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In the oxygen-rich layer of the Black Sea, above the permanent halocline, the Fe and
nitrate concentrations are low where fluorescence is relatively high, indicating uptake
by phytoplankton. In this study we used ligand exchange adsorptive cathodic stripping
voltammetry (CLE-aCSV), using 2-(2-Thiazolylazo)-p-cresol (TAC) as measuring ligand,
to investigate the role of Fe-binding dissolved organic ligands in keeping Fe in the
dissolved phase and potentially biologically available. The conditional stability constant,
logK’, was between 21 and 22 in most samples, which is on average lower than in
ocean water. The Fe-binding dissolved organic ligand concentrations varied between
0.35 and 4.81 nEqg of M Fe, which was higher than the dissolved concentration of Fe
(DFe) as found in most samples. At two stations ligands were saturated in the surface.
At one station ligands were saturated near the oxycline, where ligand concentrations
seemed to increase, indicating that they play a role in keeping Fe in the dissolved phase
across the redox gradient. At the fluorescence maximum (between 40 and 50 m), the
dissolved organic ligand binding capacity (alphaFeL = K*[L']) of Fe was at its highest
while the concentration DFe was at its lowest. Here, we find a statistically significant,
positive relationship between fluorescence and the logarithm of alphaFel, along with
fluorescence and the ratio of the total ligand concentration over DFe. These relationships
are best explained by phytoplankton utilizing Fe from Fe-binding organic ligands, resulting
in an increase in free Fe-binding ligands.

Keywords: GEOTRACES, Black Sea, Fe speciation, Fe-binding dissolved organic ligands, iron

INTRODUCTION

The Black Sea is the largest permanently anoxic basin on Earth. It is vertically stratified, caused by
dense Mediterranean seawater that sinks as it enters the basin via the Bosporus, flowing below the
less dense surface waters that are strongly influenced by river input. A consequence of the strong
vertical stratification is a permanent halocline between 50 and 120 m that separates the underlying
anoxic layer, containing high sulfide concentrations, from the overlying oxygenated surface layer
(OL); between them is a suboxic zone (Sorokin, 2002a,b; Pakhomova et al., 2014; Margolin
et al,, 2016). The vertical diffusive flux of oxygen from the OL to the underlying suboxic zone
is insufficient to meet the oxygen consumption demands for the degradation of sinking organic
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material. The suboxic zone, or redoxcline, is characterized
by steep gradients of physicochemical properties with large
consequences for microbial, physical and chemical processes.
These processes in turn affect the solubility of Fe, which varies
strongly along this redoxcline (Lewis and Landing, 1991; Dellwig
et al., 2010), and other redoxcline environments (Dyrssen and
Kremling, 1990; Van Cappellen and Wang, 1996; Taylor et al.,
2001; Dellwig et al., 2010). As oxygen decreases in concentration,
Fe(III) is reduced to Fe(II), increasing its solubility. In the anoxic
water below the redoxcline, the solubility of Fe(II) decreases
as sulfide concentrations increase, resulting in Fe precipitation
(Lewis and Landing, 1991).

In the OL, the concentration of dissolved Fe (DFe) depends on
external sources like dust and rivers, and on internal processes
such as the dissolution of Fe-containing particles, and the
presence of Fe-binding dissolved organic ligands (Rue and
Bruland, 1995; Liu and Millero, 2002; Rijkenberg et al., 2006a,b;
2008; Wagener et al.,, 2008; Croot and Heller, 2012; Gledhill
and Buck, 2012). Fe-binding dissolved organic ligands form
a tiny part (<0.1%), of the dissolved organic carbon (DOC)
pool, and are not well defined (Gledhill and Buck, 2012; and
references herein). They can consist of highly specific Fe-binding
siderophores, humic substances or polysaccharides, existing in
either the truly dissolved (<0.02 um) or colloidal (>0.02 and
<0.2 pm) phases (Bergquist et al., 2007; Thurdczy et al., 2010,
2011; Hassler et al., 2015). Siderophores are produced by bacteria
as a response to Fe stress (Macrellis et al., 2001; Gledhill et al.,
2004; Martinez and Butler, 2007; Mawji et al., 2011), whereas
humic substances are expected to exist mostly in coastal areas
and near rivers and estuaries (Laglera and van den Berg, 2009;
Batchelli et al., 2010). Fe-binding dissolved organic ligands can
also be produced during zooplankton grazing (Sato et al., 2007;
Sarthou et al., 2008).

DOC concentrations in the OL range from ~125 wM near
the OL-suboxic zone boundary to >180 wM at the surface
(Ducklow et al., 2007; Margolin et al., 2016), compared to ~75
WM at the ocean surface (Hansell et al., 2009). In the OL below
the euphotic zone, aerobic mineralization of organic matter
regenerates inorganic nutrients and metals, such as Fe (Boyd
et al,, 2010), and probably also Fe-binding dissolved organic
ligands (Witter et al., 2000; Gerringa et al., 2006; Gledhill and
Buck, 2012). DOC is introduced into the Black Sea from two
major sources: one is rivers enriched with terrigenous DOC with
concentrations of ~300 pM (Cauwet et al., 2002; Saliot et al.,
2002); the second is the Sea of Marmara, bringing moderate
concentrations (~70 wM) via the Bosporus Strait (Polat and
Tugrul, 1995; Margolin et al., 2016). Thus, there is a relatively
high content of humic substances compared to the oceans,
which might have consequences for the concentrations and
characteristics of the Fe-binding dissolved organic ligands in the
Black Sea.

As far as we know, Fe-binding dissolved organic ligands have
not yet been studied in the Black Sea, although Lewis and Landing
(1991) recognized that colloidal and organically-complexed Fe
species of humic origin accounted for 10-30% of the DFe in
the OL. We expect that the organic complexation of Fe is an
important factor in its chemistry and its biological availability.

Humic substances may form an important part of the dissolved
organic ligand pool. It is likely that the Fe-binding dissolved
organic ligands and its interaction with the Fe redox chemistry
influence its fluxes through the redoxcline (Maldonado et al.,
2001; Shaked et al., 2005; Rijkenberg et al., 2006a, 2008; Nishioka
et al., 2009; Fujii et al.,, 2010; Croot and Heller, 2012; Shaked
and Lis, 2012; Kustka et al., 2015). To investigate the role of
organic Fe-binding complexation in the Fe chemistry of the
Black Sea, we sampled the upper 85m across the basin during
the Dutch GEOTRACES GA04-N cruise (64PE373) in 2013 for
the voltammetric determination of Fe-binding dissolved organic
ligands.

METHODS
Sampling

Approximately 900 mL samples were taken from the ultra-clean
CTD and filtered through a 0.2 pm filter using N, overpressure
in a clean-air laboratory unit (Rijkenberg et al., 2015). For the
analyses of the ligand characteristics, six bottles in the upper
85m of the Black Sea (at depths 10, 25, 40, 55, 70, and 85 m)
were sampled at 6 stations (stations 2, 3, 4, 5, 6, and 11) with
a few samples taken at stations 1 (40 m) and 12 (10 and 35
m) (Figure 1). More samples were taken for DFe, DOC and
nitrate, however, DOC was not sampled at station 1 (shown in
Figures 2, 3).

Samples were kept at 4°C in the dark. Fe-binding dissolved
organic ligand characteristics were analyzed on board no more
than 2 days after sampling. Immediately before the start of the
analysis of the ligand characteristics, separate samples were taken
from the un-acidified samples. These samples were acidified to
pH 1.8 and measured according to the description in Section
Flow Injection Analysis of DFe. Separate samples were not taken
at station 11.

DOC data is from Margolin et al. (2016). Density and
oxygen data were obtained from the CTD consisting of a
SBE9plus underwater unit, a SBE11plusV2 deck unit, a SBE3plus
thermometer, a SBE4 conductivity sensor, and a SBE43 dissolved
oxygen sensor. The CTD oxygen sensor data were calibrated
against discrete samples measured on board by Winkler titration
(Reinthaler et al, 2006). The salinity data calculated from
the CTD temperature and conductivity was calibrated against
salinity measured in discrete samples analyzed on board with a
Guildline 8400B Autosal using OSIL standard water batch P155.
Fluorescence was measured as the beam attenuation at 660 nm
using a Chelsea Aquatracka MKIII fluorometer. The fluorometer
signal was calibrated against Chlorophyll a and is expressed as jLg
Chla dm~3.

Analyses

Organic Speciation of Fe

Competing Ligand Exchange—adsorptive Cathodic Stripping
Voltammetry (CLE-aCSV) was performed using two setups
consisting of a pLAutolab potentionstat (Metrohm Autolab B.V.,
formerly Ecochemie, the Netherlands), a 663 VA stand with a
Hg drop electrode (Metrohm) and a 778 sample processor with
ancillary pumps and Dosimats (Metrohm), all controlled using
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FIGURE 1 | Cruise track of research cruise 64PE373 on the RV Pelagia in July 2013. Red dots represent normal stations with typically 6 samples taken at 10,
25, 40, 55, 70, and 85 m depth, black dots represent stations with only 1 or 2 samples taken. The five largest rivers are indicated.
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a laptop running Nova 1.9 (Metrohm Autolab B.V.). The VA
stands were mounted on elastic-suspended wooden platforms in
aluminum frames developed at the NIOZ to minimize motion-
induced noise, while electrical noise and backup power was
provided by Fortress 750 UPS systems for spike suppression
and noise filtering (Best Power). Sample manipulations were
performed in laminar flow cabinets.

Organic complexation of Fe was determined by CLE- aCSV
using 2-(2-Thiazolylazo)-p-cresol (TAC) as a measuring ligand
(Croot and Johanson, 2000). The binding characteristics of
Fe-binding dissolved organic ligands, the ligand concentration
[L¢] (in nano-equivalents of molar Fe, nEq of M Fe) and the
conditional binding strength K’ (M~!), commonly expressed
as log K’ were determined. The measuring ligand TAC with
a final concentration of 10 pM was used, and the complex
(TAC);,-Fe was measured after equilibration (> 6 h). A borate-
ammonia buffer was used to maintain pH in the samples during
voltammetric scans. The buffer was adjusted to keep the pH at
8.05 in a titration subsample consisting of seawater, buffer and Fe
standard additions. Buffers were prepared at NIOZ, where they
were cleaned of trace metal contaminations using equilibration
with MnO, particles after van den Berg and Kramer (1979). The
increments of Fe concentrations used in the titration subsamples
were 0 (2x), 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.5, 2, 2.5, 3, 4, 6, and
8 nM. Using a non-linear regression of the Langmuir isotherm,
the ligand concentration [L;] and the binding strength K’ (given
as log K’ in Table 1A and text) were estimated. By including
the sensitivity, the conversion of the recorded signal (nA) into
a concentration (nM), as an unknown parameter in the non-
linear regression, we allow for the possibility that the visually
linear part of the titration curve is still affected by unsaturated
natural ligands (Gerringa et al., 2014). The increments of Fe
concentrations listed above were too low for the 10 m sample at
station 3, since there [L'] was 4.6 nEq of M Fe. The estimation of

[L¢] was not statistically robust, as shown by the large standard
error (SE) (Table 1) (Laglera et al., 2013; Gerringa et al., 2014).
To fully saturate samples, Fe additions were extended to a
concentration of 12 nM in the 10, 55, and 70 m samples at station
11, while they were further extended to 20 nM in the 20 and 85m
samples, along with the 10 m sample at station 5.

Using [L¢] and K’, the concentrations of Fe bound to a
natural Fe-binding ligand [FeL], the inorganic Fe [Fe'] and
the natural unbound ligand [L'] were calculated using the
assumption of chemical equilibrium and the mass balance DFe =
[Fe>T](14+10'%1+K'[L]) and [L;] = [FeL]+[L], respectively by
repeated calculations using Newton’s algorithm (Press et al,
1986). The parameters from Liu and Millero (2002) were used
and an inorganic side reaction coefficient of 101%! was obtained,
close to the value of 10'° determined by Hudson et al. (1992).
For DFe in this calculation, the concentrations used were
estimated in the separate samples taken from the un-acidified
bottles (see above), except for those taken at station 11. Here,
DFe concentrations that were determined in samples that were
acidified immediately after collection were used. DFe obtained
from the subsamples at station 1-6, were 16% lower than DFe
obtained in immediately acidified samples (unpublished data),
due to wall adsorption in the un-acidified sample bottles. This
agrees well with Gerringa et al. (2014), who reported that DFe
concentrations in samples taken from un-acidified samples from
the Western Atlantic Ocean were 13% lower than in immediately
acidified samples.

The ligand characteristics were calculated with two models,
one assuming the presence of one ligand class and the other
assuming the presence of two ligand classes (Table 1A). The two
ligand model converged successfully only at a few samples.

The side reaction coeflicient of the ligands (alphaFeL, given
as log(alphaFeL)) was also calculated as the product of K’ and
[L']. In samples where two ligand classes could be discriminated,
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FIGURE 2 | Profiles of concentrations with depth (0-100 m) for the stations indicated in Figure 1 for: (A) Fluorescence (g Chlo dm—3) from calibrated
CTD sensor data. (B) Oxygen concentration (M) from calibrated CTD sensor data. (C) Nitrate (1M). (D) DOC (M) from Margolin et al. (2016). DOC in station 12 at
depths of 50-59 are between 78 and 90 wM. (E) Dissolved Fe (DFe, in nM), standard errors fall within the symbols (see Table 1). DFe at stations 2 and 5 at 100m are
outside the scale, DFe increased from 84 m to 100 m from 1.95 to 27.6 at station 2 and from 2.06 to 13.4 at station 5. (F) Fe-binding dissolved organic ligands, with
standard errors of the fitting of the Langmuir isotherm ([L4] in nEq of M Fe).

two values of alphaFeL were calculated: alphaFeL with the data
from the one ligand model and the other with the data from
the two ligand model (K] and [L}] and K} and [L}]; Table 1A).
AlphaFeL reflects the capacity of the dissolved organic ligands to
bind with Fe, which can be seen as its ability to compete for Fe
with other ligands and with adsorption sites on particles. Since
the K’ at station 12 is unknown, alphaFeL cannot be calculated.
AlphaFeL is a better parameter to characterize the Fe-binding
dissolved organic ligands than the K’ and [L'] separately because
the Langmuir equation does not treat K’ and [L'] independently
from each other. If an analytical error forces an underestimation
of one, the other one is automatically overestimated (Hudson
et al., 2003). Moreover, [L'] is, in contrast to [L], independent
of DFe (Thuroczy et al., 2010).

The ratio [L{]/DFe (Table 1B) indicates the saturation of
the ligands that are saturated with Fe if the ratio <1 and

unsaturated when >1 (Thuroczy et al., 2010), while ignoring
other competing metals (Gerringa et al., 2014; Laglera and Filella,
2015).

Flow Injection Analysis of DFe

The DFe concentrations required for data interpretation were
measured at sea using an automated Flow Injection Analysis
(FIA) (Klunder et al., 2011) taken from the bottles sampled for
Fe complexation.

Filtered (0.2 jum, Sartorius Sartobran 300) and acidified (pH
1.8, 2 ml/L 12M Baseline grade Seastar HCl) seawater was
concentrated on a column containing iminodiacetic acid (IDA).
IDA only binds with transition metals and not the interfering
salts. The column was then washed with ultrapure water, and
eluted with 0.4 M HCI (Suprapur, Merck). After mixing with
0.6 mM luminol (Aldrich), 0.6 M hydrogen peroxide (Suprapur,
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FIGURE 3 | Profiles of concentrations with density, oo (kg m—3), for the stations indicated in Figure 1. The profiles are as in Figure 2 with the exception of
Figure 2A, instead of fluorescence, here the relation with depth is given. If available data is given until o = 16.2kg m~3. The upper boundary of the oxycline and its
lower boundary (i.e., the OL-suboxic interface) at og = 14.25kg m~> and 15.64 kg m~—3, respectively, are indicated by dotted lines. (A) Depth (m). (B) Oxygen
concentration (M) from calibrated CTD sensor data. (C) Nitrate (uM). (D) DOC (M) from Margolin et al. (2016). (E) Dissolved Fe (DFe, in nM), standard errors fall
within the symbols (see Table 1). DFe at stations 2 and 5 at 100 m are outside the scale, DFe increased from 84 m to 100 m from 1.95 to 27.6 at station 2 and from

2.06 to 13.4 at station 5. (F) Fe-binding dissolved organic ligands with standard errors of the fitting of the Langmuir isotherm ([L{] in nEq of M Fe).

Merck) and 0.96 M ammonium (Suprapur, Merck) the reaction
pH was ~ 10. The resulting oxidation of luminol with peroxide
was catalyzed by Fe to produce a blue light that was detected
with a photon counter. The Fe concentration was calculated
using a standard calibration line, where a known amount of
Fe was added to seawater containing low concentrations of Fe.
Using this calibration line, a number of counts per nM Fe
were obtained. Samples were analyzed in triplicate and average
DFe concentrations and SEs are given (Table 1). On average,
the SE was 1.5%, generally being <3% in samples with DFe
concentrations higher than 0.1 nM. The average blank was
determined to be at 0.033 nM, defined as the intercept of a
low Fe sample loaded for 5, 10, and 20s and was measured
daily. The limit of detection of 0.019 nM was defined as 3
times the SE of the mean of the daily measured blanks (loaded
for 10 s). To better understand the day-to-day variations, a

duplicate sample was measured again at least 24 h later than the
first measurement. The differences between these measurements
were on the order of 1-20%, while the largest differences
were measured in samples with low DFe concentrations. To
correct for this day-to-day variation, a lab standard (sample
acidified for more than 6 months) was measured daily. The
consistency of the FIA system over the course of the day was
verified using a drift standard. For the long-term consistency and
absolute accuracy, certified SAFe and GEOTRACES reference
material (Johnson et al., 2007) were measured on a regular
basis.

Nutrients

Nitrate was determined on board colorimetrically (Grasshoff
et al., 1983) on a Bran en Luebbe trAAcs 800 Autoanalyzer. The
detection limit was 0.011 WM.
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TABLE 1A | Dissolved Fe (DFe) in nM with standard error of the analysis, the ligand characteristics [Lt] (in nEq of M Fe) and logK’ (M—1) with standard

error of the fitting of the Langmuir isotherm (Gerringa et al., 2014).

Station Depth DFe SE logk’ SEu SEd logK; SEu SEd logK, SEu SEd [L] SE [Ly]l SE [Lil SE
1 40 0.177 0.004 22.03 0.32 0.18 1.25 0.19
2 9 0.56 0.000 22.19 NA 0.37 0.35 0.08
24 0.28  0.001 22.21 0.16  0.12 1.51 0.12
39 0.1 0.004 22.02 0.10 0.08 117 0.07
45 0.15 0.006 21.48 0.15 0.11 2.09 0.40
69 0.50 0.006 22.01 0.07 0.06 2.23 0.09
84 1.81 0.007 20.74 0.32 0.18 4.71 3.91
3 10 0.77 0.006 20.83 0.13 0.10 5.02 235
26 0.13 0.038 2193 025 0.16 1.34 0.18
41 0.06 0.002 2253 0.31 0.18 1.65 0.1
41 0.06  0.002 22.77 NA 0.52 21.25 NA 0.51 0.71 2.10 1.25 1.83
54 029 0.029 2166 0.13 0.10 138 0.17
54 0.29 0.029 22.07 0.40 0.21 21.31 NA 0.68 0.81 0.58 3.05 13.74
70 0.26 0.008 2194 0.15 0.11 1567 015
85 476 0.078 2126 008 0.07 4.81 0.51
4 9 092 0.016 2128 0.09 0.07 265 041
25 0.37 0.010 2195 0.06 0.06 1.48 0.06
40 0.36 0.007 2165 012 0.10 216 0.26
40 0.36  0.007 24.38 NA 0.54 21.02 023 0.15 0.41 0.09 2.75 0.87
55 0.57 0.006 2140 0.17 0.12 1.81 0.37
70 0.25 0.002 21.33 049 0.23 115  0.52
84 0.62 0.009 21.44 0.10 0.08 233 0.32
5 10 1.05 0018 2120 059 024 096 0.36
29 0.49  0.001 2154 0183 0.10 2.01 0.29
40 0.29 0.006 21.92 0.13 0.10 1.82 0.16
54 050 0.008 2186 0.11 0.08 1.80 0.14
69 040 0.0056 2146 019 0.18 1.80 0.41
84 0.40 0.004 21.09 1.1 0.28 123  1.00
6 24 0.81 0.009 2150 0.09 0.07 2.68 0.30
40 0.30 0.008 2162 0.08 0.06 239 0.20
40 0.30 0.008 23.78 NA 0.44 20.90 015 0.1 0.32 0.09 2.83 0.60
70 0.65 0.006 2124 0.1 0.09 255 048
84 0.53 0.004 2140 0.15 0.11 2.36 0.48
11 10 1.09 0.009 22.02 017  0.12 1.73 013
25 1.98 0.011 2169 025 0.16 276 0.32
55 096 0.020 21.91 0.10 0.08 267 0.15
70 0.70 0.015 21.77 0.14 0.1 2.31 0.21
85 046 0.006 2184 013 0.10 1.94 017
85 0.46  0.006 23.01 NA 0.71 21.18 NA 0.35 0.61 0.74 2.41 0.77
12 10 4.18 0.030 NA NA NA 4.80 NA
35 4.79  0.028 NA NA NA 4.20 NA

All samples have been fitted to a 1 ligand and a 2 ligand model. Where 2 ligands could be distinguished the results of both models are shown in two separate lines.
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TABLE 1B | The sum of ligands (1 or the sum of 2 ligands concentrations, the ratio between [L], or the sum of both ligands, and DFe, log(alphaFel), (for
one or for two ligands), [Fe’] and [L'] (both in M), for one or for two ligand classes, [L;] and [L’2], were calculated from the first three variables in Table 1A

(see Methods).
Station Depth Sum [L¢] [L{]/DFe [Fe'] Ly Lyl [L5] log(alphaFelL)
1 40 1.25 7.16 1.90E-13 1.06E-09 13.06
2 9 0.35 0.62 2.12E-10 1.32E-12 10.32
24 1.51 5.34 1.79E-13 1.24E-09 13.30
39 1.17 10.95 1.21E-13 1.06E-09 13.05
45 2.09 14.05 3.19E-13 1.95E-09 12.77
69 2.23 4.43 3.58E-13 1.72E-09 13.25
84 4.71 2.61 1.41E-11 2.92E-09 12.21
3 10 5.02 6.56 3.34E-12 4.30E-09 12.46
26 1.34 10.41 1.57E-13 1.22E-09 13.01
41 1.65 26.01 1.47E-14 1.60E-09 13.73
41 1.96 30.93 1.96E-14 6.50E-10 1.25E-09 13.61
54 1.38 4.72 7.34E-13 1.09E-09 12.70
54 3.86 13.24 2.70E-13 6.50E-10 2.92E-09 13.13
70 1.57 5.97 2.90E-13 1.32E-09 13.06
85 4.81 1.01 1.55E-10 2.06E-10 11.57
4 9 2.65 2.88 3.50E-12 1.74E-09 12.52
25 1.48 4.00 4.68E-13 1.11E-09 13.00
40 2.16 6.04 5.569E-13 1.78E-09 12.91
40 3.16 8.82 3.11E-14 5.91E-11 2.74E-09 14.16
55 1.81 3.18 2.28E-12 1.24E-09 12.49
70 1.15 4.51 1.66E-12 8.98E-10 12.28
84 2.33 3.77 1.64E-12 1.70E-09 12.67
5 10 0.96 0.91 1.41E-10 5.13E-11 10.91
29 2.01 412 1.16E-12 1.53E-09 12.72
40 1.82 6.34 2.83E-13 1.52E-09 13.11
54 1.80 3.59 6.69E-13 1.31E-09 12.97
69 1.80 4.53 1.23E-12 1.42E-09 12.61
84 1.23 3.03 4.93E-12 8.23E-10 12.01
6 24 2.68 3.29 1.73E-12 1.85E-09 12.77
40 2.39 8.05 4.28E-13 2.08E-09 12.94
40 3.15 10.62 1.26E-13 4.55E-11 2.81E-09 13.47
70 2.55 3.90 2.49E-12 1.90E-09 12.52
84 2.36 4.42 1.46E-12 1.81E-09 12.66
11 10 1.73 1.59 2.04E-12 6.44E-10 12.83
25 2.76 1.39 6.45E-12 7.88E-10 12.59
55 2.67 2.79 8.63E-13 1.70E-09 13.14
70 2.31 3.29 9.32E-13 1.60E-09 12.98
85 1.94 417 5.71E-13 1.49E-09 13.01
85 3.02 6.50 2.32E-13 2.12E-10 2.34E-09 13.40
12 10 4.80 NA NA NA
35 4.20 NA NA NA
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RESULTS
Hydrography

The density structure of the Black Sea waters (as o in
kg m~3) is controlled by salinity resulting from the mixing
between Mediterranean Sea and river waters. Temperature is less
important for maintaining the basin’s density structure. At the
surface, temperature varies seasonally, resulting in a temperature
minimum at ~50 m referred to as the cold intermediate layer
(CIL). The CIUs maximum temperature boundaries are 8°C
isotherms, with its core at cg~14.6kg m~—3 (Konovalov and
Murray, 2001; Margolin et al, 2016). Between the upper
boundary of the CIL (ie., lower boundary of the euphotic
zone) and the OL-suboxic interface is the oxycline (Margolin
et al, 2016), that ranged from oo = 14.25-15.64 kg/m?
(Figures 3A-F), at slightly lower densities than those found by
Konovalov et al. (2001). The onset of sulfide began at og =
16.2kg m~3, again, at a slightly lower density than previously
found (Konovalov and Murray, 2001). This was always below
85 m and thus, none of our samples contained sulfide.

Samples were taken at the same depths at each station,
however, oxygen concentrations between stations were not
consistent with respect to depth, while they were consistent
with respect to og (compare Figures 2B, 3B). Below ~50m
at the eastern and western boundaries of the Black Sea (i.e.,
at stations 6 and 11), oxygen was high and nitrate was low
(Figures 2B,C), corresponding to deepening of the OL and
suboxic zone (Figures 2B, 3A). High DOC and low DFe were
also observed below 50m at station 11 (Figures 2D,E). This
is likely due to the general circulation (Kempe et al., 1990;
Buesseler et al., 1994; Yemenicioglu et al., 2006). The wind-
driven, counter clockwise (cyclonic) Rim Current flows along
the coasts over the shelves and exchanges water between them
and the central basin (Oguz et al., 1998; Oguz, 2002; Zhou et al.,
2014).

The boundaries of the OL and suboxic zone followed the
contours of the og isopycnal surfaces across the basin, which
was also reflected in other parameters, like DOC, nitrate, DFe
(Figures 2B-D, 3B-D), salinity and sulfide (Margolin et al,
2016). In the upper 10 m, salinity ranged from a maximum
of ~18.36 in the central basin to 17.17 and 17.87 at the western
and eastern boundaries, respectively, with the lowest salinity
near the Bosporus at station 12 (Margolin et al., 2016). Salinity
generally increased sharply to a depth of 85 m, reflected in g
(Figure 3A), and gradually increased with depth below 85m
(Margolin et al., 2016).

Biogeochemistry

At the surface (~10 m), oxygen concentrations were ~240
WM at all stations, increasing to a maximum of 320-340 pM
at a depth of ~25 m, with the exception of station 12 near
the Bosporus (Figures1, 2B). Below ~40 m, concentrations
decreased with depth at all stations, reaching 100 pM at ~95m
at the western boundary (station 11), ~50m in the central
basin (stations 3 and 4) and ~135m on the eastern boundary
(station 6) (Figures1, 2B). The onset of anoxia (and the
redoxcline) was also shallowest in the central basin (e.g., ~80 m

at stations 3 and 4) and was deeper at the basin’s western
and eastern boundaries (e.g., 111 and 185 m, respectively;
Figures 1, 2B).

At stations 2-6 DOC decreased from >180 wM near the
surface to 125-130 wM at 85 m (Figure 2D). In the upper 55 m
at station 3, DOC decreased more sharply with depth than at
all other stations. DOC decreased most gradually with depth
at station 11 (Figure 2B). Generally, DOC profiles were similar
at stations 2-6 with respect to depth (Figure 2D), while they
were unique with respect to og at station 6, having lower
concentrations at og > l4kg m3 (Figure 3D). At station
11, the depth profile of DOC deviates from other stations
below ~50 m, being ~20 wM higher than other stations
at these depths (Figure2D). However, DOC at station 11
does not deviate from other stations when related to density
(Figure 3D).

Nitrate is low (<0.2 wM) at all stations in the upper ~40 m,
increasing to a water-column maximum of 3.9-5.7 LM between
~50m (at stations 3 and 12) and 150 m (station 6) (Figure 2C,
deep data shown in Figure3C). This nitrate maximum
approximately marks the OL-suboxic interface (Murray et al.,
1995). Below this maximum in the underlying redoxcline, nitrate
is removed by denitrification (Margolin et al., 2016).

The fluorescence depth distribution is generally determined
by nutrient availability from below (see also Figures 2A,C), and
light from above. During our study, the fluorescence maximum
was between 40 and 60 m at stations 1-6 and between 20 and 30 m
at stations 11 and 12 (Figures 2, 4A).

DFe and Fe-Binding Dissolved Organic
Ligands

DFe concentrations generally ranged from 0 to ~2 nM in the
upper 85m at stations 1-11, with one sample at station 3 having
a concentration of 4.67 nM at 85m (Figure 2E). DFe was also
high at the two depths sampled near the Bosporus at station
12 (4.18 nM at 10m and 4.80 nM at ~37 m) (Figure 2E).
Concentrations near the surface at stations 2-6 ranged from
0.56 nM (at station 2) to 1.08 nM (at station 6) and decreased
with depth in the upper 40 m reaching concentrations ranging
between 0.06 nM (at station 3) and 0.36 nM (at station 5)
at ~40 m. The concentration of DFe at station 11 was also
~1 nM (1.09 nM) near the surface, similar to stations 2-6.
However, only at station 11 did concentrations first increase
to 1.98 nM at 25m followed by a decrease to concentrations
of ~1 nM at 40 m. Between 40 and 85 m, concentrations
increased slightly with depth at stations 2, 4, and 6 and increased
considerably at stations 3 and 5. The high DFe concentrations
coincided with samples taken from below the oxycline
(Figure 3E). At station 11, concentrations gradually decreased to
0.46 at 85 m.

Between 40 and 85 m, concentrations tended to increase
slightly with depth at stations 1, 4, and 6 and increased
considerably at stations 3 and 5. The high DFe concentrations
coincided with samples taken from below the oxycline
(Figure 3E). At station 11, concentrations gradually decreased to
0.46 at 85 m.
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FIGURE 4 | Transects of the cruise track of the upper 100 m from East to West. The upper boundary of the oxycline and its lower boundary (i.e., the
OL-suboxic interface) at o = 14.25kg m=3 and 15.64 kg m=3, respectively, are indicated by white dotted lines. (A) Fluorescence (jLg Chla dm—3) from calibrated
CTD sensor data. (B) the ratio [Lt]/DFe. (C) alphaFeL. (B,C) are both dimensionless. All data points are shown. Stations numbers are indicated above transect A. Note
that more stations (indicated with gray numbers) were sampled for fluorescence. In samples where two ligands could be discriminated, the data of the two ligand
model was used to calculate [L{]/DFe and alphaFel, [L{] being the sum of both ligands.
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[L¢] varied between 0.35 and 4.81 nEq of M Fe, with the
highest concentration ranges found in the samples collected near
the surface and at 85m (Figure 2F). At station 12 near the
Bosporus, high [Li] of ~5 nEq of M Fe was found near the
surface, while ~4 nEq of M Fe was found at ~37 m. At stations
1-6 and 11, concentrations generally ranged from ~1 to ~3 nEq
of M Fe, with exceptions near the surface and at 85 m (Figure 2F).
Near the surface at stations 2, 5, and 11, [L;] were low (station 2
had the lowest [L¢]) and increased to a depth of 25 m, whereas
at stations 3 and 4 in the center of the basin, [L;] were elevated

near the surface (~3 nEq of M Fe), decreasing to ~1 nM at 25 m.
[L] ranged from 1 to 2.8 nEq of M Fe between ~25 and 70 m.
At stations 2 and 3, [L¢] increased sharply from concentrations of
~1-2 nEq of M Fe at ~70 to concentrations of ~5 nEq of M Fe at
85 m. At station 4, [L;] increased slightly from ~70 to 85 m, and
Figure 3F shows that the increase at this depth range at stations
2-4 occurred below the oxycline. At stations 6 and 11, the deepest
samples were taken above the redoxcline.

The values of logK’ were between 20.74 and 22.55 for all
samples, but most of them were between 21 and 22 (25 of 34
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samples) (Table 1A). Low logK’ values (<21) were found at
stations 2 and 3 at 85m and at 10 m, respectively. These low
values are probably the result of an underestimation since the
Langmuir equation does not treat K’ and [L'] independently
from each other, as described in the Method section. If an
analytical error underestimates one, the other is automatically
overestimated (Hudson et al., 2003). The samples with logK’
<21 had a relatively high [L;] with large standard errors.
High logK’ values (>22) were observed at stations 1 (10
m), 2 (4 of 6 depths) and the 40m sample at station 3
(Table 1A).

In three samples (10 m samples at stations 2 and 5 and 85 m
sample at station 3), the ligands were saturated resulting in a low
ratio [L¢]/DFe (between 0.6 and 1). In all other samples [L(]/DFe
was between 1.5 and 26, with highest values typically at 40-54 m
depth (Table 1B).

When the more complex two ligand model was applied, two
ligand classes could be discriminated in 5 samples: station 3 at 40
and 54 m, station 4 at 40 m, station 6 at 40 m and station 11 at
85m (Table 1A). The logK’ of the stronger ligand varied between
22.07 and 24.38, while the logK’ of the weaker ligand was between
20.9 and 21.31 (Table 1A). Only up to a few data points could
be used for the calculation of the stronger ligand (2 or 3), giving
results with large standard errors (Gerringa et al., 2014). [L¢] of
the stronger ligand varied between 0.32 and 0.81, and [L] of the
weaker varied between 1.25 and 3.05 nEq of M Fe.

DISCUSSION

Possibility of Interferences by Variations in

lonic Strength and Redox Potential

The low salinity of the OL in the Black Sea (17.17-20.71) would
favor higher logK’ values, since ions have higher activities at
lower ionic strength. To calculate the ligand characteristics we
used a binding constant between our measuring ligand TAC
and Fe of logBre(tacy, = 22.4, as estimated by Croot and
Johanson (2000). They applied their method with the estimated
logBre(tacy, = 22.4 for S = 24-34, whereas Gerringa et al. (2007)
concluded that Bge(tac), did not change much until salinities
as low as § = 10, making it an acceptable calculation for the
Black Sea. A recently unpublished calibration of TAC at different
salinities in melted sea ice samples by Gerringa, confirmed
that the conditional binding strength Bre(rac)2did not change
between § = 36 and S = 10. Although the salinity did not
influence Bre(rac)2it might influence the binding of Fe with the
naturally occurring ligands. The method of Gledhill and van
den Berg (1994) using the measuring ligand 1-nitroso-2-naphtol
(NN), predicted a difference of 0.3 in logBrenN)3 between S =
17.17 and S = 34. Buck et al. (2007) used salicylaldoxime (SA) as
their measuring ligand, and the conditional binding strength of
logBre(sa)2 shifted by 0.11. Abualhaija and van den Berg (2014)
introduced a different method using the same measuring ligand
SA. Using this new SA method, Abualhaija et al. (2015) calibrated
the constants of the two SA complexes, FeSA and FeSA;, against
salinity. They found a shift in logK},, of 0.06 over the above
S range and a shift in logBresa), of 0.4. These calibrations of

conditional binding constants of the measuring ligands NN and
SA give an indication of the effect of salinity on conditional
stability constants of naturally occurring ligands. The differences
are not large, however, our results obtained at the relative low
salinities of the OL in the Black Sea may not be comparable with
results obtained at higher salinity.

Samples were not kept at the ambient redox conditions prior
to analysis, however, there wasn’t a noticeable offset between
DFe in our samples and those measured in samples that were
immediately acidified. Even in the samples with ligands that were
(nearly) saturated with Fe, including the only sample taken below
the oxycline (from 85m at station 3), Fe did not precipitate in
the sample bottles prior to analysis. Thus, correct determinations
of DFe were obtained. Apparently even after changing the redox
conditions, the ligands kept Fe in the dissolved phase.

The Ligand Characteristics logK’ and [L]

Compared to Literature Values

Compared to the Fe ligand characteristics measured in other
marine environments, the logK’ of 21-22 obtained here is
relatively low, while a [L¢] of 1-2.8 nEq of M Fe is similar to
values found by others in a diverse range of oceans and seas (Rue
and Bruland, 1995; Cullen et al., 2006; Gledhill and Buck, 2012;
Gerringa et al., 2015). Data obtained with the same method and
equipment in the Western Atlantic resulted in a higher logK’
of 22.49 (standard error from mean, SE = 0.55, N = 246) and
comparable average [L{] = 1.25 (SE = 0.51, N = 246) (Gerringa
et al,, 2015). Kondo et al. (2007, 2012) used the same measuring
ligand, but with another buffer, EPPS. They measured high logK’
values at high salinities in the coastal Sulu Sea (logK’ = 22.3-24.1,
pH = 8 in Kondo et al., 2007) as well as in the open Pacific (78%
of the logK'values were >22, pH = 8.1 in Kondo et al., 2012).
In the present study in the Black Sea the logK’ is relatively low,
although lower conditional stability constants have been reported
before (Rue and Bruland, 1995; Cullen et al., 2006).

The Black Sea has a large river input, according to Margolin
et al. (2016), the contribution of river water in the OL is ~50%
resulting in DOC concentrations being 2.5 times higher than
in the open ocean (Ducklow et al., 2007). Jones et al. (2011)
showed that organic complexation is essential for the transport
of Fe from the sediment and out of the estuaries. Most likely
humics contribute to a large extend to the Fe-binding organic
ligand pool leaving the estuaries. These humics have a relatively
low logK’ according to Laglera and van den Berg (2009). They
measured, using DHN as measuring ligand at pH = 8, the logK’
of fulvic and humic acids and of samples rich in humics to
be between 20.6 and 21.1. These low logK’' values of humics
forms an explanation of the relatively low logK’ that we found.
Results from the literature on logK’ in coastal surface waters
with low salinities and potentially large river influence agree well
with our results, having also found lower values [20.3-22.1 in
Gledhill et al. (1998), using NN as measuring ligand and pH
= 6.9; 20.8-21 in Croot and Johanson (2000) using the same
measuring ligand TAC and pH = 8.05 as in the present study;
20.1-21.4 in Rijkenberg et al. (2006b) using the same measuring
ligand TAC and pH = 8.05, as in the present study; 20.3-21.5
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in Buck and Bruland (2007) using SA as measuring ligand and
pH = 8.2]. However, Buck et al. (2007), using the same method
as Buck and Bruland (2007), measured higher logK’ values of
21.9-23 in estuarine waters with salinities between 1.4 and 33.9.
Mahmood et al. (2015) and Abualhaija et al. (2015) (both using
SA at pH = 8.1) did not find a relationship between salinity and
logK’ in the Mersey estuary but [L;] did decrease with salinity.
Thus, although most coastal research resulted in relatively low
logK’ values, probably due to the large input of terrigenous
DOC from rivers, not all studies come to the same conclusion.
Bundy et al. (2015) distinguished strong and weak ligand groups
in estuarine samples. They suggested that both ligand groups
consisted of humic materials and that these large molecules have
different binding sites. Whether these sites are available to bind
Fe depend on environmental conditions. This is an interesting
view that might form the explanation for the absence of a discrete
relationship between salinity and properties of the dissolved Fe
binding ligands. In the Black Sea we might attribute the low
the logK’ values to the nature of DOM, but we do not find a
relationship between [L¢] and DOC in the Black Sea, as Wagener
et al. (2008) found during a time series in the Mediterranean Sea.

Sources and Sinks of Fe and Fe-Binding

Dissolved Organic Ligands

At stations 1-6, DFe was slightly elevated at the surface and
high near the redoxcline. In the upper 50 m of stations 11 and
12 near the Bosporus (excluding the surface sample at station
11), DFe was higher than in the rest of the basin. Rivers are the
most probable sources of DFe for these coastal stations compared
to the basin interior. At station 6, DFe is higher in the upper
40 m than at stations 1-5 and 11. According to the findings of
Margolin et al. (2016), the highest percentages of freshwater were
found near the surface, which penetrated deeper at station 6
than at other stations. This higher percentage of freshwater at
station 6 explains why the 0@, oxygen and nitrate depth profiles
at stations 1-5 are more similar to station 11 than station 6. This
may also explain the higher DFe in the upper 40 m at station 6,
when compared to stations 1-5. However, the depth profiles of
DOC and [L;] at station 6 are comparable to those at stations
2-5 (Figures 2D,F), while the DOC vs. density profile is unique
(Figure 3). When comparing DOC, between stations 6 and 11,
and to a lesser extent DFe, it is surprising that their distributions
with respect to density are so different since both stations are
located near the boundaries of the basin (Figures 1, 3D,E) and
both are affected by the Rim Current. One possibility could be
that processes that remove DOC are influenced more strongly
or are controlled by depth rather than density. Another possible
explanation for this difference is that station 6 was sampled on the
eastern boundary of the Batumi eddy, which is an anti-cyclonic
(clockwise), semi-permanent eddy located to the east of the Rim
Currents eastern boundary (Oguz et al., 1993, 1998; Margolin
et al., 2016). It is possible that the Batumi eddy is responsible
for the unique DOC distribution at station 6. Influences from
rivers or other anthropogenic sources are predominantly in the
northwestern part of the Black Sea and are not expected to play a
large role at station 6 (Borysova et al., 2005).

The anoxic water in the deep basin is known to be a
source of Fe from below (Spencer and Brewer, 1971; Dyrssen
and Kremling, 1990; Lewis and Landing, 1991; Tankéré et al.,
2001; Yemenicioglu et al.,, 2006), shown here by the elevated
concentrations below the oxycline (Figure 3E).

In the OL at stations 3 and 4, the Fe-binding dissolved organic
ligands are higher near the surface than below, which is not
observed in the other stations (Figure 2F). Apparently there is
either a source of ligands in the center of the basin or greater
degradation of organic ligands at the sides of the basin. Rivers
as sources are expected to be more important along the coasts
and especially in the north-west, where the largest rivers enter
the Black Sea (Figure 1). The effect of lateral transport of organic
ligands from the shelf is expected to be less in the central stations
3 and 4. Another probable explanation for a heterogeneous
distribution of organic ligands might be the hydrography of the
Black Sea, through the existence of the cyclonic and anticyclonic
gyres and eddies (Oguz et al., 1993, 1998).

[L¢] tend to be elevated in the suboxic zone below the
oxycline (Figure 3F), while no [L¢] data is available in the
underlying anoxic layer. The ligands are either formed in suboxic
conditions or concentrated at the redoxcline, however, with the
data obtained here we cannot distinguish between these possible
processes. Witter et al. (2000) found an increase in [L{] in
the oxygen minimum zone of the Arabian Sea and attributed
this to biological degradation, suggesting that these ligands are
breakdown products. They did not find a relationship between
logK" and the oxygen concentration. The pH influences metal
speciation and it decreases with decreasing oxygen. At some of
our sampled depths alkalinity and dissolved inorganic carbon
(DIC) were measured, which enabled the calculation of pH.
Error was estimated according to Dickson and Riley (1978)
(unpublished results N. M. Clargo). In the top 10 m the pH varied
between 8.15 and 8.39 (£ 0.0244). At station 6 the pH remained
round 8.22-8.23(+ 0.0244) between 10 and 85 m. At station 5
however, the pH decreased to 7.91(+£ 0.0244) at 55 m (0@ = 14.65
kg/m3). Hiscock and Millero (2006) found similar values, the pH
was 8.3 in the upper 40 m of the Black Sea and decreased to 7.7
and 7.4 in the oxycline (6o = 14.25-15.64 kg/m?). According to
Gledhill et al. (2015) a decrease in pH from 8.3 to 6.8 results in a
decrease in organic complexation and an even larger decrease in
inorganic complexation. The simultaneous decrease results in a
decrease in organic complexation when expressed to [Fe>*] but
in an increase when compared to [Fe’]. This might explain the
high logK’ values measured in the suboxic zone of the tropical
North Pacific by Hopkinson and Barbeau (2007). They attributed
these relatively strong ligands either to chemical processes at low
oxygen concentrations that stabilized labile Fe compounds or to
production by Prochlorococcus population present in this suboxic
zone. However, like we did in the Black Sea, they measured
complexation at the constant pH of 8.05, and thus no information
about the actual in situ changes in organic complexation could be
obtained.

Complex redox cycling, such as the oxidation of reduced
Fe(Il) as it diffuses upwards, and the reduction of sinking
Fe(IIT)(hydr)oxides occur near the redoxcline (Spencer and
Brewer, 1971; Sorokin, 2002b; Yemenicioglu et al., 2006; Dellwig

Frontiers in Marine Science | www.frontiersin.org

11

May 2016 | Volume 3 | Article 84


http://www.frontiersin.org/Marine_Science
http://www.frontiersin.org
http://www.frontiersin.org/Marine_Science/archive

Gerringa et al.

Fe-Ligands in Oxic Black Sea

et al., 2010). [L¢] near the redoxcline will have consequences for
the redox processes of Fe, since organic ligands are known to
influence the oxidation and reduction of Fe (Santana-Casiano
et al., 2000; Rijkenberg et al., 2006a; Gonzalez et al., 2012) (in
fact, this effect is used by CLE-aCSV, which change the half-wave
potential of metals like Fe by complexing it to for example TAC).
Increasing and decreasing oxidation rates of Fe(II) in seawater
depend on the nature of the organic matter added (Santana-
Casiano et al., 2000, 2010; Rijkenberg et al., 2006a; Gonzélez et al.,
2012). Since [L¢] tends to be saturated near the redoxcline, the net
effect of these reactions likely keeps DFe in the OL and suboxic
zone, decreasing the flux to the anoxic layer and retarding particle
formation.

The Availability of Organically Complexed
DFe

The ratio [L{J/DFe had a maximum where ligands were
relatively under saturated, corresponding to high fluorescence
(Figures 2A, 4A,B). This ratio decreased due to increasing DFe
concentrations above and below the fluorescence maximum
(Table 1B, Figures 2A, 4A,B). In general, the log(alphaFeL) (i.e.,
the capacity of the dissolved organic ligands to bind with Fe)
ranged from 12 to 14.16, with the two highest values (13.13
to 14.16) coinciding with the five samples in which two ligand
classes were discriminated (Table 1B, Figure 4C). There were
three samples outside of this range with low log(alphaFeL) values
(10.31, 10.91, and 11.57) and low [L{]/DFe ratios indicating
ligands that were saturated with Fe (i.e, the 10m samples
at stations 2 and 5 and the 85m sample at station 3). At
the fluorescence maximum (40-50m in Figures 2A, 4A), the
[L¢]/DFe ratio and log(alphaFeL) tended to have their highest
values (Figures 4B,C), and DFe its lowest. We found a significant
correlation between log(alphaFeL) and fluorescence and between
[L¢]/DFe and fluorescence (Table 2). [L;]/DFe and log(alphaFeL)
of station 11 appear to be heavily influenced by elevated DFe
from the shelves. AlphaFeL is close to zero when ligands are
saturated with Fe. Removing station 11 and the samples where
the ligands were saturated with Fe (10 m at station 2 and 5 and
85m at station 3) from the data does indeed result in a better
relationship between fluorescence with log(alphaFeL) and with
[L¢]/DFe (Table 2, Figure 5). According to our relationships only
part of the Fe binding organic ligand properties can be explained
by fluorescence. This means that other sources contribute to
the Fe binding ligand pool. Humics from the shelves and rivers
can be laterally transported as also found by others in estuaries
(Laglera and van den Berg, 2009; Batchelli et al., 2010; Jones
et al,, 2011; Laglera et al., 2011; Abualhaija et al., 2015; Bundy
etal., 2015; Mahmood et al., 2015). Arthur et al. (1994) suggested
that >25% of the organic carbon in sediments was of terrestrial
origin, whereas in 1996 Coble could really detect humic-like
components in the Black Sea samples (Coble, 1996). Margolin
et al. (2016) concluded that in our recent samples, >50% of
DOC likely has a terrigenous source. Although humics are
expected to be important, we cannot exclude the contribution
of siderophores from bacterio-plankton (Macrellis et al., 2001;
Gledhill et al., 2004; Martinez and Butler, 2007; Mawji et al., 2011)

and zooplankton grazing (Sato et al., 2007; Sarthou et al., 2008)
as source of ligands in the Black Sea.

The increasing log(alphaFeL) results from an increase in [L'].
[L'] can increase due to an increase in [L¢], an accumulation of
ligands by for example microbial production (Rue and Bruland,
1995; Gerringa et al., 2006; Tian et al., 2006; Buck and Bruland,
2007) or a lateral supply (Laglera and van den Berg, 2009;
Batchelli et al., 2010; Jones et al., 2011; Laglera et al., 2011;
Abualhaija et al., 2015; Bundy et al., 2015; Mahmood et al., 2015).
Alternatively, [L'] can increase due to the biological utilization
of Fe from organic Fe-complexes (decreasing [FeL] at a constant
[L¢]). Here we define biological utilization of Fe as the transfer
of Fe from the ligand pool to the cells without defining if the Fe
is internalized or is adsorbed or bound to the outside of the cell.
However, Twining et al. (2015) found that externally scavenged
Fe was not a significant Fe fraction of life phytoplankton cells.
Anyhow, the consequence of the biological utilization of Fe
is that [L'] increases because Fe is removed from the organic
ligands. In the Black Sea, the suggested biological utilization
of Fe from the natural dissolved organic ligands resulted in
low [Fe'] (inorganic Fe not bound by dissolved organic ligands,
Table 1B).

Fe complexed by natural dissolved organic ligands is
biologically available, as observed by Maldonado et al. (2001,
2005) in the Southern Ocean and sub-Antarctic waters.
Maldonado et al. (2005) and Shaked et al. (2005) showed that
Fe was taken up from strong Fe binding organic ligands by
bacteria and phytoplankton including diatoms. Photochemistry
of the Fe-complexes appeared to play a role, although according
to Maldonado et al. (2005) the photolability of the ligands was
not the determining factor. Shaked et al. (2005) introduced a new
uptake model in which extracellular reduction at the cell wall
was a necessary step in the uptake process. The reductive step
theory has the advantage that it is non-specific for both the type
of micro-organisms and the organic Fe-species (Shaked and Lis,
2012). However, other uptake processes exist, see references in
Shaked and Lis (2012). The low [Fe’] and high [L'] that we find
indicates that most ligands were not destroyed during biological
utilization leaving the ligands intact for further complexation
of Fe.

Acknowledging the existence of two ligand classes in five
samples improves the correlation between fluorescence with
log(alphaFeL) and with [L;]/DFe even more (Figure 5, Table 2).
Four out of the five samples in which two ligand classes were
distinguished occurred in the fluorescence maximum. Also here
it is tempting to conclude that phytoplankton produced the
relative strong ligand class, as was concluded by a.o. Rue and
Bruland (1995). However, another explanation might be that Fe
has been utilized by phytoplankton, not only from the relatively
weak Fe-binding organic ligands, but also from the relatively
strong Fe-binding organic ligands. When the relatively strong
Fe-binding organic ligands are unsaturated, these can be titrated
with Fe during the analysis and thus can be distinguished
(Gerringa et al., 2014).

Although a relationship between [L{] and the fluorescence
maximum has been observed before (Gerringa et al., 2006), this
is not the case for alphaFeL. The reason that this relationship
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TABLE 2 | The relationships between log(alphaFeL) and [L{]/DFe (both dimensionless) with fluorescence (as ng Chlo dm—3).

Y X Samples N One ligand model Two ligand model
R2 p R2 p

Logalpha Fluorescence All 34 0.19 <0.01 Y =24X+123 0.20 <0.01 Y =27X+123
-st11 29 0.28 <0.001 Y =31X+ 121 0.31 <0.001 Y =3.5X+12.1
-st11 -3 26 0.43 <0.001 Y =20X+125 0.41 <0.001 Y =24X+122

[Lt}/DFe Fluorescence All 34 0.35 <0.001 Y =23.8X+ 2.1 0.39 <0.001 Y =20.7X+22
-st11 29 0.53 <0.001 Y =30.4X+1.5 0.35 <0.001 Y =19.1X+2.7
-st11 -3 26 0.49 <0.001 Y =28.5X + 2.1 0.59 <0.001 Y =248X+23

Three scenarios were calculated for A: all samples, B: all samples minus station 11, C, all samples minus station 11 and three samples with saturated ligands. Relationships are given
for: Left: data using only the 1 ligand model. Right: data using the results of the two ligand model for samples where this model could be applied successfully.
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FIGURE 5 | The ratio log(alphaFeL) (A) and [L]/DFe (B) vs.
fluorescence (as g Chla dm—3). For those samples where two ligands
could be discriminated the data of the two ligand model was used. In Table 2
three scenarios were calculated, including the relationships, p and R2.

is shown so clearly here might be due to the Black Sea’s inland
setting and local DFe sources. DFe concentrations are relatively
high especially near the redoxcline, and relatively low DFe exists
at 40 m depth where the maximum fluorescence was recorded
(Figures 2A,E). This contrast over a relatively shallow depth
range may highlight the relationship between fluorescence with
log(alphaFeL) and with [L¢]/DFe.

CONCLUSIONS

Compared with ligand characteristics from open ocean
environments the logK’ of 21-22 measured in the OL of the
Black Sea is relatively low. This is probably due to the more
coastal sources of DOC (i.e., terrigenous origin), and is likely
not because of the Black Sea’s lower salinity. [L(] of 1-2.8 nEq
of M Fe is similar to the average values found in other seas and
oceans.

Sampling at different redox environments where different
redox processes occur, did not affect the logK’ within the
detection window of our method (Apte et al., 1988; Sander
et al., 2011; Gerringa et al., 2014; Laglera and Filella, 2015;
Pizeta et al., 2015). In the suboxic zone DFe was higher due
to an increase in solubility. Also [L{] increased in the suboxic
zone and the ligands here were saturated with Fe. Ligands were
also saturated with Fe near the Bosporus and at 2 stations in
the surface. Everywhere else it was the presence of unsaturated
dissolved organic ligands that determined the solubility of
Fe. This means that in the OL, the solubility and chemical
availability of DFe is largely controlled by the dissolved organic
ligands.

A significant relationship existed between the alpha coefficient
of the dissolved organic ligands and fluorescence, and also
between the ratio [L¢]/DFe and fluorescence. These relationships
are best explained by Fe bound by dissolved organic ligands being
utilized by phytoplankton.

An interesting observation was that [L;] increased near the
suboxic zone at most stations. Transport of Fe over the oxic—
anoxic boundary depends strongly on redox processes and
the solubility of Fe. Organic complexation of Fe, affecting Fe
solubility and redox processes, can therefore play an important
role in the vertical transport of Fe in the Black Sea (Santana-
Casiano et al., 2010; Gonzélez et al., 2012).
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