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Coastal vegetation plays an important role for climate change mitigation. Compared with

terrestrial ecosystems, coastal vegetation shows higher rates of atmospheric CO2 uptake

and amore efficient retention of carbon (C) in sediments. Salt marshes present the highest

values as C binders, although a global estimation of these values is still pending due to

regional gaps in the records predominantly from the southern hemisphere. There are no

clear patterns or dominant processes with enough evidence to account for the observed

variability, suggesting that context dependent processes are likely greatest influencers

on C storage. Salt marshes in the South West Atlantic (SWA) coast are densely

populated by the intertidal burrowing and herbivore crab Neohelice (=Chasmagnathus)

granulata. Many ecological processes related to C transformation occurring in these salt

marshes are influenced by crab activities, either through bioturbation or via herbivory.

We hypothesize that N. granulata could have a significant role in the capacity of SWA

salt marshes to bind C. Reduction of plant biomass, increased aerobic decomposition

in the sediment and facilitation of erosion are some of the multiple effects exerted

by N. granulata that can directly and indirectly modify the capacity of salt marshes

to bind C. Here, we compiled information available regarding C sequestration and

accumulation in SWA coastal salt marshes and propose a hypothetical model including

the mechanisms mediated by N. granulata that interfere the transformation paths of C in

salt marshes. The data suggest that mechanisms that are top-down regulated, negatively

affect C accumulation in the form of aboveground biomass especially in salt marshes

dominated by Spartina alterniflora. While, mechanisms mediated by bioturbation can

negatively (increasing oxygenation and thus facilitating aerobic degradation) affect as

well as positively (increasing retention of macrodetritus) affect the accumulation of C, the

latter being of greater magnitude in Spartina densiflora salt marshes.
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INTRODUCTION

Vegetated coastal ecosystems (salt marshes, mangroves, seagrass
meadows) provide many goods and services. For instance they
play a fundamental role dissipating wave energy and limiting
the effects of sea level rise (Gedan et al., 2011), act as filters,
cycling the excess of land-derived nutrients (McGlathery et al.,
2007), and provide a habitat for many economically important
species (Beck et al., 2001). However, although these benefits are
well recognized, degradation and loss of these ecosystems are
continuously occurring at accelerating rates (Duarte et al., 2008;
Valiela et al., 2009).

Recently, a new service derived from coastal vegetation
has been identified concerning the role that these ecosystems
play in climate change mitigation, with particular focus on
the role of coastal plant communities in sequestering and
storing atmospheric CO2 (Nellemann et al., 2009; Duarte et al.,
2013). Vegetated coastal ecosystems are efficient carbon binders
exceeding the well know capacity of terrestrial forests. Reported
average C burial rates (CBR) for coastal vegetation range between
138 and 244 g C m−2 year−1 while temperate, tropical and
boreal forests range between 4 and 5 g C m−2 year−1 (McLeod
et al., 2011; Ouyang and Lee, 2014). In addition to the efficient
CBR, marine vegetated ecosystems can store C for millennia
(Mateo et al., 1997; Lo Iacono et al., 2008; Chmura, 2009),
while terrestrial vegetation does so for decades or centuries
(Chambers et al., 2001). Thus, preservation and restoration of
coastal vegetated ecosystems represent a win-win scenario for
climate change mitigation implementation: on the one side the
preservation and restoration of these ecosystems secure an active
and efficient uptake of atmospheric CO2, and in the other,
their preservation prevents the emission of greenhouse gases
by exposing to degradation the large amount of carbon stored
in sediments and live biomass. In this context, the term “blue
carbon” has emerged to indicate C that is sequestered and stored
in coastal marine environments (Nellemann et al., 2009).

Blue carbon is the most recently acknowledged ecosystem
service provided by salt marshes (Chmura, 2013). Historically,
the high productivity of salt marshes has been more linked with
the export of energy to adjacent systems and the support of a
significant fraction of the metabolism that takes place within
the water column rather than binding organic matter (OM)
in salt marsh sediments (Valiela et al., 2000). There are some
characteristics that make these ecosystems particularly good as C
binders. For instance, every CO2 molecule stored in salt marsh
and mangrove soils has an added value due to the negligible
rate of emission of others greenhouse gases such as methane
(Chmura, 2009). Marine sediments present large concentrations
of sulfate which inhibits the activity of methanogen bacteria
(Winfrey and Ward, 1983) limiting, thus, the emission of
methane. The average CBR reported for salt marshes is quite
similar to that found in mangroves and over 1.75 fold higher than
that reported for seagrasses (244.7, 226 and 138 g C m−2 year−1

for salt marshes, mangroves and seagrasses respectively; McLeod
et al., 2011; Ouyang and Lee, 2014). Nevertheless, there is a huge
variability in CBR for salt marshes around the world, ranging
from 18 to 1713 g C m−2 year−1 (Ouyang and Lee, 2014). The

maximum CBR reported for salt marshes is almost twice than
the maximum reported in mangrove ecosystems (949 g C m−2

year−1) and 9 times higher than the maximum CBR for seagrass
meadows (190 g C m−2 year−1; McLeod et al., 2011). This
difference among systems highlights the potential of salt marsh
ecosystems for binding C as well as the need for further studies
on the determinant factors for sequestration and remobilization
of C from marsh sediments.

In spite of the effort to estimate global C storage and
sequestration rates in salt marshes, there is a gap in data mostly
from the southern hemisphere (Chmura, 2013; Ouyang and
Lee, 2014). Given the enormous variability in CBR registered in
salt marshes worldwide, global estimations calculated with the
current data available is probably biased. There are not yet clear
general patterns or a dominant process with enough evidence to
account for this variability. Some of the main factors described
to influence C sequestration in coastal wetland habitats are:
local geomorphology, nutrient availability, hydroperiod, salinity,
and suspended sediment supply. For instance, sediment grain
size has recently found to be a good predictor of C storage
in SE Australian salt marshes (Kelleway et al., 2016). There
are also inherent characteristics to plant species that dominate
within different salt marshes that are linked to the C burial
capacity, such as allocation of plant parts, decomposition rates
and primary productivity. These characteristics are, in turn,
influenced by physical factors such as temperature, precipitation,
tidal range, nutrients, and granulometry; as well as biological
(plant competition, bioturbation, trophic cascades; McLeod et al.,
2011). A previous study attempting to explain the variability
in CBR was based on the type of halophyte dominating the
salt marsh. In that analysis, Distichlis was found to have the
lowest average CBR, while Spartina had the highest (Ouyang and
Lee, 2014). However, when the data is carefully examined, both
maximum and minimum CBR reported correspond to Spartina
dominated salt marshes. This pattern suggests that there are
more site specific characteristics to explain such a large variability
related to the ecological functioning of each particular location.

Although, burrowing and herbivorous organisms often
inhabit vegetated coastal ecosystems, their effects on C stocks
are scarcely known, but evidence shows that they can be
relevant to Blue C studies. For instance, the activity of intertidal
burrowing crabs (Ucides cordatus and Uca maracoani) enhance
the decomposition of OM in the soil of Brazilian mangroves
reducing up to 70% the total organic carbon (Araújo et al.,
2012). In salt marshes in Cape Cod (Mass, USA), the crab
Sesarma reticulatum increases erosion by burrowing near-water
sediment and reduces plant biomass by herbivory (Coverdale
et al., 2014). These two examples are evidence that the activity
of these organisms reduce the capacity of these environments to
bind C.

Salt marshes along the Atlantic coast of South America are
mostly dominated by two species of Spartina (S. densiflora and
S. alterniflora) and Sarcocornia spp. (Figures 1A–C). Most of
these salt marshes (except for those located at the southernmost
extreme, from 42◦ 25′ S to 53◦ 48′ S) are highly bioturbated
by the burrowing crab Neohelice (=Chasmagnathus) granulata
(Figures 1D–F, Iribarne et al., 1997). This crab is also an
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FIGURE 1 | Typical South American salt marshes dominated by Spartina densiflora (A), Sarcocornia spp. (B), and S. alterniflora (C). Neohelice granulata

burrowing bed in a S. alterniflora salt marsh showing erosion and plant roots exposed through the burrows (D). N. granulata with burrow in S. alterniflora (E) and S.

desiflora (F) salt marshes. Photo credits: P. Martinetto (A,C–E), J. Alberti (B), and P. Daleo (F).

herbivore (Iribarne et al., 1997) and exerts a strong top-down
control on salt marsh plants (Costa et al., 2003; Alberti et al.,
2007a). Many ecological processes related to C transformation
occurring in these salt marshes are influenced by crab activities,
either through bioturbation or via herbivory (Alberti et al., 2015).
Thus, we hypothesize that N. granulata could have a significant
role in the capacity of SouthWest Atlantic salt marshes to bind C.
Reduction of plant biomass, increment of aerobic decomposition
in the sediment and facilitation of erosion are some of the
multiple effects exerted by N. granulata that can directly and
indirectly modify the C stored in these salt marshes.

In this study we compiled the available information
regarding the processes affected by N. granulata linked to the
pathways of C in South American salt marshes. Based on this
information, we propose a model including the mechanisms that

regulate C transformation paths in salt marshes mediated by
N. granulata.

The South West Atlantic Salt Marsh
Environment
South West Atlantic (SWA) salt marshes span ∼ 4300 km
of coastline from Rio Mampituba (29◦ S) in Southern Brazil
to Río Grande in the Southern Argentinean Patagonia (53◦

S, Table 1). The quite large latitudinal range of distribution
(∼24◦) includes geomorphologic as well as climatic variations
(Costa and Davy, 1992; Isacch et al., 2006). Dominant plant
species are the cordgrasses S. densiflora and S. alterniflora and
the glasswort Sarcocornia spp. (formerly named Sarcocornia
perennis; Costa and Davy, 1992; Isacch et al., 2006; Bortolus
et al., 2009). These plant species dominate ∼70% of the SWA
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TABLE 1 | Salt marshes in the South West Atlantic coast with dominant plant species, area and location.

Major Macrohabitats (ha)

Spartina Spartina Sarcocornia Brackish Total Latitud (S) Brackish species Source

alterniflora densiflora spp. species

BRAZIL

Rio Mampituba − + − 44 44 29◦ 19′ 35′′ So Hp (1)

Tramandaí − + − 92 92 29◦ 58′ 35′′ So Jk (1)

Lagoa do Peixe − 228 + 166 394 31◦ 21′ 31′′ Ju (1)

Lagoa dos Patos 110 675 + 6053 6838 31◦ 48′–32◦ 09′ Jk Sc (1)

Rio Chuí − + + 8 8 33◦ 44′ 35′′ Ju So (1)

URUGUAY

Arroyo Maldonado + 550 111 1222 1883 34◦ 53′ Sc So Ju (2)

Laguna José Ignacio − 178 2 469 649 34◦ 53′ Sc So Ju (2)

ARGENTINA

Bahía Samborombon 5060 26,314 8336 42,345 82,055 35◦ 13′–36◦ 18′ Sc Ju Co (2)

Laguna Mar Chiquita − 3882 304 7382 11568 37◦ 29′–37◦ 46′ Ju Co (2)

Bahía Blanca 9193 65 20376 + 29634 38◦ 41′–39◦ 30′ Ju Ph (2)

Río Colorado 397 1344 731 4548 7020 39◦ 34’ Ph (2)

Bahía Anegada 20,503 2908 42,060 2492 67,963 39◦ 48′–40◦ 42′ Ph (2)

Río Negro 47 656 + 49 752 41◦ 00′ Ph (2)

Caleta de los Loros 440 + 30 − 470 41◦ 01′ − (2)

Bahía San Antonio 2068 + 2124 − 4192 40◦ 42′–40◦ 50′ − (2)

Riacho San José 108 23 225 − 356 42◦ 24′ − (2)

Caleta Valdés 89 25 329 − 443 42◦ 15′–42◦ 27′ − (2)

Río Chubut − 18 + − 18 43◦ 20′ − (2)

Tombo + + 43◦ 58′ 40′′ − (3)

Bustamante 12 12 45◦ 05′ 31′′ − (3)

Malaspina + + 45◦ 09′ 20′′ − (3)

Puerto Deseado Complex + + 47◦ 44′ 45′′ − (3)

Buque 625 625 48◦ 03′ 31′′ − (3)

San Julian Complex 1369 1369 49◦ 16′ 13′′ − (3)

Sta. Cruz Complex 117 117 50◦ 01′ 26′′ − (3)

Coig Complex + + 51◦ 00′ 20′′ − (3)

Loyola Complex 2400 2400 51◦ 37′ 23′′ − (3)

Punta Dungeness 63 63 52◦ 23′ 25′′ − (3)

Puerto Espora Complex + + 52◦ 28′ 44′′ − (3)

San Sebastían Complex + + 53◦ 20′ 26′′ − (3)

Rio Grande + + 53◦ 48′ 50′′ − (3)

Total 38,015 36,866 79,214 64,869 218,964

Brackish species are: Sc, Scirpus maritimus L.; Hp, Hibiscus pernambusensis; So, Scirpus olneyi; Jk, Juncus kraussii; Ju, Juncus acutus L.; Co, Cortadeira selloana; Ph, Phragmites

australis. Source: (1), Costa et al. (2007); (2), Isacch et al. (2006); (3), Bortolus et al. (2009).

salt marshes and their relative abundance is closely related to
the input of freshwater in each location. Spartina densiflora
is the dominant species in areas with higher freshwater input
while S. alterniflora and Sarcocornia spp. dominate more saline
sites (Isacch et al., 2006). In those salt marshes where both
Spartina species coexist, S. alterniflora occupies low intertidal
areas, being daily affected by tides while S. densiflora remains
in the upper intertidal zone where the inundation only occurs
during high spring tides. The loss of salt marsh area in
the SWA coast is almost entirely related to degradation as

a result of anthropogenic activities. Eutrophication (Cardoni
et al., 2011), land-fill (Costa et al., 2009; Marangoni and Costa,
2009; Pratolongo et al., 2013), fire to improve cattle forage
as well as to prevent accidental fires (Bortolus and Iribarne,
1999; Isacch et al., 2004), and farming/ranching (Marangoni
and Costa, 2010) are the primary causes of salt marsh loss and
conversion.

Crab beds of Neohelice granulata constitute a conspicuous
characteristic of SWA coastal areas from tidal flats to salt
marshes. Crab density in the salt marsh is variable both within

Frontiers in Marine Science | www.frontiersin.org 4 July 2016 | Volume 3 | Article 122

http://www.frontiersin.org/Marine_Science
http://www.frontiersin.org
http://www.frontiersin.org/Marine_Science/archive


Martinetto et al. SW Atlantic Salt Marshes Blue C

TABLE 2 | Minimum and maximum means reported in the literature.

Spartina densiflora Spartina alterniflora

PRODUCTIVITY AG

Lagoa dos Patos 22601 669–17072,3,4

Bahía Blanca 36745 106–17925,6

Laguna Mar Chiquita 602–25997,8

PRODUCTIVITY BG

Lagoa dos Patos 19281

Bahía Blanca 526-7449

LIVE AG BIOMASS

Lagoa dos Patos 15801 780–20792,3,4

Bahía Samborombón 186110 36710

Laguna Mar Chiquita 888–16407,8,11,12

Bahía Blanca 422–115310 266–6896,10

Bahía Anegada 53410 24710

Río Negro 41110 44310

Bahía de San Antonio 60410 36410

BG BIOMASS

Lagoa dos Patos 39772

Laguna Mar Chiquita 124411

Bahía Blanca 850–9509

DEAD AG BIOMASS

Lagoa dos Patos 17151 480–11882,3,4

Bahía Samborombón 1401–185710 91–62210

Laguna Mar Chiquita 800–88811,12

Bahía Blanca 520–55310 25–4165,8

Bahía Anegada 52810 21110

Río Negro 70810 33410

Bahía de San Antonio 124010 47810

SENESCENCE

Bahía Blanca 41795 14815

AG DECOMPOSITION

Brazil 4913 7313

Bahía Blanca 2714 6814

CRAB BURROW ABUNDANCE

Lagoa dos Patos 2115 1516–7717

Mar Chiquita 5615

Bahía Blanca 6815 7015

Bahía Anegada 10015 10315

Río Negro 10715 12215

Bahía de San Antonio 4915

CRAB HERBIVORY

Lagoa dos Patos 1–718 2–2518

Bahía Samborombón 29–4118 51–7518

Laguna Mar Chiquita 17–3718

Bahía Blanca 3–518 8–2518

Bahía Anegada 17–4618 21–6218

Río Negro 21–2418 14–6418

Bahía de San Antonio 6–2018 29–4718

Caleta de los Loros 4–1518

Riacho San José 19–2118 0–118

Río Chubut 0–218

(Continued)

TABLE 2 | Continued

Spartina densiflora Spartina alterniflora

FUNGUS INFECTION

Bahía Samborombón 3019 3019

Laguna Mar Chiquita 2811

Bahía Blanca 1611 3411

Bahía de San Antonio 2011 4811

Superscript numbers indicate references sources of data: 1Peixoto and Costa (2004),
2Cunha et al. (2005), 3Costa et al. (2004), 4Peixoto et al. (1997), 5Montemayor et al.

(2015), 6González Trilla et al. (2009), 7González Trilla et al. (2010), 8Vera et al. (2009),
9Negrín et al. (2012), 10Montemayor et al. (2014), 11Daleo and Iribarne (2009), 12Daleo

et al. (2007), 13Hickenbick et al. (2004), 14Montemayor et al. (2011), 15Alberti unpublished

results, 16Freitas et al. (2016), 17Freitas et al. (2015), 18Alberti et al. (2007a), 19Daleo et al.

(2009).

Productivity: g*m-2*year-1, biomass: g*m-2, senescence: g*m-2*year-1, decomposition:

% of decomposed biomass in approximately 6 months, crab burrow abundance:

burrows*m-2, crab herbivory: % of leaves damaged by herbivory, fungus infection: % of

leaves with damage from herbivory infected by Phaeosphaeria spartinicola. AG and BG

indicate above and below ground respectively.

and among salt marshes ranging from 6 to more than 120
burrows per m2 (Alberti et al., 2007a, Table 2). There is usually
one crab and one entrance per burrow (Iribarne et al., 1997).
Therefore, burrows density is a good proxy widely used to
estimate crab abundance without using destructive sampling
methods. N. granulata inhabits SWA salt marshes located above
42◦ 25′S, and these salt marshes correspond to ∼98% of the total
area covered by salt marsh in the SWA coast (Table 1). As a
bioturbator, this crab can remove up to 2.4 kg of sediment per day
per m2 and their burrows can reach up to 1m depth and range
from 2 to 7.5 cm in entrance diameter (Iribarne et al., 1997). The
impacts on ecological functions in SWA salt marshes are either
via herbivory, consuming large amounts of plant biomass, or via
bioturbation through the construction and maintenance of their
burrows (Alberti et al., 2015).

Although there are other burrower (e.g., small invertebrates
such as Laeonereis culveri in Argentinean salt marshes, Albano
et al., 2012 and Nephtys fluviatilis and Kalliapseudes schubartii
in Brazil C. Costa per. Obs.) and herbivore organisms (stem-
borer moths, Canepuccia et al., 2010 and rodents in the upper
marsh Pascual et al., 2015) inhabiting the SWA salt marshes,
none have effects comparable to those of N. granulata on salt
marsh ecological functioning (Alberti et al., 2015). Rodents can
have a large impact via herbivory by reducing plant biomass, but
these are restricted to the upper marsh (Costa et al., 2004; Pascual
et al., 2015) and they inhabit fully terrestrial vegetation, thus play
no role as burrowers in the salt marsh. Cyrtograpsus angulatus
is a grapsid crab that builds burrows in salt marshes in Caleta
Valdés, at the southern limit ofN. granulata distribution (42◦15′S,
Iribarne et al., 2003). However, when both species coexist in
northern coastal areas, C. angulatus is limited to inhabit the low
intertidal and it never inhabits salt marsh areas (Martinetto et al.,
2007). C. angulatus burrows are similar in shape to those of N.
granulata, and it has been proposed that these species play similar
roles modifying sediment structure and affecting the infaunal
community in soft-bottom intertidal areas (Martinetto et al.,
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2011); however its effects on salt marsh sediments have never
been explored.

Given the large variability in CBR estimated in salt marshes
around the world and the difficulties in identifying a variable
that can explains this variability (Ouyang and Lee, 2014), local
conditions seem to be key, although the principal mechanisms
are often unknown. In this context, crabs strongly influence
almost every single step from primary production to carbon
sequestration in SWA salt marshes and we believe that is a
primary driver in modulating their CBR. Below we investigate
the multiple ecological functions linked to C sequestration and
storage in SWA salt marshes mediated by N. granulata through
herbivory and bioturbation.

Effects Mediated by Herbivory
Neohelice granulata consumes large amounts of green Spartina
spp. biomass (Bortolus and Iribarne, 1999), in particular at
lower intertidal heights (Costa et al., 2003; Alberti et al., 2007a).
Herbivory is particularly intense on S. alterniflora likely due to
its lower position in the intertidal (up to 75% damaged leaves;
Alberti et al., 2007a, Table 2). Reduction of aboveground biomass
by herbivory on S. densiflora has been estimated in 20% (Alberti
et al., 2010b) while the intensity of herbivory in S. alterniflora
can double it (Alberti et al., 2007a; Daleo et al., 2009). In
addition to the reduction in biomass by direct consumption,
crabs can also reduce plant biomass by facilitating infection by
fungi in those leaves damaged by grazing (Daleo et al., 2009;
Freitas et al., 2015). This facilitative process amplifies the negative
effect that crabs exert reducing plant biomass. Both, grazing
and fungal infection suppress S. alterniflora production by more
than 50% consequently decreasing the potential of C that can
be accumulated in live plant biomass. Thus, herbivory could
potentially modulate the amount of C stored in salt marshes
dominated by Spartina spp. by reducing aboveground biomass.

Effects Mediated by Bioturbation
Crab burrows are mainly straight, vertical and tubular and long
enough to reach the water table (up to ∼1m depth and 2.66 cm
average diameter; Iribarne et al., 1997; Bortolus and Iribarne,
1999), and these are maintained permanently open (Escapa et al.,
2008). The effects mediated by bioturbation comprise a complex
interplay between direct and indirect effects with both positive
and negative outcomes in terms of C sequestration and storage.

The presence of crabs and their burrows contributes to the
increase of O2 content within the semdiments (Fanjul et al., 2008,
2011), which in turn could increase the aerobic decomposition
rates of the OM present in the sediment (Hemminga et al., 1991).
In fact, rates of OM degradation and nitrogen remineralization
are accelerated in areas bioturbated by N. granulata (Fanjul et al.,
2007, 2011). Given that crabs spend most of the time inside
their burrows (Méndez Casariego et al., 2011), feces and plant
and detritus accumulate there. As a consequence, high quantities
of remineralized nutrients are accumulated and concentrated
in the water within the burrows (Fanjul et al., 2008); detritus
are efficiently remineralized and quickly exported to the water
column as CO2 and dissolved organic carbon (Fanjul et al., 2014).

In addition to this negative effect, increasing the sediment
O2 content also has a positive effect. Arbuscular mycorrhizal
fungi (AMF) are obligate aerobes so their development is often
limited in salt marshes. Even when their spores are present in
the sediment, the waterlogged and consequently low oxygen
conditions characteristic of salt marsh habitats limits extensive
development. An increase in O2 in the sediment due to the
presence of burrows promotes AMF association with Spartina
densiflora roots (Daleo et al., 2008). The occurrence of AMF
has strong consequences in the structure of the salt marsh by
increasing plant biomass (Daleo et al., 2007) as well as altering
salt marsh species zonation (Daleo et al., 2008). When burrows
or AMF were experimentally eliminated, the biomass of S.
densiflora was reduced by 35% (Daleo et al., 2007). In those salt
marshes where both Spartina species coexist, S. alterniflora is
limited to more stressful low intertidal areas while S. densiflora
dominates more benign high intertidal areas. However, when
AMF is inhibited, S. alterniflora can move to higher elevation
areas invading S. densiflora zone (Daleo et al., 2008). S. densiflora
contributes more to the C accumulation than S. alterniflora
due to its higher biomass per m2 and primary production
(Montemayor et al., 2014). Thus, a modification in the areas
occupied by one or other species will have an impact in the
ability of that marsh to accumulate C. These results indicate
that the presence of crabs and their burrows can indirectly
regulate biomass production by facilitating AMF association in
S. densiflora salt marshes or by modulating the area inhabited by
each species, which can affect a salt marsh capacity to sequester
atmospheric CO2 and to store C in live biomass.

Another indirect effect of crab bioturbation is related to the
performance of S. densiflora. By increasing nutrient availability
in bioturbated sediments, and promoting nutrient acquisition
through AMF associations, N. granulata bioturbation enhances
the performance of S. densiflora. Experimental manipulation
of crab densities show that Spartina densiflora has lower fiber
contents and C/N ratios and produces higher density of seeds
at higher crab densities (Canepuccia et al., 2008). This indirect
effect could be seen as positive; however, plants with better
nutritional conditions are preferred by other herbivores than N.
granulata. For instance, stem-borer moths (Haimbachia sp. nov)
inhabit and consume a greater proportion of plants that grow in
soils with higher burrow densities (Canepuccia et al., 2010). In
terms of C stocks, the final outcome of this interplay of effects
is variable and depends on the magnitude of the increase in S.
densiflora performance, how much the herbivores reduce live
biomass and how much of the litter production increased by
herbivory is effectively trapped in the sediments or exported to
adjacent systems.

Bioturbation also affects the retention and exportation of
detritus, and again, it may have positive or negative effects on
C balance. In salt marshes located in the Bahía Blanca estuary
(Table 1) Spartina species produced the same amount of detritus
(Montemayor et al., 2011). However, even though S. alterniflora
is more frequently inundated, which could increase the export
of detritus, it had a greater proportion of trapped detritus in
the sediment than S. densiflora. This could be related to the
larger number of crab burrows in that zone (Montemayor et al.,
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FIGURE 2 | Carbon transformation pathways in a salt marsh (solid line arrows) and the multiple effects of Neohelice granulata in each carbon

transformation pathway (dashed line arrows). AB, above ground; BG, below ground; AMF, arbuscular mycorrhizal fungi.

2011). In fact crab burrows act as passive traps increasing detrita
entrapment in the sediment (Botto et al., 2006). Moreover, the C
content trapped inside the burrows as a result of tidal sediment
deposition is greater than the C content in the sediment excavated
by crabs and exposed in the surface resulting in a net decrease
in the amount of C that can be exported from the marsh by
tidal processes (Gutiérrez et al., 2006). In this context, crab
bioturbation seems to reduce the export of particulate OM to
estuarine and coastal waters.

The presence of vegetation in the SWA coast ameliorates
harsh physical conditions in the sediment facilitating the
establishment of N. granulata and their burrows (Bortolus
et al., 2002). Particularly in SWA salt marshes dominated
by Sarcocornia spp., these crabs and their burrows can then
promote erosion (Escapa et al., 2008). The ability of Sarcocornia
spp. to trap sediments is very low contributing very little to
sedimentation (Townend et al., 2011). In addition, during the
construction and maintenance of burrows, crabs remove large
amounts of sediment depositing it in the surface as mounds in
the burrow entrances (Iribarne et al., 1997). These mounds are
easily eroded in areas subjected to high speed currents, especially
at the head of tidal creeks, basins, and banks where a net loss
of sediment occurs (Escapa et al., 2008). At a landscape scale,
this process increases the inland growth rate of tidal creeks
(Escapa et al., 2007). Furthermore, the experimental exclusion
of crabs at the head of creeks and basins demonstrate a direct
link between crab bioturbation and erosion by decreasing the

inland growth rate of tidal creeks (Escapa et al., 2007). In areas
less affected by currents, such as mudflat plains and inside the
salt marsh matrix, the sedimentary balance is positive showing a
net increase in sediment deposited into burrows of 380 and 1200
g sediment per m2 per day in salt marshes and mudflat plains
respectively (Escapa et al., 2008). These studies demonstrate that
the impact of bioturbation on Sarcocornia spp salt marshes is
context dependent: it promotes sediment (and C) losses at the
head of tidal creeks, basins and banks, while promotes sediment
(and C) deposition in the marsh matrix.

Overall, bioturbation can both positively and negatively
affect C sequestration and storage through direct and indirect
mechanisms. This complex interplay of effects leads to large
(between) and small (within salt marshes) context dependent
variations in C sequestration and storage.

Carbon Stocks Gains and Losses
With all the previously summarized information we constructed
a conceptual model showing C sequestration and storage
pathways that involves: (1) CO2 uptake by photosynthesis, (2) the
transfer of C through the food web by herbivores and detritivores,
(3) senescence of above and below ground plant biomass, (4)
decomposition of dead plant biomass, (5) import and export
of dead plant biomass from/to adjacent systems and, (6) burial
of dead plant biomass and C accumulation in sediments. The
crab Neohelice granulata affects all these processes through both
herbivory and bioturbation (Figure 2). Summarizing, crabs eat
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FIGURE 3 | Carbon transformation pathways in South American salt marsh dominated by Spartina alterniflora (A) and by Spartina densiflora (B). The

effects of Neohelice granulata are indicated by dashed line arrows. The relative magnitude of the effects is indicated by arrow width. Percentages indicate reported

changes in biomass driven by crabs in S. alterniflora (herbivory and fungus infection: Daleo et al., 2009) and S. densiflora (senescence, Alberti et al., 2011;

consumption, Alberti et al., 2010a; AMF, Daleo et al., 2007) salt marshes. AB, above ground; BG, below ground; AMF, arbuscular mycorrhizal fungi.
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Spartina leaves and their detritus and the damaged leaves suffer
frommore fungal infection and consequently less production and
increased senescence. Crab burrows increase soil oxygenation
promoting aerobic decomposition of the OM in the sediment
and affecting also the architecture and the production of
roots (Daleo and Iribarne, 2009). The increment of O2 in the
sediment promotes AMF association which in turn increases the
productivity of the salt marsh. Plants growing in soils with a
greater number of burrows have better quality and are preferred
by herbivores. Burrowing activity positively affects detrita burial
by increasing the trapping of detritus inside burrows as well as by
covering fallen detritus with sediment. However, burrowing also
negatively affects C burial by removing, mixing and disrupting
the structure of the sediment, and exposing the buried C to
degradation and erosion.

Most of these crab effects, however, are context dependent,
with clear differences in the key pathways between the two
dominant Spartina species. While S. alterniflora is more sensitive
to herbivory (Figure 3A, Table 2), indirect effects related to
bioturbation are more significant in S. densiflora salt marshes
(Figure 3B, Table 2). In particular, the facilitation of AMF
associations allows S. densiflora to increase its biomass by 35%
and delineates the zonation when both species coexist. These
differences may result in different C stock gains and losses; thus,
the resulting scenarios for both types of salt marshes may be
different.

The present review is focused on the effects of N. granulata
on C stocks and sequestration but of course no single factor can
explain the variability in salt marsh C sequestration. There are,
for instance, large scale external factors that can modify crab
effects (Alberti et al., 2007b). Marangoni and Costa (2012) found
a similar inhibition of S. densiflora growth and invasion and
displacement by S. alterniflora tillers by increasing the flooding
frequency of the intertidal area, which occurs under moderate-
strong El Niño (ENSO) events, as a result of excessive rainfall
and subsequent high fluvial discharge in the microtidal estuaries
located along the southern Brazilian and NE Argentinean coasts.
This response may or may not be related to AMF sensitivity
to flood-induced anaerobic conditions. Previously, other studies
had pointed out important effects of ENSO events on the
productivity and C accumulation of microtidal SWA marshes.
Cunha et al. (2005) observed significantly higher biomass
production (aerial and belowground biomass) during a strong
ENSO (1992-93) than a non ENSO period (1993–1994), and they
associate this result to a 2.8◦C higher average air temperature
during ENSO. Significantly increased night time temperatures
occur during strong ENSO events in southern Brazil (Marengo,
2007), and this may explain why biomass production by the
C4 S. alterniflora was more affected by temperature, than solar
radiation or salinity in a study by Cunha et al. (2005). On
the other hand, low salinity due to excessive rainfall and high
discharge of rivers in SWA estuaries during ENSO events can
stimulate the spreading and herbivory pressure by rodents,
such as Myocastor coypus (Costa et al., 2004), Cavia aperea
(Canepuccia et al., 2010), and Akodon azarae (Pascual et al.,
2015) into estuaries, which strongly affect the standing biomass
of Spartina species.

CONCLUSION

South American salt marshes are highly productive systems year
round (Montemayor et al., 2015) resulting in large stocks of C
stored in above and below ground biomass. Herbivory by crabs
has a greater incidence on S. alterniflora than on S. densiflora.
Thus, top-downmediated processes will probably have a stronger
impact in the C transformation path in S. alterniflora salt
marshes. There is a gap in information related to C content in
salt marsh sediments. However, several mechanisms mediated
by bioturbation suggest that crabs may increase degradation as
well as increase retention of detritus, especially in S. densiflora
salt marshes where detritus production and dead biomass is
high. Although, we are presenting here a hypothetical model
that requires evaluation, it is based on strong scientific evidence.
Overall, these results show a potential context dependency of C
accumulation in salt marshes, reinforcing the need to be very
careful if extrapolations from other systems are going to be used
in order to accurately estimate the value of ecosystem services.

In this sense, context dependency should be seen as a
scientific challenge rather than an obstacle redirecting the effort
to increase the geographic scale. A recent review on the ecological
functioning of South American salt marshes highlights the
difficulties to establish global generalization when paradigms are
built on partial information (Alberti et al., 2015). For South
American salt marshes there are no CBRs reported yet; however,
the extensive research on the ecological functioning of these
ecosystems that has been undertaken over the last two decades
(Alberti et al., 2015) provides the basis to generate hypotheses on
the functioning of salt marshes in terms of C sequestration and
storage. Testing these hypotheses will improve our knowledge on
the factors that drive salt marsh C sequestration variability.

The notion that one single species can be responsible for
the major functioning of an ecosystem has been stressed in
ecological studies in the second half of the XX century. Even
concepts as “key-stone species” (Paine, 1969) and “ecosystem
engineers” (Jones et al., 1994) have been developed to account
for the paramount role of certain species within an ecosystem.
By the end of the XX century the focus changed to consider the
importance of species in terms of biodiversity and its relationship
with ecosystem stability maintenance (Kareiva and Levin, 2003).
Thus, ecological studies have moved from detailed study of
plants, animals and their interactions to more qualitative and
experimental approaches (helped by methodological advances)
where, in many cases, energy flows are the focus. Beside the
framework in which ecologist have settled their studies, it is
undeniable that in some cases a single species can control
the functioning of an ecosystem (e.g., dominant plant species,
bivalve beds, beavers). To maintain a historical perspective
will improve our ability to reconsider the importance of
older approaches in order to foresee productive new research
directions.

AUTHOR CONTRIBUTIONS

All authors listed, have made substantial, direct and intellectual
contribution to the work, and approved it for publication.

Frontiers in Marine Science | www.frontiersin.org 9 July 2016 | Volume 3 | Article 122

http://www.frontiersin.org/Marine_Science
http://www.frontiersin.org
http://www.frontiersin.org/Marine_Science/archive


Martinetto et al. SW Atlantic Salt Marshes Blue C

ACKNOWLEDGMENTS

This study has been benefitted from discussions during the Blue
C Initiative workshop in Brazil (October 2014). Sources of funds:

PIP (CONICET), PICT (Agencia Nacional de Promoción de
Científica y Tecnológica, Argentina) y UNMdP to O. Iribarne.
We thank Dr. Raymond Ward from Brighton University for
comments and suggestions that improved the manuscript.

REFERENCES

Albano, M. J., Obenat, S., and Luppi, T. (2012). “Community composition,
assemblages and latitudinal pattern of benthic intertidal invertebrates at
marshes in the southwestern Atlantic, Argentina. Conferencia,” in CERF’s

Inaugural International Conference of the Americas (Mar del Plata), 48–49.
Alberti, J., Cebrian, J., Méndez Casariego, A., Canepuccia, A., Escapa, M., and

Iribarne, O. (2011). Effects of nutrient enrichment and crab herbivory on a
SW Atlantic salt marsh productivity. J. Exp. Mar. Biol. Ecol. 405, 99–104. doi:
10.1016/j.jembe.2011.05.023

Alberti, J., Daleo, P., Fanjul, E., Escapa, M., Botto, F., and Iribarne, O. (2015). Can
a single species challenge paradigms of salt marsh functioning? Estuar. Coasts
38, 1178–1188. doi: 10.1007/s12237-014-9836-z

Alberti, J., Daleo, P., Iribarne, O., Silliman, B. R., and Bertness, M. (2007a).
Local and geographic variation in grazing intensity by herbivorous crabs
in SW Atlantic salt marshes. Mar. Ecol. Prog. Ser. 349, 235–243. doi:
10.3354/meps07089

Alberti, J., Escapa, M., Daleo, P., Méndez Casariego, A., and Iribarne, O. (2010a).
Crab bioturbation and herbivory reduce pre- and postgermination success of
Sarcocornia perennis in bare patches of SW Atlantic salt marshes. Mar. Ecol.

Prog. Ser. 400, 55–61. doi: 10.3354/meps08440
Alberti, J., Méndez Casariego, A., Daleo, P., Fanjul, E., Silliman, B., Bertness, M.,

et al. (2010b). Abiotic stress mediates top-down and bottom-up control in a
Southwestern Atlantic salt marsh.Oecologia 163, 181–191. doi: 10.1007/s00442-
009-1504-9

Alberti, J., Montemayor, D., Álvarez, F., Méndez Casariego, A., Luppi, T.,
Canepuccia, A., et al. (2007b). Changes in rainfall pattern affect crab herbivory
rates in a SW Atlantic salt marsh. J. Exp. Mar. Biol. Ecol. 353, 126–133. doi:
10.1016/j.jembe.2007.09.007

Araújo, J. M. C. Jr., Otero, X. L., Marques, A. G. B., Nóbrega, G. N., Silva, J.
R. F., and Ferreira, T. O. (2012). Selective geochemistry of iron in mangrove
soils in a semiarid tropical climate: effects of the burrowing activity of the
crabs Ucides cordatus and Uca maracoani. Geo-Mar. Lett. 32, 289–300. doi:
10.1007/s00367-011-0268-5

Beck, M. W., Heck, K. L. Jr., Able, K. W., Childers, D. L., Eggleston, D.
B., Gillanders, B. M., et al. (2001). The identification, conservation
and management of estuarine and marine nurseries for fish
and invertebrates. Bioscience 51, 633–641. doi: 10.1641/0006-
3568(2001)051[0633:TICAMO]2.0.CO;2

Bortolus, A., and Iribarne, O. O. (1999). The effect of the southwestern Atlantic
burrowing crab Chasmagnathus granulata on a Spartina salt-marsh.Mar. Ecol.

Prog. Ser. 178, 79–88. doi: 10.3354/meps178079
Bortolus, A., Schwindt, E., Bouza, P. J., and Idaszkin, Y. L. (2009). A

characterization of Patagonian salt marshes. Wetlands 29, 772–780. doi:
10.1672/07-195.1

Bortolus, A., Schwindt, E., and Iribarne, O. (2002). Positive plant-animal
interactions in the high marsh of an Argentinean coastal lagoon. Ecology 83,
733–742. doi: 10.1890/0012-9658(2002)083[0733:PPAIIT]2.0.CO;2

Botto, F., Iribarne, O., Gutierrez, J., Bava, J., Gagliardini, A., and Valiela, I. (2006).
Ecological importance of passive deposition of organic matter into burrows
of the SW Atlantic crab Chasmagnathus granulatus. Mar. Ecol. Prog. Ser. 312,
201–210. doi: 10.3354/meps312201

Canepuccia, A. D., Alberti, J., Pascual, J., Alvarez, G., Cebrian, J., and Iribarne,
O. O. (2010). ENSO episodes modify plant/terrestrial–herbivore interactions
in a southwestern Atlantic salt marsh, J. Exp. Mar. Biol. Ecol. 396, 42–47. doi:
10.1016/j.jembe.2010.09.013

Canepuccia, A. D., Farias, A. A., Escalante, A. H., Iribarne, O., Novaro, A., and
Isacch, J. P. (2008). Differential responses of marsh predators to rainfall-
induced habitat loss and subsequent variations in prey availability. Can. J. Zool.
86, 407–418. doi: 10.1139/Z08-007

Cardoni, D. A., Isacch, J. P., Fanjul, M. E., Escapa, M., and Iribarne, O. O. (2011).
Relationship between anthropogenic sewage discharge, marsh structure and
bird assemblages in a SW Atlantic saltmarsh. Mar. Environ. Res. 71, 122–130.
doi: 10.1016/j.marenvres.2010.12.003

Chambers, J. Q., Higuchi, N., Tribuzy, E. S., and Trumbore, S. E. (2001). Carbon
sink for a century. Nature 410:429. doi: 10.1038/35068624

Chmura, G. L. (2009). “Tidal salt marshes,” in The Management of Natural Coastal

Carbon Sinks, eds D. d’A. Laffoley and G. Grimsditch (Gland: IUCN), 5–11.
Chmura, G. L. (2013). What do we need to assess the sustainability of

the tidal salt marsh carbon sink? Ocean Coast. Manag. 83, 25–31. doi:
10.1016/j.ocecoaman.2011.09.006

Costa, C. S. B., and Davy, A. J. (1992). “Coastal saltmarsh communities of Latin
America,” in Coastal plant communities of Latin America, ed U. Seeliger (New
York, NY: Academic Press), 179–199.

Costa, C. S. B., Gianuca, D., and Tormena, T. (2004). Ação de Herbívoros Sobre a
Produtividade Das Marismas do sul do Brasil: Experimento Piloto de Exclusão

de Roedores e Caranguejos Grapsidae. Anais do VI Simpósio de Ecossistemas
Brasileiros, Vol. 2. Academia de Ciências do Estado de São Paulo – ACIESP,
São Paulo.

Costa, C. S. B., Iribarne, O. O., and Farina, J. M. (2009). “Human impacts and
threats to the conservation of South American salt marshes,” in Salt Marshes

under Global Siege, eds B. R. Silliman, T. Grosholtz, and M. D. Bertness
(Berkeley: University of California Press), 337–359.

Costa, C. S. B., Marangoni, J. C., and Azevedo, A. M. G. (2003). Plant
zonation in irregularly flooded salt marshes: relative importance of stress
tolerance and biological interactions. J. Ecol. 91, 951–965. doi: 10.1046/j.1365-
2745.2003.00821.x

Costa, C. S. B., Seeliger, U., and Bemvenuti, C. E. (2007). Diagnóstico de Alterações
Hidrológicas Devido ao Impacto das Mudanças Climáticas Sobre o Ecossistema

Costeiro Temperado Brasileiro Através da Vegetação e do Macrozoobentos.
Brasília: Ministério do Meio Ambiente/PROBIO.

Coverdale, T. C., Brisson, C. P., Young, E. W., Yin, S. F., Donnelly, J. P.,
and Bertness, M. D. (2014). Indirect human impacts reverse centuries of
carbon sequestration and salt marsh accretion. PLoS ONE 9:e93296. doi:
10.1371/journal.pone.0093296

Cunha, S. R., Asmus, M., and Costa, C. S. B. (2005). Production dynamics of
Spartina alterniflora salt marshes in the estuary of Patos Lagoon (RS, Brazil):
a Simulation model approach. Brazil. J. Aquat. Sci. Technol. Itajaí 9, 75–85. doi:
10.14210/bjast.v9n2.p75-85

Daleo, P., Alberti, J., Canepuccia, A., Escapa, M., Fanjul, E., Silliman, B. R., et al.
(2008). Mycorrhizal fungi determine salt-marsh plant zonation depending on
nutrient supply. J. Ecol. 96, 431–437. doi: 10.1111/j.1365-2745.2007.01349.x

Daleo, P., Fanjul, E., Mendez Casariego, A., Silliman, B. R., Bertness, M. D., and
Iribarne, O. (2007). Ecosystem engineers activate mycorrhizal mutualism in salt
marshes. Ecol. Lett. 10, 902–908. doi: 10.1111/j.1461-0248.2007.01082.x

Daleo, P., and Iribarne, O. (2009). The burrowing crab Neohelice granulata affects
the root strategies of the cordgrass Spartina densiflora in SW Atlantic salt
marshes. J. Exp. Mar. Biol. Ecol. 373, 66–71. doi: 10.1016/j.jembe.2009.03.005

Daleo, P., Silliman, B., Alberti, J., Escapa, M., Canepuccia, A., Peña, N., et al.
(2009). Grazer facilitation of fungal infectionand the control of plant growth
in SW Atlantic salt marshes. J. Ecol. 97, 781–787. doi: 10.1111/j.1365-
2745.2009.01508.x

Duarte, C. M., Dennison, W. C., Orth, R. J. W., and Carruthers, T. J. B. (2008).
The charisma of coastal ecosystems: addressing the imbalance. Estuar. Coast.
31, 233–238. doi: 10.1007/s12237-008-9038-7

Duarte, C.M., Losada, I. J., Hendriks, I. E.,Mazarrasa, I., andMarbà, N. (2013). The
role of coastal plant communities for climate changemitigation and adaptation.
Nat. Clim. Change 3, 961–968. doi: 10.1038/nclimate1970

Escapa, M., Minkoff, D. R., Perillo, G. M. E., and Iribarne, O. (2007). Direct
and indirect effects of burrowing crab Chasmagnathus granulatus activities

Frontiers in Marine Science | www.frontiersin.org 10 July 2016 | Volume 3 | Article 122

http://www.frontiersin.org/Marine_Science
http://www.frontiersin.org
http://www.frontiersin.org/Marine_Science/archive


Martinetto et al. SW Atlantic Salt Marshes Blue C

on erosion of southwest Atlantic Sarcocornia-dominated marshes. Limnol.

Oceanogr. 52, 2340–2349. doi: 10.4319/lo.2007.52.6.2340
Escapa, M., Perillo, G. M. E., and Iribarne, O. (2008). Sediment dynamics

modulated by burrowing crab activities in contrasting SW Atlantic intertidal
habitats. Estuar. Coast. Shelf Sci. 80, 365–373. doi: 10.1016/j.ecss.2008.08.020

Fanjul, E., Bazterrica, M. C., Escapa, M., Grela, M. A., and Iribarne, O. (2011).
Impact of crab bioturbation on benthic flux and nitrogen dynamics of
Southwest Atlantic intertidal marshes and mudflats. Estuar. Coast. Shelf Sci. 92,
629–638. doi: 10.1016/j.ecss.2011.03.002

Fanjul, E., Escapa, M., Montemayor, D., Addino, M., Alvarez, M. F., Grela, M.
A., et al. (2014). Effect of crab bioturbation on organic matter processing
in South West Atlantic intertidal sediments. J. Sea Res. 94, 194–212. doi:
10.1016/j.seares.2014.05.005

Fanjul, E., Grela, M. A., Canepuccia, A., and Iribarne, O. (2008). The Southwest
Atlantic intertidal burrowing crab Neohelice granulata modifies nutrient loads
of phreatic waters entering coastal area. Estuar. Coast. Shelf Sci. 79, 300–306.
doi: 10.1016/j.ecss.2008.04.005

Fanjul, E., Grela, M. A., and Iribarne, O. (2007). Effects of the dominant SW
Atlantic intertidal burrowing crab Chasmagnathus granulatus on sediment
chemistry and nutrient distribution. Mar. Ecol. Prog. Ser. 341, 177–190. doi:
10.3354/meps341177

Freitas, R. F., Schrack, E. C., He, Q., Silliman, B. R., Furlong, E. B., Telles, A. C., et al.
(2016). Consumer control of the establishment of marsh foundation plants in
intertidal mudflats.Mar. Ecol. Prog. Ser. 547, 79–89. doi: 10.3354/meps11624

Freitas, R. F., Schrack, E. C., Sieg, R. D., Silliman, B. R., and Costa, C. S. B. (2015).
Grazing scar characteristics impact degree of fungal facilitation in Spartina

alterniflora leaves in a South American salt marsh. Braz. Arch. Biol. Technol.
58, 103–108. doi: 10.1590/S1516-8913201400030

Gedan, K. B., Kirwan, M. L., Wolanski, E., Barbier, E. B., and Silliman, B. R.
(2011). The present and future role of coastal wetland vegetation in protecting
shorelines: answering recent challenges to the paradigm. Clim. Change 106,
7–29. doi: 10.1007/s10584-010-0003-7

González Trilla, G., De Marco, S., Marcovecchio, J., Vicari, R., and Kandus, P.
(2010). Net primary productivity of Spartina densifloraBrong in an SWAtlantic
coastal salt marsh. Estuar. Coast. 33, 953–962. doi: 10.1007/s12237-010-9288-z

González Trilla, G., Kandus, P., Negrin, V., and Marcovecchio, J. (2009). Tiller
dynamic andproduction on a SW Atlantic Spartina alterniflora marsh. Estuar.
Coast. Shelf Sci. 85, 126–133. doi: 10.1016/j.ecss.2009.07.034

Gutiérrez, J. L., Jones, C. G., Groffman, P. M., Findlay, S. E. G., Iribarne, O. O.,
Ribeiro, P. D., et al. (2006). The contribution of crab burrow excavation to
carbon availability in surficial salt-marsh sediments. Ecosystems 9, 647–658. doi:
10.1007/s10021-006-0135-9

Hemminga, M. A., de Leeuw, J., de Mune, W., and Koutstaal, B. P. (1991).
Decomposition in estuarine salt marshes: the effect of soil salinity and soil water
content. Vegetatio 94, 25–33.

Hickenbick, G. R., Ferro, A. L., and Abreu, P. C. (2004). Produção de detrito
de macrófitas emergentes em uma marisma do estuário da lagoa dos Patos:
Taxas de decomposição e dinâmica microbiana. Atlânt. Rio Grande 26, 61–75.
doi: 10.5088/atlântica.v26i1.2233. Available online at: http://www.seer.furg.br/
atlantica/article/view/2233

Iribarne, O., Bortolus, A., and Botto, F. (1997). Between-habitat differences
in burrow characteristics and trophic modes in the southwestern Atlantic
burrowing crab Chasmagnathus granulata. Mar. Ecol. Prog. Ser. 155, 137–145.
doi: 10.3354/meps155137

Iribarne, O., Martinetto, P., Schwindt, E., Botto, F., Bortolus, A., and García
Borboroglu, P. (2003). Evidence of habitat displacement between two common
soft-bottom SW Atlantic intertidal crabs. J. Exp. Mar. Biol. Ecol. 296, 167–182.
doi: 10.1016/S0022-0981(03)00318-6

Isacch, J. P., Costa, C. S. B., Rodríguez-Gallego, L., Conde, D., Escapa, M.,
Gagliardini, D. A., et al. (2006). Distribution of saltmarsh plant communities
associated with environmental factors along a latitudinal gradient on the
south-west Atlantic coast. J. Biogeography 33, 888–900. doi: 10.1111/j.1365-
2699.2006.01461.x

Isacch, J. P., Holz, S., Ricci, L., and Martínez, M. M. (2004). Post-fire vegetation
change and bird use of a salt marsh in coastal Argentina.Wetlands 24, 235–243.
doi: 10.1672/0277-5212(2004)024[0235:PVCABU]2.0.CO;2

Jones, C. G., Lawton, J. H., and Shacha, M. (1994). Organisms as ecosystem
engineers. Oikos 69, 373–386.

Kareiva, P., and Levin, S. E. (2003). The Importance of Species: Perspectives on

Expendability and Triage. Princeton, NJ: Princeton University Press.
Kelleway, J. J., Saintilan, N., Macreadie, P. I., and Ralph, P. J. (2016). Sedimentary

factors are 532 key predictors of carbon storage in SE Australian saltmarshes.
Ecosystems 1–16. doi: 10.1007/s10021-016-9972-3

Lo Iacono, C., Mateo, M. A., Gràcia, E., Guasch, L., Carbonell, R., Serrano, L., et al.
(2008). Very high-resolution seismo-acoustic imaging of seagrass meadows
(Mediterranean sea): implications for carbón sink estimates. Geophysic. Res.
Lett. 35:L18601. doi: 10.1029/2008gl034773

Marangoni, J. C., and Costa, C. S. B. (2009). Natural and anthropogenic effects
on salt marsh over five decades in the Patos Lagoon (Southern Brazil). Braz. J.
Oceanog. 57, 345–350. doi: 10.1590/S1679-87592009000400009

Marangoni, J. C., and Costa, C. S. B. (2010). Caracterização das atividades
económicas tradicionais no entorno das marismas no estuário da Lagoa
dos Patos (RS). Desenvol. Meio. Amb. 21, 129–142. doi: 10.5380/dma.v21i
1.12702

Marangoni, J. C., and Costa, C. S. B. (2012). Short- and long-term vegetative
propagation of two Spartina species on a salt marsh in Southern Brazil. Estuar.
Coast. 35, 763–773 doi: 10.1007/s12237-011-9474-7

Marengo, J. A. (2007). Mudanças Climáticas Globais e Seus Efeitos Sobre a

Biodiversidade: Caracterização do Clima Atual e Definição Das Alterações

Climáticas Para o Território Brasileiro ao Longo do Século XXI. 2nd Edn.

Brasília: Ministério do Meio Ambiente.
Martinetto, P., Palomo, G., Bruschetti, M., and Iribarne, O. (2011). Similar effects

on sediment structure aand infaunal community of two competitive intertidal
soft-bottom burrowing crab species. J. Mar. Biol. Ass. UK 91, 1385–1393. doi:
10.1017/S0025315411000075

Martinetto, P., Valiñas, M., Palomo, G., and Iribarne, O. (2007). Negative
interactions between two SW Atlantic intertidal crabs in soft bottom habitats.
Mar. Biol. 151, 1479–1490. doi: 10.1007/s00227-006-0585-9

Mateo, M. A., Romero, J., Pérez, M., Littler, M. M., and Littler, D. S. (1997).
Dynamics of millenary organic deposits resulting from the growth of the
Mediterranean seagrass Posidonia oceanica. Estuar. Coast. Shelf Sci. 44,
103–110. doi: 10.1006/ecss.1996.0116

McGlathery, K. J., Sundbäck, K., and Anderson, I. C. (2007). Eutrophication in
coastal bays and lagoons: the role of plants in the coastal filter.Mar. Ecol. Prog.

Ser. 348, 1–18. doi: 10.3354/meps07132
McLeod, E., Chmura, G. L., Bouillon, S., Salm, R., Bjök, M., Duarte, C. M., et al.

(2011). A blueprint for blue carbon: toward an improved understanding of the
role of vegetated coastal habitats in sequestering CO2. Front. Ecol. Environ. 9,
552–560. doi: 10.1890/110004

Méndez Casariego, A., Alberti, J., Luppi, T., Daleo, P., and Iribarne, O.
(2011). Habitat shifts and spatial distribution of the intertidal crab
Neohelice (Chasmagnathus) granulata Dana. J. Sea Res. 66, 87–94. doi:
10.1016/j.seares.2011.05.001

Montemayor, D. I., Addino,M., Valiñas,M., Fanjul, E., Alvarez,M. F., and Iribarne,
O. (2015). Biomass dynamics of the two dominant SWAtlantic Spartina species
and its implications on the saltmarsh organicmatter accumulation/exportation.
Aquat. Bot. 120, 201–204. doi: 10.1016/j.aquabot.2014.
05.017

Montemayor, D. I., Canepuccia, A. D., Pascual, J., and Iribarne, O. O.
(2014). Aboveground biomass patterns of dominant Spartina Species and
their relationship with selected abiotic nariables in Argentinean SW
Atlantic marshes. Estuar. Coast. 37, 411–420. doi: 10.1007/s12237-013-9
688-y

Montemayor, D. I. Addino,M., Fanjul, E., Escapa,M., Alvarez,M. F., Botto, F., et al.
(2011). Effect of dominant Spartina species on salt marsh detritus production
in SWAtlantic estuaries. J. Sea Res. 66, 104–110. doi: 10.1016/j.seares.2011.
05.003

Negrín, V. L., de Villalobos, A. E., González Trilla, G., Botté, S. E.,
and Marcovecchio, J. E. (2012). Above- and belowground biomass and
nutrient pools of Spartina alterniflora (smooth cordgrass) in a South
American salt marsh. Chem. Ecol. 28, 391–404. doi: 10.1080/02757540.2012.
666529

Nellemann, C., Corcoran, E., Duarte, C. M., Valdés, L., DeYoung, C., Fonseca,
L., et al. (2009). Blue Carbon. A Rapid Response Assessment. United Nations

Environment Programme. Birkelant; GRID-Arendal. Available online at: http://
www.grida.no/

Frontiers in Marine Science | www.frontiersin.org 11 July 2016 | Volume 3 | Article 122

http://www.seer.furg.br/atlantica/article/view/2233
http://www.seer.furg.br/atlantica/article/view/2233
http://www.grida.no/
http://www.grida.no/
http://www.frontiersin.org/Marine_Science
http://www.frontiersin.org
http://www.frontiersin.org/Marine_Science/archive


Martinetto et al. SW Atlantic Salt Marshes Blue C

Ouyang, X., and Lee, S. Y. (2014). Update estimates of carbon accumulation rates
in coastal marsh sediments. Biogeosciences 11, 5057–5071. doi: 10.5194/bg-11-
5057-2014

Paine, R. T. (1969). A note on trophic complexity and community stability. Am.

Natur. 103, 91–93. doi: 10.1086/282586
Pascual, J., Canepuccia, A. D., Alberti, J., Daleo, P., and Iribarne, O. (2015). Rainfall

intensity modulates the interaction between the marsh cordgrass Spartina

densiflora and the mouse Akodon azarae.Mar. Ecol. Prog. Ser. 523, 71–80. doi:
10.3354/meps11119

Peixoto, A. E., and Costa, C. S. B. (2004). Produção primária líquida aérea de
Spartina densiflora Brong. (Poaceae) no estuário da laguna dos Patos, Rio
Grande do Sul, Brasil. Iheringia Sér. Bot., Porto Alegre 59, 27–34. Available
online at: https://isb.emnuvens.com.br/iheringia/article/view/225/231; http://
www.fzb.rs.gov.br/upload/20140328141133ih59_027_034.pdf

Peixoto, R. P., Gaona, C. A. P., and Costa, C. S. B. (1997). “Produção primária
líquida aérea de cinco comunidades vegetais de uma marisma no estuário da
laguna dos Patos, RG, Brasil,” in VII Congreso Latino-Americano Sobre Ciências

do Mar,Vol. II., ed Associação Latino-americana de Pesquisadores em Ciências
do Mar – ALICMAR (São Paulo: Resumos Expandidos), 274–276.

Pratolongo, P., Mazzon, C., Zapperi, G., Piovan, M. J., and Brinson, M. M.
(2013). Land cover changes in tidal salt marshes of the Bahía Blanca estuary
(Argentina) during the past 40 years. Estuar. Coast. Shelf. Sci. 133, 23–31. doi:
10.1016/j.ecss.2013.07.016

Townend, I., Fletcher, C., Knappen, M., and Rossington, K. (2011). A review
of salt marsh dynamics. Water Environ. J. 25, 477–488. doi: 10.1111/j.1747-
6593.2010.00243.x

Valiela, I., Cole, M. L., McClelland, J., Hauxwell, J., Cebrian, J., and Joye, S. B.
(2000). “Role of salt marshes as part of coastal landscapes,” in Concepts and

Controversies in Tidal Marsh Ecology, eds M. P. Weinstein and D. A. Kreeger
(Dordrecht: Kluwer Academic Publisher), 23–36.

Valiela, I., Kinney, E., Culbertson, J., Peacock, E., and Smith, S. (2009). “Global
losses of mangroves and salt marshes,” in Global Loss of Coastal Habitats:

Rates, Causes and Consequences, ed C. M. Duarte (Bilbao: Fundación BBVA),
107–138.

Vera, F., Gutiérrez, J. L., and Ribeiro, P. D. (2009). Aerial and detritus production
of the cordgrass Spartina densiflora in a southwestern Atlantic salt marsh.
Botany 87, 482–491. doi: 10.1139/B09-017

Winfrey, M. R., and Ward, D. M. (1983). Substrates for sulfate reduction and
methane production in intertidal sediments. App. Environ. Microbiol. 45,
193–199.

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2016 Martinetto, Montemayor, Alberti, Costa and Iribarne. This

is an open-access article distributed under the terms of the Creative Commons

Attribution License (CC BY). The use, distribution or reproduction in other forums

is permitted, provided the original author(s) or licensor are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Marine Science | www.frontiersin.org 12 July 2016 | Volume 3 | Article 122

https://isb.emnuvens.com.br/iheringia/article/view/225/231
http://www.fzb.rs.gov.br/upload/20140328141133ih59_027_034.pdf
http://www.fzb.rs.gov.br/upload/20140328141133ih59_027_034.pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Marine_Science
http://www.frontiersin.org
http://www.frontiersin.org/Marine_Science/archive

	Crab Bioturbation and Herbivory May Account for Variability in Carbon Sequestration and Stocks in South West Atlantic Salt Marshes
	Introduction
	The South West Atlantic Salt Marsh Environment
	Effects Mediated by Herbivory
	Effects Mediated by Bioturbation
	Carbon Stocks Gains and Losses

	Conclusion
	Author Contributions
	Acknowledgments
	References


