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Human populations are concentrated along coastal regions worldwide, placing a

disproportionate stress on coastal marine ecosystems. Ironically, biogenic habitats

may be adversely affected by human activities though they serve to attenuate the

impacts of global change on coastal cities. Surprisingly, simple, coastwide indicators

of anthropogenic influences in relation to the spatial distribution of biogenic habitats are

relatively underdeveloped. In this paper, we introduce a spatially explicit index of coastal

as well as upland riverine human population proximity, based on human population and

river dynamics datasets on the West- and Gulf-Coasts of the US. We then examine the

relationship between these indices and biogenic habitats (kelp and mangrove forests).

Finally, we identify patterns of landscape-scale biodiversity with human populations,

and explore occurrence of biogenic habitats within and outside of marine protected

areas (MPAs). We found that biogenic habitats were negatively associated with human

populations and that MPAs were generally placed away from people. Landscape-scale

patterns of biodiversity did not differ within and outside kelp forests and MPAs on the

West Coast, but had a negative association with mangroves and a positive association

with MPAs on the Gulf Coast. This index can be used anywhere in the world, can project

into the future using various human population growth forecasts, and can serve as an

important method for conservation triage.

Keywords: coastal marine, nearshore, biogenic habitat, indicators, ecosystem based management, human

populations, marine protected areas

INTRODUCTION

Nearly 37% of the Earth’s seven billion people live within 100 km of the coast (Sale et al., 2014). This
coastal region is 20% of Earth’s total land area; thus, it bears a disproportionate brunt of human
impacts (von Glasow et al., 2013; Barragán and de Andrés, 2015). Moreover, in the future, coastal
populations are expected to rise at greater rates relative to inland ones (Seto et al., 2011; Neumann
et al., 2015), further exacerbating this problem. This disparity between coast and inland areas is
particularly pronounced in theUnited States. By 2050, the population is expected to increase by 44.2
million with the majority of the increase occurring within 100 km of the coast, where population
density increases are projected to be 6.1 times that of inland densities (Bengtsson et al., 2006).

As human populations grow, so too will impacts on coastal and nearshore ecosystems. And
evidence of the impact from exposure to human populations, either directly via geographic
proximity or indirectly via adjacency to river mouths, is overwhelming. Development and
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urbanization of marine coastline results in the input of thousands
of toxicants, industrial contaminants, and pesticides from storm
water runoff (Venkatesan et al., 1999; Zeng and Venkatesan,
1999; Van Dolah et al., 2008; Hwang et al., 2009). Additionally,
alteration of the landscape often increases rates of sedimentation
(Crossland et al., 2005; Syvitski et al., 2005; Syvitski andMilliman,
2007) that can smother sessile species or reduce their viability
by altering light levels. Agricultural activities and sewage effluent
lead to eutrophication in these systems (Scott et al., 1999;
Costanzo et al., 2001; Rabalais et al., 2009, 2010), and shoreline
hardening and other physical alterations can disrupt coastal
ecosystems (Rice, 2006; Jackson et al., 2008; Morley et al., 2012).
All of these insults collectively alter and destroy biogenic habitats
occurring in marine coastal regions (Duarte et al., 2008, 2013;
McLeod et al., 2011; Fourqurean et al., 2012; Watanabe and
Kuwae, 2015). Given these and other impacts of humans, the
sustainability of coastal and nearshore ecosystems depend on
effectively anticipating and mitigating current and future human
pressures.

While it is, perhaps, obvious that combating the
negative impacts of humans is paramount for sustainability,
operationalizing this truism is challenging. A major hurdle is a
lack of data. Comprehensive, direct measures of human activities
are available in only a few locations, and these are primarily
only in developed countries (e.g., Halpern et al., 2009; Micheli
et al., 2013; Andersen et al., 2015). Even in regions that might be
considered data-rich, appropriate data are rare. Thus, there is a
need for spatially explicit indicators of potential human impacts
in coastal zones (depths <50 m), given cumulative impacts
from human stressors are increasing the most in coastal areas
(Halpern et al., 2015). Many have argued that human population
density, in and of itself, can be a suitable proxy for anthropogenic
impacts in coastal regions (Steele, 1998; Gorman et al., 2009;
Mora et al., 2011; Sale et al., 2014). Consequently, developing an
index of coastal human population, which could be developed
and applied anywhere on the earth, would be useful. In this
paper, we introduce indices that are based on simple, globally
available data. We then pilot the use of these indices for two case
study locations in the United States characterized by distinct
biogenic habitats: kelp forests of the West Coast, and mangroves
of the Gulf of Mexico (Figure 1).

MATERIALS AND METHODS

Development of Indices
Below we describe the development of two indices that represent
the degree of proximity to human populations in coastal
and nearshore ecosystems. The Population Proximity Index
(PPI) describes the magnitude of population proximity with
humans occurring along marine coasts. The Riverine Population
Index (RPI) describes the magnitude of population proximity
associated with river basins that discharge into and impact coastal
areas. We generate these indices for the West and Gulf Coasts of
the United States. Lastly, in order to demonstrate the potential to
use these indices to forecast future human pressures, we develop
a Population Projections Index for the Contiguous United States,
which is based on 2010–2050 human population projections,

segregated by coastal and inland regions (see Supplementary
Material).

Population Proximity Index—PPI
To approximate the proximity of human populations in the
nearshore (defined as the region between the shoreline and the
50m isobath; Steele, 1998; Erlandson and Rick, 2008), we used
the “focalmean” tool in ArcCatalog to extrapolate the PPI on our
nearshore source grid. “Focalmean” calculates a new value for
each grid cell in an existing grid, based on the average value of
grid cells falling within our defined search radius of∼20 km. We
chose this radius as it reasonably approximates the nearshore in
our study regions. We created a source grid for our focal mean
calculations by combining the LandScan (Bright et al., 2012) grid
with the nearshore grid. Each of the grid cells in the nearshore
source grid had an initial value of 0, and all of the terrestrial
grid cells had the corresponding population count information
from LandScan. After running the focalmean tool, we set all land
grid cells in the resulting PPI grid to a value of no data. The
output grid in the remaining nearshore region was standardized
to values ranging from 0 to 100.

Data: Human Populations
We used the 2011 LandScan (Bright et al., 2012) global, gridded
(30-arcsecond spatial resolution, ∼900 m), human population
count data as the basis for our two indices (PPI and RPI)
of human population influence. This data layer is the highest
resolution currently available and is based on an algorithm which
uses spatial data and imagery analysis technologies and a multi-
variable dasymetric modeling approach to disaggregate census
counts within an administrative boundary (Bright et al., 2012).

For human population projections in coastal vs. inland
regions, from 2010 to 2050, we used a data layer generated
by Bengtsson et al. (2006). We used the IPCC SRES (Special
Report on Emissions Scenarios) B2 scenario family population
projection from Bengtsson et al. (2006), which was “based on
the long-term UN Medium 1998 population projection of 10.4
billion by 2100” (IPCC, 2000).

Riverine Population Index—RPI
To represent the relative proximity of human populations
residing within river basins that flow into the coastal zone,
we multiplied predicted river discharge (see Supplementary
Material) values (Cohen et al., 2014) by the corresponding total
LandScan (Bright et al., 2012) human population count for each
basin that flowed directly into our two coastal study regions. We
then generated inverse distance weighted grids (calculated from
the corresponding mouth of each river) across the coastal zone
defined in the PPI, for each river basin. Finally, we summed
all of the resulting inverse distance weighted grids into a single
composite grid and standardized values to range from 0 to 100.

Piloting the Use of the Indices
We explored the utility of our indices for two cases: kelp
forests in the California Current along the U.S. West Coast;
and, mangrove forests in the U.S. Gulf of Mexico (Figure 1).
We focus on these two cases of biogenic habitat because they
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FIGURE 1 | Locations of study regions, West and Gulf Coasts of the United States. Continental shelf zone (<200m depth) indicated by light blue region

adjacent to shore. Brown regions on land indicate urban areas with population density >900/km2 (U.S. Census Bureau, 2012).
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provide important nursery, refuge and foraging habitat (Ewel
et al., 1998; Steneck et al., 2002; Graham, 2004; Mumby et al.,
2004; Aburto-Oropeza et al., 2008), and they protect coastlines
from storm events and sea-level rise (Arkema et al., 2013).
In addition, they are sensitive to a variety of anthropogenic
impacts including nutrient loading, sedimentation, pollution and
physical disturbance (Valiela et al., 2001; Duke et al., 2007;
Mangialajo et al., 2008; Foster and Schiel, 2010). We used the
Population Proximity and Riverine Population Indices to explore
the degree to which these habitats, and the biodiversity therein,
are potentially influenced by proximity to human populations
(PPI) or their effluent (RPI). Additionally, we explore the degree
to which one spatial management tool (Marine Protected Areas,
MPAs) used to protect these habitats are associated with human
populations. Finally, using future human population predictions,
we investigate how the spatial distribution of human pressures
may change in the future.

Pilot Study Data

Kelp
We used the most recent surface kelp forest geospatial data layers
from the following state agencies: California Department of Fish
and Game (1989, 1999, 2002-2006, 2008, and 2009; CDFW,
2012), Oregon Department of Fish and Wildlife (1990, and
1996-1999; ODFW, 2008), and, Washington State Department of
Natural Resources (1989-1992, and 1994-2004; WADNR, 2005).
All of these data layers were designed to map the maximum
known extent of kelp canopy and were suitable for our study
in that they are the best available set of data that adequately
represent the spatial extent of kelp forests occurring off the
California, Oregon and Washington coasts (see Supplementary
Material).

Mangroves
We used a geospatial data layer of global mangrove forest
distributions, which was based on classification of LANDSATTM
satellite imagery (Giri et al., 2011a,b).

Bathymetry
We used National Geophysical Data Center (NGDC) 3-
arcsecond (∼90m), gridded bathymetry data (see Supplementary
Material), to identify the elevation range occupied by kelp and
mangrove forests, which we then used to define the elevation
range over which we ran our spatial analyses on the West and
Gulf Coasts (NOAA, 2003).

Biodiversity
To explore biodiversity, we used a global, gridded (360-
arcsecond, ∼11 km) geospatial datalayer of the Gini-Simpson
index (OBIS, 2013), which is defined as the probability that
two samples taken at random will contain different species (see
Supplementary Material).

Marine protected areas
We used geospatial data layers of marine protected areas
(MPAs) from the National Marine Protected Areas Center
(http://marineprotectedareas.noaa.gov/sciencestewardship/gis/).

We limited our analyses to “no access” or “no take” MPAs, which
have the strictest regulations with respect to use and access.

Pilot Study Spatial Analyses
We used various GIS software to spatially overlay the geospatial
data layers with each other in order to measure the degree
of overlap between them (see Supplementary Material). We
summarized the overlay analyses in two different ways: area
weighted mean (AWM) and cumulative area distribution plots.
AWM provides a general “snapshot” comparison of the various
indices (PPI, RPI, and biodiversity) within and outside the
biogenic habitats andMPAs, whereas cumulative area plots afford
greater detail about the spatial distributions of biogenic habitats
and MPAs relative to the aforementioned indices. We calculated
AWM values within and outside of biogenic habitats and MPAs
using the following equation:

Iawm =

[

n
∑

1

in(an)

]

/A

i is a unique index value for a given group of grid cells, a is the
total area of grid cells with the corresponding index value and A
is the total area of all grid cells within or outside a given biogenic
habitat or MPA.

Cumulative area distribution curves and plots are used for
a variety of applications, including geomorphology (Perera
and Willgoose, 1998), spatial pattern analysis (Bogaert et al.,
2002), and landscape ecology (Broadbent et al., 2008; Schnell
et al., 2013). We generated cumulative area plots by ranking a
given index (i.e., PPI, RPI, and biodiversity) from low to high,
calculating the relative proportion (% based on area) of those
values and then tallying a running sum of the proportion. We
generated cumulative area plots for areas within and outside of
kelp, mangroves and MPAs as a function of the various indices.
Cumulative area plots for the region outside of a given biogenic
habitat or MPA were assumed to be the underlying cumulative
area distribution for a given index, and the cumulative area plots
of the various biogenic habitats and MPAs were then compared
with those underlying distribution plots. Plotting consistently
to the left of a given underlying distribution suggests negative
correlation with a given index and plotting to the right indicates
positive correlation. Plotting essentially on top of the underlying
distribution suggests no correlation between a given index and
MPAs or a given biogenic habitat.

RESULTS

Human Population Indices
The PPI in the California Current was relatively low off the
Washington and Oregon coast (Figure 2A) but substantial
near San Francisco (Figure 2B) and southern California in
general (Figure 2C). Based on the projected population analyses
(Supplementary Figure 1), the total population within the West
Coast study region is expected to increase by 8.3 million, with
∼83% of that increase occurring within 100 km of the coast.
The greatest increases were concentrated around existing large
urban areas (San Francisco Bay and Los Angeles/San Diego),
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FIGURE 2 | Population proximity index (PPI) and Riverine Population Index (RPI) spatial patterns off the West Coast. Dashed yellow lines mark ∼20 km

buffer used for generating PPI from LandScan population grid. Lighter gray areas on land indicate urban areas with population density >900/km2 (U.S. Census

Bureau, 2012). Small black patches off coast are kelp. (A) PPI enlargement of coastal Washington and Oregon. (B) PPI enlargement of coastal Northern California. (C)

PPI enlargement of coastal Southern California. (D) RPI enlargement of coastal Washington and Oregon. (E) RPI enlargement of coastal Northern California. (F) RPI

enlargement of coastal Southern California.
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which would disproportionately increase the PPI in these areas.
Northern California and the outer coast of Washington and
Oregon were not predicted to experience major population
increases by the year 2050 (Supplementary Figure 1).

The RPI in the California Current was dominated by the
Columbia River and Sacramento River basins, home to 6.7 and
9.0 million people, respectively (Figures 2D,E). The RPI was
relatively low off the southern California coast (Figure 2F). As
for the PPI, the total regional population is expected to increase
by 8.3 million by 2050, but only ∼17% of that increase is
projected to occur more than 100 km away from the coast. The
greatest inland population increases were within the Sacramento
River basin, draining into the San Francisco Bay, which would
disproportionately increase the RPI off the coast of San Francisco.

There were fewer stretches along the Gulf Coast with lower
PPI values (Figure 3), with marked foci near Houston and
Corpus Christi, TX (Figure 3A), New Orleans, LA, Mobile, AL,
and Pensacola, FL (Figure 3B), and many regions off the South
Florida coast (Figure 3C). Based on the projected population
analyses (Supplementary Figure 1), the total population within
the Gulf Coast study region is expected to increase by 21.7
million, with ∼23% of that increase occurring within 100 km
of the coast. The Houston, New Orleans, Tampa/St. Petersburg,
and Miami metropolitan areas were projected to experience
substantial population increases by 2050 (Supplementary
Figure 1), which would disproportionately increase the PPI is
these areas.

The RPI off the Gulf Coast was dominated by the Mississippi
River basin (Figure 4B), which is currently home to ∼81 million
people. There were other sizable rivers with significant discharge
rates and human populations living within their basins, namely,
Mobile, Apalichicola, Naches/Sabine, and Pascagoula Rivers
(Figures 4A,C). Based on the projected population analyses
(Supplementary Figure 1), the total population within the Gulf
Coast study region is expected to increase by 21.7 million
by 2050, with the vast majority of that (∼77%) projected to
occur inland (>100 km of the coast). The greatest inland
population increases were within the Mississippi River basin,
which would disproportionately increase the RPI off the coast
of New Orleans and the Mississippi River delta. There were
also significant increases projected to occur in the Trinity River
and Colorado River basins, which would disproportionately
increase the RPI off the coasts of Galveston and Freeport,
respectively, the latter of which currently has a relatively low RPI
and PPI.

Biodiversity
Across the West and Gulf Coasts, there was no significant
correlation between the PPI or RPI and biodiversity, based on
the raw grid cell regression plots (Supplementary Figures 2, 3).
Similarly, looking across the West Coast as a whole, biodiversity
within and outside kelp forests and MPAs (see inset bar charts
in Supplementary Figures 4A,B) was similar. The cumulative
area distribution of biodiversity in kelp forests and MPAs was
essentially identical to the underlying distribution of biodiversity,
so biodiversity within kelp forests and MPAs was similar to what
would be expected if kelp forests and MPAs were randomly

distributed with respect to biodiversity (Supplementary Figures
4A,B).

On the Gulf Coast, biodiversity was generally lower within
mangrove forests but slightly higher within MPAs (see inset bar
charts in Supplementary Figures 5A,B). The cumulative area
distribution of biodiversity within mangrove forests was always
to the left of the underlying distribution of biodiversity, so
biodiversity within mangroves was lower than would be expected
if mangroves were randomly distributed with respect to the
biodiversity (Supplementary Figure 5A).

Approximately 15% of the total area outside of MPAs along
the Gulf Coast had a biodiversity of zero (note y-intercept of
blue line on Supplementary Figure 5B). Within MPAs in the
same elevation region, no grid cells had a biodiversity value of
zero (note y-intercept on Supplementary Figure 5B). Overall,
AWM biodiversity was slightly higher within (0.78) compared
to outside (0.70) MPAs (see inset bar chart in Supplementary
Figure 5B). Biodiversity within 29% of the total area of MPAs was
higher than would be expected if the mangroves were randomly
distributed with respect to biodiversity (note cumulative area
value occurring at within- and outside-MPA line intersection in
Supplementary Figure 5B). The cumulative area distribution of
biodiversity outside MPAs was to the left of the within MPA
distribution, up until a biodiversity of 0.61 or 29% of the total
area (Supplementary Figure 5B). Conversely, about 71% of the
total MPA area occurred in areas with a biodiversity >0.61
(note remaining cumulative area value occurring at within- and
outside-mangrove line intersection in Supplementary Figure 5B).

Pilot Study Results
Population Proximity Index and Biogenic Habitats
Our examination of the proximity of human populations and
kelp forests revealed that the PPI on the West Coast was almost
50% lower within kelp forests than in areas outside of kelp
forests (AWM 3.57 and 7.60, respectively, see inset bar charts in
Figure 5A). All kelp forests had at least some people living within
20 km, given none of the patches fell within PPI grid cells with
an index of zero (Figure 5A). The cumulative area distribution
of PPI in kelp forests was always to the left of the underlying
distribution of the PPI, so the PPI within kelp forests was lower
than would be expected if kelp forests were randomly distributed
with respect to the PPI (Figure 5A).

Over 47% of the total area of mangroves along the Gulf Coast
occurred at least 20 km away from any humans (PPI = 0, note
y-intercept on Figure 5B). In the same elevation region (+1 to
−1 m) outside mangroves, only 11% of the area was at least 20
km from any humans (PPI = 0, note y-intercept on Figure 5B).
However, AWM PPI was similar within (2.86) compared to
outside (2.65) mangroves. The PPI within 83% of mangroves was
lower than would be expected if the mangroves were randomly
distributed with respect to the PPI (note cumulative area value
occurring at within- and outside-mangrove line intersection
in Figure 5B). The cumulative area distribution of PPI in
mangroves was to the left of the non-mangroves distribution,
up until a PPI of 3.44 or 83% of the total area (Figure 5B),
which accounted for the apparent disparity between AWM- and
cumulative area-PPI scores. This is due to the fact that about 17%
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FIGURE 3 | Population proximity index spatial patterns for Gulf Coast. Dashed yellow line indicates ∼20 km buffer used for generating PPI from LandScan

population grid. Lighter gray areas on land indicate urban areas with population density >900/km2 (U.S. Census Bureau, 2012). Small black patches off coast are

mangroves. (A) Enlargement of coastal Texas. (B) Enlargement of coastal Louisiana, Mississippi, Alabama, and the Florida Panhandle. (C) Enlargement of coastal

Southern Florida.
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FIGURE 4 | Riverine population index (RPI) spatial patterns of the Gulf Coast. Dashed yellow lines indicate ∼20 km inland boundary, for reference. Lighter gray

areas on land indicate urban areas with population density >900/km2 (U.S. Census Bureau, 2012). Small black patches off coast are mangroves. (A) Enlargement of

coastal Texas. (B) Enlargement of coastal Louisiana, Mississippi, Alabama, and the Florida Panhandle. (C) Enlargement of coastal Southern Florida.
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FIGURE 5 | Summary patterns of population proximity index (PPI) and

riverine population index (RPI) within and outside of biogenic habitats.

(A) Cumulative area of PPI grid cells from depths of 0 to −30m within (green

line) and outside (blue line) kelp forests on the West Coast. (B) Cumulative

area of PPI grid cells from depths of +1 to −1m within (green line) and outside

(blue line) mangrove forests on the Gulf Coast. (C) Cumulative area of RPI grid

cells from depths of 0 to −30 m within (green line) and outside (blue line) kelp

forests on the West Coast. (D) Cumulative area of RPI grid cells from depths of

+1 to −1m within (green line) and outside (blue line) mangrove forests on the

Gulf Coast. Inset bar charts illustrate overall area weighted mean (AWM) PPI

and RPI across the entire study region within and outside kelp and mangroves.

Cumulative area lines plotting to the right of the blue line implies positive

correlation while plotting to the left implies negative correlation with the PPI or

RPI.

of the total mangrove area occurred in areas with a PPI > 3.44
(note remaining cumulative area value occurring at within- and
outside-mangrove line intersection in Figure 5B).

Riverine Population Index and Biogenic Habitats
On the West Coast, the RPI was on average ∼40% lower
within kelp compared with areas outside (AWM 5.21 and 8.78,
respectively, see inset bar charts in Figure 5C). The cumulative
area distribution of RPI in kelp forests was always to the left of
the underlying distribution of the RPI, so the RPI within kelp
forests was lower than would be expected if the kelp forests were
randomly distributed with respect to the RPI (Figure 5C).

AWM RPI scores within mangroves were ∼50% lower than
those found outside mangroves (3.23 and 6.15, respectively,
Figure 5D inset). The cumulative area distribution of RPI within
mangrove forests was always to the left of the corresponding areas
outside mangroves, so the RPI within mangroves was lower than

would be expected if the mangroves were randomly distributed
with respect to the RPI (Figure 5D).

Population Proximity Index and Marine Protected

Areas
On the West Coast, MPAs have generally been placed in areas
away from people, given AWM PPI within was∼30% lower than
that found outsideMPAs (2.20 and 3.16, respectively, see inset bar
charts in Figure 6A). However, 6% of the total area of MPAs had
a PPI of zero and 15% of the area outside MPAs had a PPI of zero
(note y-intercepts of within- and outside-MPA lines, Figure 6A).
The cumulative area distribution of PPI in MPAs was always
to the left of the underlying distribution of the PPI, so the PPI
withinMPAs was lower than would be expected if the MPAs were
placed randomly with respect to the PPI (Figure 6A). Given the
projected large increases in human populations size concentrated
near central and southern California (Supplementary Figure 1),
and the fact that the vast majority of MPAs considered in this
study were located off the coast of California, MPA isolation from
human influence is likely to decrease by the year 2050.

On the Gulf Coast, 74% of the total area of MPAs had a PPI
score of 0, and nearly 73% of the region outside MPAs had a
PPI of 0 (note y-intercepts of within- and outside-MPA lines,
Figure 6B). The cumulative area distribution of PPI inMPAs was
to the right of the distribution of PPI in the same elevation region
outside MPAs up until a PPI of 0.293, so the PPI within MPAs
was higher than would be expected if the MPAs were randomly
distributed with respect to the PPI (Figure 6B). However, in areas
with PPI scores >0.293, MPAs were more prevalent in lower PPI
scoring regions (the cumulative area distribution of PPI in MPAs
was to the left for PPI scores greater than 0.293). Similarly, the
AWMPPI within MPAs (0.44) was nearly half that found outside
MPAs (0.79, see inset bar chart in Figure 6B).

Riverine Population Index and Marine Protected

Areas
On the West and Gulf Coasts, AWM RPI within was lower than
those found outside MPAs (see inset bar charts in Figures 6C,D).
The cumulative area distribution of RPI in MPAs was always
to the left of the underlying distribution of the RPI, so the RPI
within MPAs was lower than would be expected if the MPAs and
were placed randomly with respect to the RPI (Figures 6C,D).

Biogenic Habitats and Marine Protected Areas
On the West Coast, kelp forest cover was three times higher
and on the Gulf Coast, mangrove cover was 17 times higher
within MPAs, compared with similar depth zones outside MPAs
(Supplementary Table 1).

DISCUSSION

The population proximity and riverine population indices we
have developed provide a simple, easily generated and valuable
tool for assessing the degree of proximity between humans
and coastal systems. Because of their modest data requirements
(e.g., global gridded population and topographical data), they
can be used virtually anywhere in the world where a rapid

Frontiers in Marine Science | www.frontiersin.org 9 June 2016 | Volume 3 | Article 113

http://www.frontiersin.org/Marine_Science
http://www.frontiersin.org
http://www.frontiersin.org/Marine_Science/archive


Feist and Levin Indicators of Coastal Human Influence

FIGURE 6 | Summary patterns of population proximity index (PPI) and

riverine population index (RPI) within and outside of marine protected

areas (MPAs). (A) Cumulative area of PPI grid cells from depths of 0 to

−100m within (green line) and outside (blue line) no access or no take MPAs

on the West Coast. (B) Cumulative area of PPI grid cells from depths of 0 to

−100m within (green line) and outside (blue line) no access or no take MPAs

on the Gulf Coast. (C) Cumulative area of RPI grid cells from depths of 0 to

−100m within (green line) and outside (blue line) no access or no take MPAs

on the West Coast. (D) Cumulative area of RPI grid cells from depths of 0 to

−100m within (green line) and outside (blue line) no access or no take MPAs

on the Gulf Coast. Inset bar charts illustrate overall area weighted mean (AWM)

PPI and RPI across the entire study region within and outside of MPAs.

Cumulative area lines plotting to the right of the blue line implies positive

correlation while plotting to the left implies negative correlation with the PPI or

RPI.

assessment of potential human impact could be useful. And given
the availability of global time series of human population data,
these indices can be used to identify retrospective and future
patterns of coastal human population based pressures. While
the PPI and RPI do not directly measure specific anthropogenic
alterations, such as shoreline hardening, pollution, recreational
and commercial fishing, when constrained to shallow (<100 m)
depths and within 20 km of the coast, these two indices are
a reasonable proxy for the degree of anthropogenic influence
in this zone (Steele, 1998; Erlandson and Rick, 2008). This is
especially true in developing countries where marine resource
exploitation is more likely to occur in close proximity to
people (Mora et al., 2011; Sale et al., 2014). For example,
Obura et al. (2016), have already used the PPI as a proxy for
human pressures in coastal regions of the northern Mozambique
Channel. In this system, there is considerable risk of resource

overexploitation, and incorporating spatially explicit indicators
of human pressures is a critical component of developing regional
partnerships for all stakeholders.

There are other indices of marine anthropogenic impacts that
are available globally (Halpern et al., 2008) and have been fine
tuned for specific large marine ecosystems (Halpern et al., 2009).
Importantly, however, these spatially explicit anthropogenic
impact maps are based on dozens of geospatial data layers and
thus can be difficult to employ quickly or in data-poor regions
(Halpern and Fujita, 2013). While the PPI and RPI is admittedly
simple in design, we have tested its correlation with detailed
data on biogenic habitats using spatially explicit techniques and
demonstrated that biogenic habitats are negatively correlated
with humans. The greatest drawback of our approach is that the
indices do not identify which human impacts are causing the
observed patterns in biogenic habitats. This deficiency can be
addressed by further refining these indices by specific regions.
For example, regions supporting vast complexes of tropical coral
reefs, which are largely concentrated in developing countries, are
at much greater risk from future human population increases,
owing to the close proximity of these systems to people (Mora
et al., 2011). In contrast, the steeper topography of the continental
shelf found off the West Coast of the United States, as well as
established regulatory controls, may reduce the direct risks posed
by coastal human populations.

While we designed the PPI to serve as a rough proxy for the
degree of human influence in coastal regions, the RPI serves
a different role–it represents the influence of humans distant
from coastal regions, via riverine delivery. Expanses of the U.S.
West Coast with low PPI scores have high RPI scores (e.g., the
mouth of the Columbia River near the Washington and Oregon
border), making them vulnerable to human influences, despite
the lack of large human populations along the coast in these
same areas. Other regions (e.g., near San Francisco and the
western Gulf of Mexico) have a coincidence of high PPI and
RPI scores. In such regions, it becomes clear that mitigating
human pressures may require management in both coastal zones
as well as upstream in the watershed. Indeed, the Mississippi
River in the Gulf of Mexico, has a substantial future risk trend,
given the infrastructure engineering that has been implemented
to offset the vast anthropogenic alterations to the system (Tessler
et al., 2015). Continued population expansion along the coast and
within the vast drainage basin will serve to exacerbate stressors
imposed by future global climate change (e.g., sea level rise,
frequency and severity of extreme weather events, etc.).

Importantly, we also develop a means to forecast how the
PPI and RPI will change. This is particularly important since
populations are increasing disproportionately within 100 km
of marine coasts (Small and Nicholls, 2003; Sale et al., 2014).
Our analysis reveals population pressure in coastal regions will
increase in the next four decades, but increase varies spatially.
For example, the coasts offWashington and Oregon State are not
projected to experience significant increases in coastal or inland
populations by 2050. In contrast, south Texas currently does not
have a high PPI, but with the expected growth in this region,
we would expect an increase in the potential human population
proximity there. Both examples provide useful information to
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managers who may wish to set aside areas in reserves or take
other measures to mitigate human pressures. Finally, given the
predictive capability of the indices we have developed, they could
be coupled with global climate change models and improve
predictions of climate change impacts on humans.

Our two cases studies highlight the potential value of these
new indices. For example, our analyses revealed that no-access
and no-take MPAs off the West and Gulf Coasts of the United
States are generally sequestered from human populations, and
have higher than average proportions (3–17 times as much)
of biogenic habitat compared with areas outside MPAs. Given
future coastal population patterns off southern California,
however, existing MPAs, especially within shallower depths,
will not continue to be as isolated from humans. Additionally,
identifying areas that currently have high PPI or RPI is useful for
risk analyses associated with future human population expansion
interacting with biogenic habitats. For example, mangrove
forests are experiencing range expansion to higher latitudes in
some regions due to global warming (Cavanaugh et al., 2014;
Godoy and Lacerda, 2015). Given the “blue carbon” potential
of mangroves, this could result in increased sequestration of
organic carbon to offset global CO2 emissions. However, if
potential mangrove range is constrained along the coast by ever
expanding human populations, this important global climate
change amelioration may not be realized.

It was never our intention to explicitly demonstrate
mechanistic connections between human populations and the
biogenic habitats (kelp forests and mangroves) we used in our
pilot study. There are certainly many other covariates besides
human populations that drive the spatio-temporal distributions
of kelp forests and mangroves (Dayton, 1985; Steneck et al., 2002;
Dayton et al., 2005; Reed et al., 2011). However, the mechanisms
linking humans to the degradation and destruction of macro
algae, kelp forests andmangroves, worldwide, are well established
(Alongi, 2002; Dayton et al., 2002, 2005; Steneck et al., 2002;
Lotze et al., 2006; Duke et al., 2007; Coleman et al., 2008; Connell
et al., 2008; Giri et al., 2011b; Hutchison et al., 2014). Causes
include fisheries overexploitation, direct habitat destruction,
degraded water quality and global climate change. Further, there
is substantial evidence that humans have sought areas rich in
biogenic habitats for thousands of years (Dayton et al., 2002;
Steneck et al., 2002), rather than avoid them. Therefore, it

seems unlikely that humans would intentionally avoid settling,
establishing and expanding their populations in areas distant
from such critical biogenic habitats, which provide so many
crucial marine ecosystem services that humans are dependent
upon.

In this paper, we developed a simple tool for assessing the
magnitude of human populations on the West and Gulf Coasts
of the United States, and examined patterns of biogenic habitats
as a function of this population index. Quantifying the spatial
distribution of human populations is imperative if we wish
to forecast future impacts of humans, and thus rapid, simple,
coast-wide indicators of anthropogenic impacts in coastal marine
regions is crucial to resource managers. While our indices are
coarse tools, they can be used anywhere in the world (Sale et al.,
2014; Obura et al., 2016), can project into the future using various

human population growth forecasts (e.g., Gaffin et al., 2004;
Yetman et al., 2004; Bengtsson et al., 2006), and can serve as an
important method for conservation triage (Bottrill et al., 2008).
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