fluctuations in environmental conditions, particularly near
range edges (Brunel and Boucher, 2006). For example, recent
warming has allowed strong recruitment of subtropical wrasse,
Choerodon rubescens, at the southern (polewards) edge of its
range offWestern Australia, where abundances of adult fish have
historically been low or absent; in addition, its presence in angling
catch records near its range edge has become more common
in recent years (Cure et al., 2015). The increase in C. rubescens
recruits coincides with warmer-than-average temperatures and
an increase in intensity of the warm-water Leeuwin Current,
the latter increasing seasonal advection of larvae and juveniles
into newly-warming waters. Such patterns suggest that further

warming could lead to a range expansion if suitable habitat is
available. In Icelandic waters, a decade of warming has enhanced
reproductive success of the monkfish, Lophius piscatorius, and
expanded nursery and feeding habitats resulting in an increase in
the monkfish stock near its poleward range edge, (Solmundsson
et al., 2010). An enhanced delivery of eggs and larvae from distant
stocks through changes in water inflow is also proposed as an
additional mechanism.

In the north-east Atlantic, investigation of climate-driven
recruitment variation (1970–1998) across 40 fish stocks
belonging to nine species showed a general long-term decline in
recruitment correlated with warming sea surface temperatures
(Brunel and Boucher, 2007). While it is likely that fishing
also played a role in observed trends in recruitment for some
populations through depletion of spawning stock, for many
such as cod, Gadus morhua, in the Irish Sea, the decline
in recruitment commenced while stocks were still at high
levels, implying a deterioration in favorable environmental
conditions for early life stages. In contrast, recruitment for a
few stocks, e.g., cod in the north-east Arctic, were positively
correlated with strong year classes that preceded an increase
in stock, suggesting that changes in the environment enhanced
recruitment. The spawning intensity of Arcto-Norwegian cod,
(using an egg production index from cod caught during the
spawning season), is influenced by temperature with a recent
(since 1976) decline in spawning in the southernmost areas and
a northward displacement of spawning areas coincident with
recent warming (Sundby and Nakken, 2008). Since 2003, cod
spawning has been observed along the northernmost area, off
the very top of Norway, which last occurred during the north
Atlantic warm-period of the 1930–1950s.

An example of contrasting long-term responses of a fish
species to ocean warming across a geographic range is that of
the banded morwong, Cheilodactylus spectabilis, in south-east
Australia and New Zealand (Neuheimer et al., 2011). Using
growth rates over 90 years, estimated from otolith analysis,
Neuheimer et al. (2011) showed that growth rates of fish living
in the middle of the species’ range increased with warming, while
growth rates decreased in those living at the warm northern
range edge. In the northern-most populations, warmer regional
temperatures are no longer beneficial to growth due to greater
metabolic cost and reduced energy for growth and reproduction.

Investigation of the long-term decline in recruitment of the
bivalve Macoma balthica in the southern North Sea reveals
the complexity of organismal response to changing climate.
M. balthica has already disappeared from its equatorward
range extremities along the southern French coast, with
no or few individuals recorded at monitoring sites since
the 1980s (Beukema et al., 2009). Evidence suggests that
warmer temperatures decrease reproductive output (a direct
physiological effect on adults) and advance spawning dates,
resulting in a mismatch with both peak phytoplankton blooms
and low predator abundance, the result being reduced food
availability and increased predation pressure (Philippart et al.,
2003). However, it is likely that the situation is more complex,
with temperature also affecting mortality and growth rates of
juvenile and adult life stages. For example, adult survival is
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reduced in warmer summers due to physiological stress, and
winter weight loss by adults is higher when winters are milder.
The latter results are driven by higher energetic demands, and
thus reduced available energy for reproduction in the following
spring (Beukema et al., 2009).

Numerous demographic responses to climate change have
been observed for seabirds (Einoder, 2009; Chambers et al.,
2014). For example, some of the longest seabird time series
(spanning 50 years) are for Emperor penguin, Aptenodytes
forsteri, colonies in Antarctica thus presenting data to investigate
drivers of demographic responses (Barbraud and Weimerskirch,
2001; Barbraud et al., 2011). Loss of sea-ice reduces adult survival
through multiple processes, including reduced food availability
(abundance of krill, which form the base of Antarctic food webs,
is lower in years with less winter-ice; Atkinson et al., 2004), but is
also associated with increased hatching success, as the distance
between colonies and foraging grounds (ice edge) is reduced.
Overall however, long-term, climate-driven declines are expected
for all Emperor penguin colonies this century as warming and sea
ice loss continue (Jenouvrier et al., 2014).

Generally, climate change effects on seabird demography
emerge through climate-mediated predator-prey interactions
(Sydeman et al., 2015). Breeding success is negatively related
to warming temperatures for fulmer, Fulmarus glacialis, (Lewis
et al., 2009), manx shearwaters, Puffinus puffinus, (Riou et al.,
2011), and black-legged kittiwakes, Rissa tridactyla, (Frederiksen
et al., 2007) in the north-east Atlantic. These results are likely
due to climate-driven changes in prey availability, although
mechanisms differ among populations. For example, a reduction
in fledging masses of manx shearwater chicks in the Celtic Sea
was linked to higher sea surface temperatures in the preceding
winter and a reduction in prey quality (Riou et al., 2011).
A link between breeding productivity and winter sea surface
temperatures in the preceding year was also shown for kittiwake
breeding colonies in east Scotland and Orkney, but not for
colonies in adjacent regions (west Scotland and east England)
(Frederiksen et al., 2007). In addition, a positive relationship
between breeding productivity and Calanus copepod abundance
was found in East Scotland and a negative relationship in Orkney.
Calanus is an important prey item of sandeels, Ammodytes
marinus, the main food fed to kittiwake chicks, and relationships
have been shown between sea surface temperature, sandeel
abundance, and seabird breeding success (Arnott and Ruxton,
2002; Poloczanska et al., 2004). The unexpected finding in
Orkney highlights that mechanisms are not fully understood,
but variation in species’ dependence on sandeel as prey among
regions may help to explain the result.

Other examples of differing mechanisms by which climate
change can influence foraging and diets of seabirds include flesh-
footed shearwaters, Puffinus carneipes, in the eastern Indian
Ocean and wandering albatross, Diomedea exulans, in the
Southern Ocean (Weimerskirch et al., 2012; Bond and Lavers,
2014). Isotope analysis of the feathers of flesh-footed shearwaters
from western and south Australia, where reproductive success
has decreased and populations are in decline, shows that these
seabirds have doubled their trophic niche and dropped a trophic
level in 75 years (Bond and Lavers, 2014). By contrast, a recent

TABLE 1 | Observations of changing abundance in species classified as

cold, warm, and cosmopolitan in their thermal preferences.

Response Cold species Warm species Cosmopolitan species

Total observations 293 346 138

Increase 21% 52% 39%

Decrease 52% 19% 39%

No change 27% 29% 22%

Thermal affiliation is assigned in relation to the sampled region.

increase in breeding success of wandering albatross in the
Southern Ocean is linked to a strengthening and poleward shift
of westerly wind fields. As a consequence, albatross travel rates
(speed) have increased and foraging ranges shifted polewards,
shortening the duration of foraging trips (Weimerskirch et al.,
2012).

Abundance
Abundance changes were among the most commonly reported
responses in MCID (41%). In a warming ocean, warm-water
species are expected to increase and cold-water species decline.
In MCID, species were classified as warm, cold or cosmopolitan
relative to the region in which they were studied. Fifty-
two percent of species classified as warm-water increased in
abundance and 52% of cold-water species declined consistent
with expectations under climate change; the remainder either
showing no change or equivocal changes in abundance (Table 1).
Of the cosmopolitan species, there was no bias in either direction
with an equal number (39%) increasing and decreasing in
abundance, with the remaining 22% showing no change.

Changes in abundance are observed as populations fluctuate
across a range of time-scales from seasonal to decadal
and beyond, reflecting the accumulation of demographic
responses such as altered recruitment and survival. For example,
fluctuations in abundances of intertidal invertebrates around
the UK coastline have been observed during decadal warming
and cooling periods (Hawkins et al., 2008, 2009). Poloczanska
et al. (2008) investigated mechanisms underlying population
fluctuations in two intertidal barnacle species and identified
temperature impacts on recruitment as the dominant process
influencing adult abundances. The presence of the cold-water
barnacle, Semibalanus balanoides, which recruits to UK rocky
shores in large numbers in early spring, can depress abundance
of its later-recruiting, warm-water competitor, Chthamalus
spp., through temperature-driven interference competition. S.
balanoides recruits overgrow and undercut recruits of the
subordinate Chthamalus spp. and effects are stronger during
cool periods when S. balanoides recruitment success and juvenile
survival are higher (Connell, 1961). Recent declines in abundance
of S. balanoides in south-eastern UK and northern France
are linked to warming as the frequency of recruitment failure
increases, and with projected warming, S. balanoides could
become locally extinct by 2050 (Poloczanska et al., 2008).
Evidence of similar mechanisms are shown in other taxonomic
groups. For example, variability in abundances of 20 flatfish
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species in the Bay of Biscay, north-east Atlantic (1987–2006),
were linked to sea surface temperatures in the year of their
birth, suggesting that larval survival and recruitment processes
influenced adult abundances (Hermant et al., 2010).

Considerable evidence exists for changes in abundances of
planktonic groups linked to recent warming. Declines in cold-
water species and increases in warm-water species have been
observed for mysids in Mediterranean caves (Chevaldonné
and Lejeusne, 2003) and zooplankton communities in the
north-east Atlantic (Beaugrand, 2003). Longer-term evidence
of changes in foraminifera over ∼1400 years, reconstructed
from sediment samples, revealed an increase in abundances of
tropical/subtropical species over the last 100 years, and more
recent declines in temperate/subpolar species (Field et al., 2006).
In Antarctic waters the extent and duration of sea ice, as well
as temperature, influences primary production. These effects
cascade through Southern Ocean food webs. The density of
krill has likely declined in the southwest Atlantic sector (1926–
2003), while densities of salps, a warmer-water group, have likely
increased (Atkinson et al., 2004) however, the magnitude of the
decline is uneder debate (Constable et al., 2014). Krill density is
influenced by seasonally important food sources; phytoplankton
in the water column during summer and phytoplankton under
winter sea ice (Atkinson et al., 2004). Both these food sources
are declining with warming temperatures and decreasing sea ice
extent.

Observations of changing abundance may be an early warning
that large-scale shifts in distribution are about to occur, or that
they are occurring (Bates et al., 2014b, 2015; Lenoir and Svenning,
2014), and indeed are often used to infer distribution shifts. For
example, data spanning multiple decades from coastal localities
off south-eastern South Africa (Lloyd et al., 2012), Rhode Island
in north-west Pacific (Collie et al., 2008), the northern Gulf of
Mexico (Fodrie et al., 2010), and south-east Australia (Last et al.,
2011) all demonstrate increases in the abundance of warmer-
water species and decreases in cooler-water species coincident
with local warming temperatures leading authors to postulate
that range shifts are occurring. In the South African example,
regional warming was most pronounced during the Austral
summer and was influenced by a southern extension of the
warm-water Agulhas Current, as evidenced in a 178 km shift
in the 27◦C isotherm over the 19-year period (Lloyd et al.,
2012). The abundance of temperate reef-fish species decreased
over this period while that of tropical species increased. For
south-east Australian waters Last et al. (2011), gathered data
from a range of sources including spear-fishing competitions,
scientific surveys and commercial catch, and showed evidence
of southward distributional shifts and increased abundances of
45 fish species. The rapid warming of ocean temperatures in
the region are driven, in part, by a southward extension of the
warm East Australian Current by 350 km over 1944–2002. In
both the South African and Australian examples, the observed
shifts in the major current systems, driven by changes in westerly
wind fields and an intensification of ocean gyre systems, have an
anthropogenic signal (Cai et al., 2005; Rouault et al., 2009; Wu
et al., 2012).

Distribution
Shifts in species distributions in relation to climate change are
widely-reported (41% of MCID) with observational evidence
from leading (polewards) and trailing (equatorwards) edges of
species’ distributions and from measurements at the centers
of species distributions. Generally, where quantified data were
available, leading edges are expanding (71 of 97 observations)
and measurements taken within species ranges (centers) showed
either polewards displacements (113 of 253 observations) or no
change (104 of 253 observations), consistent with theoretical
expectations under climate change (Figure 2). At trailing edges
however, observations of expansions (26 of 83 observations),
contractions (28), or no change (29) were similar (Figure 2).
Differences in consistency of observations among range edges
may be explained by differing processes (e.g., colonization vs.
extinction) and detectability (Bates et al., 2014b, 2015).

The role of climate change in driving distribution shifts in
marine biodiversity is currently garnering considerable attention
(e.g., Bates et al., 2013; Poloczanska et al., 2013; Lenoir and
Svenning, 2014) given the potential ramifications for fisheries,
marine management, conservation, and policy (Cheung et al.,
2010; Pinsky and Fogarty, 2012; García Molinos et al., 2015). The
general expectation is that marine species will shift poleward,
but some east-west distribution shifts and shifts toward the
equator are expected in response to complex patterns of
shifting isotherms, including areas of ocean surface cooling, and
geographical barriers (Burrows et al., 2011, 2014; Pinsky et al.,
2013). Depth shifts are expected where species can take refuge in
cooler, deeper waters, or where local geographical features block
latitudinal shifts. For example, in the northern Gulf of Mexico
and Gulf of Maine, where the east-west coastlines prohibit
poleward distributional shifts, demersal fish and invertebrate
assemblages shifted deeper instead (Nye et al., 2009; Pinsky et al.,
2013).

Ocean currents can rapidly advect phytoplankton and
zooplankton, which include the early life stages of most marine
ectotherms, as well as juveniles and adults vertebrates, thus
facilitating marine distribution shifts (Berge et al., 2005; Banks
et al., 2010; Sunday et al., 2015). Ocean currents have been
implicated in observed species shifts in the north-east Atlantic
(Beaugrand et al., 2009), north Pacific (Nye et al., 2009), and
south-west Pacific (Johnson et al., 2011; Last et al., 2011).
However, in many of these cases, changing temperature is the
primary mechanism for the shift (Ling et al., 2008; Beaugrand,
2009), allowing larvae and juveniles to survive and thrive in
new environments. For example, in south-Australia, the sea
urchin Centrostephanus rodgersii spread from the mainland
to Tasmania in the late 1970s and subsequently increased in
both range and abundance coincident with regional warming
(Johnson et al., 2011). The sequential poleward discovery of the
sea urchin, a pattern of declining age, and a general poleward
reduction in abundance along the eastern Tasmanian coastline
is consistent with a model of range extension driven by recent
change in patterns of larval dispersal (Ling et al., 2009b). Genetic
studies indicate a high connectivity between pre- and post-
extension zones, so the range shift appears to be an extension
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of the mainland population assisted by increased advection
of larvae and warming of sea temperatures above the species’
lower developmental threshold (Banks et al., 2010). The East
Australian Current, which carries warm water and larvae and
juveniles of marine organisms southward (Booth et al., 2007),
has strengthened and penetrated further south since the 1940s
(Ridgway, 2007), driven by a shift in westerly wind fields linked
to greenhouse gas forcing (Cai et al., 2005; Wu et al., 2012).
Consequently, coastal water temperatures in eastern Tasmania
now fluctuate around the 12◦C mark, which is the threshold for
successful C. rodgersii larval development, during August when
peak spawning occurs (Ling et al., 2008).

Range shifts of marine species, linked to warming
temperatures, have been observed across all ocean regions
(Poloczanska et al., 2013; Figure 2). Some of the highest
rates of range expansion were observed for zooplankton in
the north-east Atlantic, where the CPR survey has provided
extensive data for climate change investigations. In response to
anthropogenic ocean warming, warm-water calanoid copepod
communities (108 species) extended poleward at rates of up
to 231.6 km per decade, with corresponding declines in the
abundances of cold-water species (Beaugrand et al., 2009).
In particular, at higher latitudes such as south of Iceland and
north of the North Sea, arctic/subarctic species have declined
in abundance, while in the Bay of Biscay and southern Celtic
Sea, subtropical species have increased in abundance. These
rapid responses of zooplankton are attributed to their ecological
characteristics, and particularly to the fact that they tend to be
stenothermal, have short generation times (days to months) and
be numerous and free-floating, so they can rapidly track shifts in
environmental conditions (Mackas and Beaugrand, 2010). The
redistribution of zooplankton has implications for marine food
webs; warm-water species tend to be smaller and less energy-rich
than polar/subpolar species. For example, changes in plankton
communities driven by climate are a strong driver of cod, G.
morhua, abundance in the North Sea (Beaugrand and Kirby,
2010).

The most concentrated evidence across taxonomic groups
comes from the heavily studied North Sea in the north-
east Atlantic, where waters have warmed just over 1◦C in
40 years. This in turn has resulted in a shift in the 10◦C
isotherm of 217.5 km per decade (Beaugrand, 2009). Latitudinal
distributional shifts were observed in a range of zooplankton
(Beaugrand et al., 2009), exploited and non-exploited fish (Perry
et al., 2005; Dulvy et al., 2008), and benthic invertebrates
(Neumann et al., 2013; Hiddink et al., 2015), with ranges
generally moving northwards (toward higher latitudes) as
temperatures warm. Depth shifts, generally to deeper water, were
also observed for benthic invertebrates (Beukema and Dekker,
2005; Hiddink et al., 2015) and demersal fish (Perry et al., 2005),
with the whole demersal fish assemblage deepening by 3.6m per
decade (Dulvy et al., 2008). For demersal species, a latitudinal
shift may necessarily incur a change in depth, depending on
seabed topography. However, shifts in depth of individual species
are often consistent with warming or cooling of deeper waters
when taken into consideration with seabed bathymetry, local

oceanography and species temperature preferences (Dulvy et al.,
2008; Pinsky et al., 2013).

Fishing pressure can also strongly influence the distribution
and abundance of fish populations, and acts in combination
with temperature and thus challenge attribution of distribution
shifts to climate change (ter Hofstede and Rijnsdorp, 2011). An
example is the opposing shifts in flatfish species in the southern
North Sea: over 90 years the distribution of plaice, Pleuronectes
platessa, in the southern and central North Sea has shifted north-
eastward by 142 km and deepened by 20m, while sole, Solea
solea, in the southern North Sea has shifted south-westward
by 93 km and shoaled by <10m (Engelhard et al., 2011). The
distribution shifts in plaice are explained by warming, but the
observed shift in sole distribution is explained by both warming
and fishing. The southern North Sea is very shallow (<35m) and
shows the greatest range in seasonal sea surface temperatures,
i.e., some of the coolest North Sea temperatures in winter and
warmest in summer. Recent warming in the southern section has
facilitated the southward expansion of flatfish species, previously
excluded by cold winter temperatures, into southern coastal
areas. Similarly, the distribution of North Sea cod,G.morhua, has
shifted northeastward and deepened over 100 years (Engelhard
et al., 2014). The northward shift is explained by warming and
the eastward shift by fishing, through a serial depletion of cod
from the western section of its historical distribution.

Other ocean regions where examples of climate-driven range
shifts were observed include the Bering Sea in the north-east
Pacific high latitude spring bloom system, the Benguela eastern
boundary upwelling system, around Japan in the north-west
Pacific high-latitude spring-bloom regions, and in south-west
Australia in the Indian Ocean high-latitude spring-bloom system
(Figure 2A). In the highly productive Bering Sea on the fringes
of the Arctic Ocean, the extent of the “cold pool” (<2◦C
water) on the shelf separates polar and subpolar fauna. The
cold pool is formed as a consequence of winter sea ice and is
maintained over summer (Hunt et al., 2010). The region appears
to be warming, and the loss of sea ice and resultant poleward
retreat of the cold pool is driving a community-wide poleward
distribution shift in demersal fauna, with range extensions of
subarctic fauna into former cold-pool areas (Wang et al., 2006;
Mueter and Litzow, 2008; Grebmeier, 2012). Range extensions
of up to 98 km per decade were observed across a range of
demersal fish and invertebrates. However, variable responses
among individual species in the community (some leading,
some lagging temperature change, and some not responding)
are probably the result of interacting factors such as population
size, dispersal ability, dependence on habitat or prey availability,
resource competition, migratory strategy, latitudinal gradient in
light regime, and fisheries impacts.

Variable changes in distribution and depth were also observed
in the demersal fish community in the Benguela Current over
1985–2010 (Yemane et al., 2014). In the northern section of
the system, off Angola, both mean sea surface temperatures and
bottom temperatures have warmed. Many of the fish species
sampled shifted polewards and deeper. In the southern section,
offNamibia and South Africa, where regional ocean temperatures
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are influenced cold upwelling, different responses were observed.
Bottom waters off Namibia have gradually cooled whereas off
South Africa a recent warming is observed following a period
of cooling. By contrast, sea surface temperatures have warmed
off Namibia and cooled off South Africa. In this region of
the Benguela system, no clear direction was observed in fish
responses; around half the species that showed changes in
distribution shifted polewards and the rest shifted equatorwards.
However, all the depth shifts observed off South Africa were into
shallower warmer waters as were most of those off Namibia.

In Japanese waters in the north-west Pacific high-latitude
spring bloom system, four taxonomic groups of corals expanded
poleward into temperate waters since 1930 at rates of up to
140 km per decade, coincident with significant warming of
sea surface temperatures, while five other taxonomic groups
remained stable (Yamano et al., 2011). Range shifts may have
been facilitated by increased transport and southern expansion
of the warm-water Kuroshio Current. Impacts were also observed
in subtidal macroalgae: expansions were noted in tropical species
such as Sargassum spp. and contractions in the ranges of
temperate species such as the kelps Ecklonia spp. (Tanaka et al.,
2012). In the Indian Ocean high-latitude spring bloom system,
contractions in macroalgae at the equatorwards (warm) edges of
their distributions were also observed along the southern section
of the west Australian coastline consistent with regional warming
(Wernberg et al., 2011).

Phenology
Seasons in the ocean are changing (Stine et al., 2009; Burrows
et al., 2011), but observations of changes in marine phenology
are relatively rare compared to those on land (Parmesan, 2007;
Chambers et al., 2013), only 14% of MCID are phenology
observations. The majority of marine phenological studies come
from the north-east Atlantic, across a range of trophic levels
from plankton to seabirds, and from Antarctic seabird colonies
(Figure 3). Sparser evidence also arises from studies of highly
migratory fish such as salmon and tuna (Juanes et al., 2004;
Dufour et al., 2010).

The timing and production of plankton communities at the
base of marine food webs are driven by temperature, nutrient
and light availability. At higher latitudes, such as those in the
north-east Atlantic, strong seasonal variability in primary and
secondary production, formed by successive peaks in abundance
of plankton groups, is pronounced because of seasonally varying
photoperiod and water-column stability (Racault et al., 2012).
Efficient transfer of marine primary and secondary production
to higher trophic levels, including commercial fish species,
is synchronized with successive plankton peaks (Hjort, 1914;
Cushing, 1990). The plankton community (66 plankton taxa,
including seasonal fish and invertebrate larvae) in the central
North Sea is responding to climate change (1958–2002), but
with substantial variation among species and functional groups
(Edwards and Richardson, 2004). Spring- and summer-blooming
species showed either an advance to some degree in peak
abundance or stasis, as was the case for the majority of diatom
species. The greatest advancements were observed in fish eggs
and larvae (12.9 and 9.5 days per decade), echinoderm larvae

(10.3 days per decade), Ceratium spp. (phytoplankton, ∼8.5
days per decade), and two diatom species (phytoplankton,
∼7.4 days per decade). In contrast, delays were observed in
autumn- and winter-peaking species, with Thalassiosira spp
(phytoplankton) delaying by 6.5 days per decade and larvae of
Limacina retroversa (benthic mollusc) delaying by 8.4 days per
decade. Some species, e.g.,Temora longicornis (copepod), showed
no statistically significant delay.

The potential decoupling of production peaks, and thus
prey availability, has potential to cascade through trophic webs,
particularly given the fast spring advancements in fish and
invertebrate larvae. These latter cases suggest that reproductive
phenologies have also shifted. An example is the advance in
spawning in the bivalve M. balthica in the southern North Sea,
which leads to a mismatch with timing of the phytoplankton
bloom and also reduces avoidance of peak predation pressure for
recruits (Philippart et al., 2003). An advance in spring phenology
and delay in autumn phenology, coincident with warming, is
also shown in reproduction of two conspecific intertidal limpets
near their range limits in south-west England over 60 years
(Moore et al., 2011). Spring reproduction in warm-water Patella
depressa advanced by 10.2 days per decade, leading to a longer
reproductive season (multiple spawning events), while autumn-
spawning cold-water P. vulgata delayed breeding by 3.3 days
per decade. The rapid decline in sea surface temperatures in
autumn is thought to be the phenological cue for P. vulgata
spawning, thus spawning is delayed toward cooler conditions
more favorable for successful reproduction. However, the delay
could potentially lead to a mismatch with larval food sources,
which, coupled with declines in the proportion of the population
reproducing and increasing thermal stress of adults during
summer might eventually lead to local extirpation. In a rare study
of fish spawning phenology, Fincham et al. (2013) show a shift
toward earlier spawning in four stocks of sole, S. solea, in the
north-east Atlantic. Warming of winter temperatures was linked
to an advancement of ∼11 days per decade, through an effect
on maturation rates, raising questions about potential mismatch
with food sources and effects on juvenile survival.

Shifts in phenology for upper-trophic-level predators, such as
seabirds, are variable, even among species breeding in the same
region. Investigation of dates that the first eggs were laid (first
egg date) of 10 species at two breeding colonies in the north-
west North Sea showed advances of up to 8.4 days per decade for
Arctic terns, Sterna paradisaea, European shags, Phalacrocorax
aristotelis, and common guillemots, Uria aalge (Wanless et al.,
2009). However, at the same colonies a number of delays in
first egg date of up to 7 days per decade were noted amongst
other species, including black-legged kittiwakes, R. tridactyla,
northern fulmars, F. glacialis, and Atlantic puffins, Fratercula
arctica, whilst no significant shift in phenology was recorded for
remaining species. The species have different feeding methods,
diets and dispersal patterns outside of the breeding season
(e.g., local dispersal vs. long-distance migrant), and it is
likely that an integration of environmental signals, including
food availability across foraging grounds outside of breeding
seasons, influences the timing of spring migrations and breeding
phenologies.
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The delays in seabird phenologies at Antarctic/sub-Antarctic
breeding colonies appear, at first, to be inconsistent with the
general expectation of earlier spring events (Barbraud and
Weimerskirch, 2006; Hindell et al., 2012). Over 55 years, seabirds
in the western Antarctic have, on average, delayed arrival by
1.6 days per decade, and first egg laying by 0.4 days per decade
and no regional trend in temperature was found (Barbraud and
Weimerskirch, 2006). However, some of the variation in arrival
and egg laying was linked to a regional reduction in Antarctic
sea ice and a lengthening of sea ice duration, which reduce access
to and the quantity of marine food sources in early spring, thus
presumably breeding condition of adult seabird.

Changes in phenology have been observed in other highly
migratory species. Tuna are arriving earlier at productive feeding
grounds in the north-east Atlantic by 5.6 days per decade
(bluefin, Thunnus thynnus) and 2 days per decade (albacore,
T. alalunga) (Dufour et al., 2010). These responses are linked
to a regional climate shift toward warmer conditions. Earlier
arrivals (up to 21 days per decade) into river systems have
also been observed in Atlantic salmon, Salmo salar, breeding
migrations to eastern North America. These shifts are positively
correlated with warming temperatures (northern stocks) and
river discharge rates (southern stocks), presumably reflecting the
different migration patterns, and hence phenological triggers, of
salmon populations (Juanes et al., 2004).

DISCUSSION

The volume and type of evidence of species responses to
climate change is variable across ocean regions and taxonomic
groups (Figures 1–3).Much evidence derives from the north-east
Atlantic, a region that is heavily fished and studied, thus hosting
many long-term observation programmes. A lack of observations
from other regions does not imply that climate change is not
having an impact, but rather represents our current state of
knowledge (Hansen and Cramer, 2015). Most investigations of
marine biological impacts of climate change have focused on
the impacts of changing temperature, with few observations of
effects of changing oxygen, wave climate, precipitation (coastal
waters) or ocean acidification (Brown et al., 2011), despite
an extensive theoretical, experimental and modeling base for
understanding impacts on marine species. For example, models
suggest declining oxygen will impact distribution and biomass of
marine species through physiological responses and compression
of habitat, and will result in a decline in body size of marine fish
(Stramma et al., 2010, 2012; Cheung et al., 2011; Gilly et al., 2013).
In addition, oxygen decline and ocean acidification in tandem
will increase metabolic demands on marine species, particularly
in northern hemisphere high-latitude oceans (Deutsch et al.,
2015).

Evidence of impacts on phytoplankton at the base of marine
food webs is limited with only a few studies in MCID. These
studies suggest that phenology, abundance and calcification
of phytoplankton species are changing in response to climate
change. There is currently limited evidence and low agreement
on the future direction and magnitude of change in primary

production across ocean regions (Boyd et al., 2014). However,
climate change is projected to strongly influence primary
production in a multitude of ways through changes in a range
of atmospheric and oceanic processes, including sea ice extent,
stratification, cloud cover and upwelling (e.g., Sydeman et al.,
2014).

There is substantial evidence for changes in the distribution,
abundance and phenology of zooplankton in response to
climate change. However, some differences in responses are
evident between holo-zooplankton and mero-zooplankton
(Figures 2, 3). Holoplankton, or permanent members of
plankton communities, show many and large shifts in
distribution and phenology, which are generally consistent
with expectations from climate change. These species may
be particularly responsive to climate change given their short
generation times, potential for rapid advection by ocean currents,
and sensitivity to environmental conditions (Richardson, 2008;
Beaugrand, 2009; Hays et al., 2015). In contrast, some of the
largest shifts in phenology are seen in the meroplankton, the egg
and larval stages of marine fish and invertebrates, but shifts in
distribution are relatively small. We propose three factors that
may influence results. First, most of the evidence for distribution
shifts of meroplankton come from the California Current eastern
boundary upwelling system (Hsieh et al., 2008, 2009), where
thermal environments are complex given the upwelling of cold,
nutrient-rich water that may reduce potential for distribution
shifts. Second, many of the meroplankton species included are
exploited as adults, and this may increase sensitivity to changing
environmental conditions. In the California Current, larval fish
species that are exploited as adults have greater distribution
shifts that those that are unexploited (Hsieh et al., 2008). Third,
the location and appearance of eggs and larvae in the plankton
will ultimately be influenced by the location and timing of adult
spawning. The capacity of adults to adjust or accommodate to
changing environmental conditions may temper or exaggerate
shifts in the timing of early life stages. Species may respond by
first adjusting their phenological behavior, such as the timing of
spawning, thus the timing of larval appearance in the plankton.
Declines in abundance and distribution shifts may only occur
once conditions change beyond physiological limits (Beaugrand,
2009).

How changes in the calcification, demography, abundance,
distribution and phenology of the different life stages of marine
species will manifest at an ecosystem level is a challenge
for producing accurate predictions. Differential phenological
responses across species will lead to temporal mismatches
among trophic levels (Visser and Both, 2005; Thackeray et al.,
2010). Climate change will alter the seasonal and temporal
extent of areas favorable to reproduction, growth and survival
for marine species (e.g., Shoji et al., 2011). Species may
respond directly to changes in temperature and other climatic
variables and also indirectly through changes in food and
habitat resources (Stewart et al., 2014; Sydeman et al., 2015).
Most marine species are ectothermic, so physiological functions
are directly impacted by changes in ambient temperatures
and other environmental variables (Pörtner and Knust, 2007;
Pörtner and Peck, 2010). Direct impacts on metabolism and
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indirect impacts on food availability will alter growth rates
and body sizes, and thus reproductive rates and ultimately
population dynamics (Neuheimer et al., 2011; Rogers et al., 2011).
Understanding the role of climatic variability and extremes, and
their interaction with other stressors, in shaping species and
ecosystem responses to long-term climatic change is important
to predicting the ecological, social, and economic consequences
of climate change at regional scales. Climate change will act with
other anthropogenic stressors on marine ecosystems, such as
fishing, pollution and intensification of shipping (risk of species
introductions, Sorte et al., 2010) which also have potential to
drive complex changes in ecosystems (Hoegh-Guldberg et al.,
2014).

Observations of fish and other species moving to higher
latitudes (Perry et al., 2005; Mueter and Litzow, 2008; Nye
et al., 2009; Last et al., 2011; Magurran et al., 2015) are
consistent with results of modeling exercises (Stenevik and
Sundby, 2007; Cheung et al., 2009; García Molinos et al., 2015).
The redistribution of species in response to temperature change,
and in some cases also fishing pressure, has led to regional
changes in species richness, particularly in northern hemisphere
high-latitude spring-bloom systems (ter Hofstede et al., 2010;
Simpson et al., 2011; Montero-Serra et al., 2015), and also to
changes in community composition (Magurran et al., 2015).
The high-latitude warming in the northern hemisphere over the
past three decades has led to an increase in the size of fish
stocks associated with some regional fisheries (Hoegh-Guldberg
et al., 2014), and this may continue with further warming
(Cheung et al., 2009; García Molinos et al., 2015) for some
time into the future. In contrast, declines in species richness
are projected in tropical areas, particularly in equatorial regions
(García Molinos et al., 2015; Jones and Cheung, 2015). The
redistribution of species with shifting climate zones will lead to
the alteration of biotic interactions (Verges et al., 2014; García
Molinos et al., 2015). For example, the climate-driven extension
of the sea urchin, C. rodgersii, in south-east Australia has led to
loss of macroalgae (kelp) beds through overgrazing, with loss of
associated biodiversity (Ling, 2008). Intensive fishing of spiny
lobsters Jasus edwardsii, the major predator of the urchin, may
have reduced the resilience of kelp beds against the sea urchin
threat (Ling et al., 2009a). In the north-east Atlantic, decline
of the boreal intertidal barnacle, S. balanoides, with warming
temperatures has resulted in an increase in abundance of a sub-
dominant competing species (Poloczanska et al., 2008). In the
Benguela Current, a temperature-driven shift in distribution of
a coastal fish, Argyrosomus coronus, has resulted in an overlap
with a related species, A. inodorus, during spawning events and
thus a recent hybridization of these two species (Potts et al.,
2014).

Climate change imposes strong selective pressures on species
and populations, driving phenotypic and genetic responses
(Chown et al., 2010). Plasticity in species traits and behavior are
relatively well-studied and have been shown to allow species to
compensate for changing climate (Crozier and Hutchings, 2014).
For example, plasticity of foraging behavior has allowed the little

Auk, Alle alle, to maintain fitness across a range of sea surface
temperatures in the Greenland Sea (Gremillet et al., 2012). In
the longer-term, as climate continues to change, evolutionary
adaptation may be required. Trade-offs between phenotypic
responses and genotypic responses will determine the capacity
of individuals and populations to adjust to a rapidly changing
climate (Chown et al., 2010; Chevin et al., 2013). Observations of
evolutionary adaptation to modulate responses of marine species
to climate change are notably lacking, despite increasing number
of short-term experimental studies (Munday et al., 2013; Reusch,
2014).

Our review highlights the myriad and complex responses by
species to recent changes in climate across ocean regions. We
find that general trends in species responses that are consistent
with expectations from climate change, including poleward
and deeper distributional shifts, advances in spring phenology,
declines in calcification and increases in the abundance of
warm-water species. We also see the probable collapse of
some ecosystems (e.g., coral reefs) if current changes in ocean
conditions continue. Equally, we demonstrate that factors such
as selection pressures for life history traits, resource availability,
competition, predator-prey interactions and ocean currents also
influence population and ecosystem dynamics, and whether a
species can colonize and persist in new areas (Urban et al.,
2007; Poloczanska et al., 2008; Burton et al., 2010; Comte et al.,
2014). Observations of species responses that have been linked
to anthropogenic climate change are widespread, but are still
lacking for some taxonomic groups (e.g., phytoplankton, benthic
invertebrates, marine mammals) and ocean regions (Figure 1;
open ocean, tropics). Generally, responses to temperature
are well studied, but notable gaps in observations and
knowledge include responses to ocean acidification and changing
oxygen concentration. Developing a greater capability for
monitoring and understanding these changes will be critical
for future management of ocean and coastal resources. The
evidence of observed climate-change impacts is currently limited
to the performance, phenology and distribution of marine
organisms, with little understanding or evidence of evolutionary
responses to recent climate change. The variability in responses
across taxonomic groups are likely to lead to ecosystem
reshuffling and shifts in ecosystem functions and benefits to
people.
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