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Assessing the Role of Environmental
Factors on Baltic Cod Recruitment, a
Complex Adaptive System Emergent
Property

Dionysis Krekoukiotis *, Artur Piotr Palacz' and Michael A. St. John

DTU Aqua, National Institute of Aquatic Resources, Technical University of Denmark, Charlottenlund, Denmark

For decades, fish recruitment has been a subject of intensive research with
stock-recruitment models commonly used for recruitment prediction often only
explaining a small fraction of the inter-annual recruitment variation. The use of
environmental information to improve our ability to predict recruitment, could contribute
considerably to fisheries management. However, the problem remains difficult because
the mechanisms behind such complex relationships are often poorly understood; this
in turn, makes it difficult to determine the forecast estimation robustness, leading
to the failure of some relationships when new data become available. The utility of
machine learning algorithms such as artificial neural networks (ANNSs) for solving complex
problems has been demonstrated in aquatic studies and has led many researchers to
advocate ANNs as an attractive, non-linear alternative to traditional statistical methods.
The goal of this study is to design a Baltic cod recruitment model (FisShANN) that can
account for complex ecosystem interactions. To this end, we (1) build a quantitative
model representation of the conceptual understanding of the complex ecosystem
interactions driving Baltic cod recruitment dynamics, and (2) apply the model to
strengthen the current capability to project future changes in Baltic cod recruitment.
FishANN is demonstrated to bring multiple stressors together into one model framework
and estimate the relative importance of these stressors while interpreting the complex
non-linear interactions between them. Additional requirements to further improve the
current study in the future are also proposed.

Keywords: baltic cod, recruitment, artificial neural networks

INTRODUCTION

Natural living systems are characterized by a high level of complexity, which results from
the diversity of their biological components and from the diversity of possible types of
interaction (physical, chemical, trophic, behavioral, cognitive; Planque et al., 2014). Many biological
interactions are non-linear and biological systems display a remarkable ability to constantly adapt
and reconfigure themselves (Planque et al., 2014). Such systems, including marine ecosystems,
are characterized by multiple possible outcomes and by the potential for rapid changes and
ecological surprises (Doak et al., 2008; Levin and Lubchenco, 2008; Scheffer, 2009; Glaser et al.,
2011; Mollmann et al., 2011). This display of high complexity, non-linearity, and adaptability has
identified these systems as Complex Adaptive Systems (CAS, Levin, 2005).
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For decades, fish recruitment has been a matter of intensive
research (e.g., Ricker, 1954; Cushing, 1971; Rothschild, 2000)
and is recognized as a key element in management decisions
(Fernandes et al, 2015). Models of stock-recruitment (e.g.,
Ricker, 1954; Beverton and Holt, 1957; Cushing, 1996)
commonly used for recruitment prediction often explain only a
minor fraction of the inter-annual variation in recruitment. This
lack of predictive strength has been assumed to be explained by
the influence of different factors in the environment (O’Brien
and Little, 2006; Margonski et al., 2010). Consequently, this
research area has evolved from considering simply the spawning
stock biomass (SSB), to include also use of environmental
factors and relationships that can modulate recruitment (Koster
et al., 2005; Schirripa and Colbert, 2006). Presently, stock
recruitment models along with other regression methods
including environmental variables (Planque and Buffaz, 2008),
are commonly used for recruitment prediction (Fernandes et al.,
2010). This use of environmental information to improve the
ability to predict recruitment, could contribute considerably to
fisheries management (De Oliveira et al., 2005; Yuan et al,
2012).

A large number of studies have been undertaken using
different techniques, to utilize such environmental information
to predict recruitment (e.g., Chen and Ware, 1999; Bailey
et al., 2005; Dreyfus-Leén and Chen, 2007; Dreyfus-Leén and
Schweigert, 2008; MacKenzie et al,, 2008; Ruiz et al., 2009).
Nevertheless, the recruitment problem remains difficult because
the mechanisms behind such complex relationships are often
poorly understood; this in turn leading to the failure of some
proposed relationships, methods, and performance estimations,
when new data become available (Myers et al., 1995). Such
failures may be related to new controls, which were not
previously considered (Myers et al., 1995; Planque and Buffaz,
2008), or to limitations of the available data (Schirripa and
Colbert, 2006).

The Baltic Sea has been studied extensively and is identified
as being a region of rich data with extensive time series from
environmental and biological monitoring (Eero et al., 2015). It
is an ecosystem that “has been and will continue to be impacted
by various stressors including climate change, exploitation, and
eutrophication” (MacKenzie et al., 2012). During the last three
decades, it is hypothesized that the Baltic has undergone a regime
shift, altering the functioning and structure of its zooplankton
and fish communities. The new stable state has been considered
as “cod hostile” (e.g., Mollmann et al.,, 2008, 2009; Lindegren
et al., 2010) due to reduced spawning success in cod, owing to
adverse hydrological conditions as well as increased predation on
cod eggs and declining food resources for cod larvae (Casini et al.,
2009).

Several changes in the biological parameters of Baltic cod,
managements and fisheries have occurred in recent years, all
of which could have potentially had a positive influence on the
development of the stock (Eero et al., 2012). However, there was a
fail in the analytical stock assessment in 2014, leaving unclear the
present stock status. Changes in ecological and environmental
conditions have led to an unusual situation for Baltic cod and
it has been suggested that the stock is “in distress” (Eero et al.,

2015). Clearly, the recruitment dynamics of Baltic cod are “more
complex than previously thought” (Késter et al., 2005), thus, our
understanding in the status of cod in the Baltic Sea and efforts in
solving stock assessment and recruitment issues is “ongoing and
will likely continue in the coming years” (Eero et al., 2015).

The current conceptual model of the understanding of Baltic
cod recruitment dynamics is given by Koster et al. (2003)
and Koster et al. (2005), and references therein. “Hydrographic
conditions in the central Baltic were affected by large-scale
climatic conditions during the 80s and 90s, resulting in higher
than normal temperatures in the intermediate and bottom water
and declining salinity and oxygen concentrations in the deep
Baltic basins” (Koster et al., 2005). Reproductive success of
the top-predator cod declined and “anoxic conditions in deep
layers at important spawning sites caused severe egg mortalities”
(Koster et al., 2005). The observed recruitment decline of the
1980s was believed to be related to these “climate-induced
changes in the physical environment” (Koster et al., 2005).
Herring stock sizes and especially sprat, important planktivorous
predators and in the case of sprat a key predator on cod eggs,
increased substantially. Furthermore, “a temperature-related
increase in the sprat stock intensified egg predation” (Koster
et al., 2005).

Even though the hydrographic conditions facilitative for
survival of early life stages improved during the 90s, cod
recruitment success remained far below average. The lack
of recruitment recovery in the mid-90s, “despite improved
hydrographic conditions for egg development, is related to poor
larval survival” (Koster et al, 2005) and cod egg predation
(Koster and Mollmann, 2000; Casini et al., 2009). A decline in the
abundance of the copepod Pseudocalanus sp. (Moéllmann et al.,
2008) related to lower salinity and increased predation by clupeid
fish, mainly sprat (Casini et al., 2009), caused food limitation
for first-feeding cod larvae. Few exceptions in recruitment in
the 90s have been suggested to be due to relatively high wind
speeds (affecting transport and prey encounter via turbulence),
and below average temperatures, favoring oxygen conditions for
egg survival.

It has long been recognized that non-linear population
processes and environmental forcing can generate dramatic
fluctuations in recruitment of marine fish and invertebrate stocks
(Glaser et al., 2011; Mintyniemi et al, 2015). It is difficult
to clarify and model the mechanisms controlling recruitment
by using conventional methods because fish populations have
complex and non-linear response, and reactions to biotic inter-
reactions and environmental changes (Olden and Jackson, 2001).
Machine-learning techniques such as Artificial Neural Networks
(ANNs) have been proposed as “an appropriate approach with
some desirable properties to address such problems” (Dreyfus-
Le6n and Chen, 2007; Uusitalo, 2007; Fernandes et al., 2013).
ANNSs gained momentum in mid-1980s (Rumelhart et al., 1986)
and subsequently they have been used in a variety of ecological
applications. ANNs mimic biological neural networks to fit and
find patterns in complex data (Lawrence, 1993). For a more
comprehensive treatment of ANN applications in ecology, we
suggest the books by Lek and Guegan (2000), Lek et al. (2005),
and Recknagel (2006).
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ANN's have been shown to approximate competently many
complex functions and have demonstrated advantages in
predictive ability over general linear models (Hastie et al., 2001).
In many cases they are documented to perform better than
multiple regressions when there are non-linear relationships
between the variables (Lek et al., 1996; Brey et al., 1997). Their
main advantage compared with multiple regression models is
that they do not require an a priori model as they can learn
from existing data. Additionally, ANNs can model systems
that involve complex non-linear relationships between variables
and outcomes multiple dependent variables, can learn from
“noisy data” (Kasabov, 1996) and the outputs of the multi-
layer perceptron (MLP), a type of ANN, can be interpreted as
“probabilities” (Watts and Worner, 2008). They can generalize
well if over-fitting is avoided, in other words they can fit and
classify data they have not been trained on with accuracy.
They also do not require the transformation of non-linear
variables, unlike classical linearization techniques, which can
“improve the results but have often failed to fit the data”
(Sun et al., 2009). All these features make the application of
ANNs “a powerful approach for exploring complex biological
problems such as recruitment forecasting” (Chen and Ware,
1999).

This utility of neural networks for solving non-linear
problems has been demonstrated in aquatic studies and has
led many researchers to comment on neural networks as
an attractive (non-linear) alternative to traditional statistical
methods (Olden and Jackson, 2002). A thorough revision of the
use of neural networks in fisheries research was performed by
Suryanarayana et al. (2008) where applications in forecasting,
fisheries management distribution and classification since 1978
where reviewed. In addition, Quetglas et al. (2011) also
reviewed the utilities of neural networks in marine ecology and
fisheries science during the 1990s and 2000s. Some interesting
applications of ANN to management and forecasting of fisheries
include the modeling of recruitment, stock biomass, abundance,
catch of different fisheries, and distribution (Komatsu et al., 1994;
Lek et al., 1996; Mastrorillo et al., 1997; Chen and Ware, 1999; Laé
etal., 1999; Chen et al., 2000; Gevrey et al., 2003; Maravelias et al.,
2003; Zhou, 2003; Joy and Death, 2004; Chen and Hare, 2006;
Glaser et al., 2011; Olden et al., 2011; Russo et al., 2011, 2014).

Many published works on ANNSs in marine ecology compare
this approach with classical multivariate statistical methods, such
as multiple linear regression (MLR) or discriminant analysis
(DA). Quetglas et al. (2011) state that in all cases, ANNSs either
outperformed (e.g., Baran et al., 1996; Lek et al., 1996; Mastrorillo
etal.,, 1997; Laé et al., 1999; Ibarra et al., 2003; Wagner et al., 2006)
or at least performed as well (e.g., Power et al., 2005; Fang et al,,
2009) as classical linear and non-linear modeling methods, such
as linear regression and generalized additive models with respect
to prediction accuracy.

There are only two publications in literature that have
applied ANNs in studies on Baltic cod. Wieland and Jarre-
Teichmann (1997) used an artificial neural network model to
successfully predict the vertical distribution of Baltic cod eggs.
Fuchs (1996) utilized ANN as a tool to investigate how the
changed hydrography influences the cod distribution in the

Baltic. To our knowledge, ANNs have not been applied to
investigate recruitment of Baltic Cod. Thus, the goals of this
study were to (1) build a quantitative model representation of the
conceptual understanding of the complex ecosystem interactions
driving Baltic cod recruitment dynamics, and (2) apply the model
to strengthen the current capability to project future changes in
Baltic cod recruitment.

MATERIALS AND METHODS

Data Sources

The data utilized cover the ICES subdivisions 25, 26, and 28-
2 in the Baltic Sea (Figure1), thus encompassing the three
major basins known as nursery grounds of eastern Baltic Cod.
Here, we analyze biotic and abiotic information as combined
time series from all three subdivisions, assuming little effect of
transport between spawning areas (Koster et al., 2005). Cod
Reproductive Volume from May to August (RVmay, RVaug)
were calculated and applied separately as the water column
volume with salinity above 11 and dissolved oxygen above 2 ml/l,
i.e., proper conditions ensuring fertilization and egg development
of cod (Plikshs, 2014). Datasets where obtained from M. Plikshs
(Fishery Resources Research Department, Riga, Latvia) and B.R.
Mackenzie (Technical University of Denmark, Charlottenlund,
Denmark). The effects of natural and fishing mortality (i.e.,
survival and harvest) were considered variable over time. Natural
and Predation Mortality parameters (NatMort) at Age 2 of Cod,
are basin-wide estimates derived from the Stochastic Multispecies
Model (SMS), a data-driven model frequently used for generating
analytical fish stock assessments and forecasts as basis for ICES
scientific advice (Lewy and Vinther, 2004). Fishing mortality
(FishMort) and SSB estimates are derived from published ICES
stock assessments (ICES, 2010).

As an estimate of recruitment we used the number of cod
recruits to the fishery at an age of 2. Earlier estimates of year-class
strength are difficult to assess due to cannibalism effects (Koster
et al.,, 2003). As a result, regular single species assessments of
cod employ Age-2 as the youngest age group and presentations
of stock-recruitment relationships refer in general to age-group
2 (Koster et al,, 2003) as the first age fully recruited to and
sampled by the fishery. Abundance index of Age-2 Baltic Cod is
derived from published ICES stock assessments and was used as
an estimate of the number of cod recruits to the fishery (Koster
et al, 2003). Additionally, we consider habitat driven variables,
proposed by Koster et al. (2005), that potentially explain changes
in recruitment regimes, namely: Oxygen—related Egg Survival
(OES), Relative egg Predation Pressure (RPP), Egg abundance
(EA), and Larval Abundance (LA; Koster et al, 2005). We
obtained the published 1976-1999 time series of these variables
from Koster et al. (2005). Information on the variables employed
in this study including duration of time series and data source
are presented in Table 1. Additionally, 2000-2009 data time
series were used as independent test sets to assess the predictive
accuracy of those models for which all input and target variables
were available during this period (also presented in Table 1).
Time series plots for the 9 input variables and cod at Age-2 are
presented in Figure 2.
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FIGURE 1 | Map of ICES Statistical area for the Baltic Sea (http://ices.dk/marine-data/maps/Pages/default.aspx). Courtesy of International Council of the

Exploration of the Sea.

20F 30°E

In order to enable a potential operational 2-year-ahead
forecast of eastern Baltic cod recruits we only consider model
input variables available 2 years ahead of the estimated
recruit abundance. For habitat driven variables and SSB this
is representative of their direct influence on the earliest life
stages of the cod (eggs and larvae). In case of natural and
fishing mortality here we use a sum of the given mortality
term on cod age 0, 1, and 2 from 2years back with respect

to the given cod Age-2 recruit abundance estimate. While
these indices do not match the conceptual direct influence
these variables have on cod recruitment to the fishery in
a given year, they nevertheless explain a large part of the
target variable variability. This approach is deliberately different
from a typical analytical stock assessment model procedure,
which would replace the in-year natural and fishing mortality
estimates with the average from last few years as proxies
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TABLE 1 | List of variables applied to the models.

Available information

Variable Period Subdivision References
Reproductive Volume—May (RVmay) 1976-1999 (2000-2009) 25, 26, 28-2 M. Plikshs (personal communication)
Reproductive Volume —August (RVaug) 1976-1999 (2000-2009) 25, 26, 28-2 M. Plikshs (personal communication)
Spawning Stock Biomass (SSB) 1976-1999 (2000-2009) 25, 26, 28-2 ICES
Natural Mortality (NatMort) 1976-1999 (2000-2009) 25, 26, 28-2 SMS
Fishing Mortality (FishMort) 1976-1999 (2000-2009) 25, 26, 28-2 ICES
Egg Mortality (OES) 1976-1999 25, 26, 28-2 Koster et al., 2005
Egg Predation (RPP) 1976-1999 25, 26, 28-2 Koster et al., 2005
Egg Abundance (EA) 1976-1999 25, 26, 28-2 Koster et al., 2005
Larval Abundance (LA) 1976-1999 25, 26, 28-2 Koster et al., 2005
Age 2 recruitment 1978-1999 (2000-2009) 25, 26, 28-2 ICES
RVma RVau 5 SSB
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FIGURE 2 | Time series of all input and target variables used to build the FishANN model in different configurations.

for these variables, when running the models in forecast training dataset to adjust the connection weights in order to

mode.

Modeling Approach

minimize the error between observed and predicted response
values. These weights are the parameters of ANNS, initially
chosen from random numbers and are refined until convergence

In terms of structure, ANNs are non-linear models that apply ~ or maximum clock time set is over. In feed-forward networks,
weighted links between input neurons (predictors), hidden  neurons from one layer are interconnected to all neurons of
neurons, and output neurons (results) related to a response.  neighboring layers, but no connections are established within a
Training any type of supervised ANN consists of using aresponse  layer or feedback connection. After being trained to match inputs
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and response outputs with existing data, an ANN can be used for
forecasting with new inputs.

We use feed-forward neural networks, with a single hidden
layer, trained in supervised mode using the back propagation
algorithm (Rumelhart et al., 1986). The modeling process in
back-propagation neural networks is more direct, as there is
no necessity to specify a mathematical relationship between the
input variables and output responses (Goh, 1995). This category
of neural networks, referred to as MLPs, is commonly used
in ecological studies as MLPs are suggested to be universal
approximators of any continuous function (Hornik and White,
1989; Olden et al., 2004). The MLP was first used in ecological
studies in fisheries in Komatsu et al. (1994) and Lek et al.
(1995), and since then has been successfully applied to several
different problems in ecology (Kimes et al, 2000; Quetglas
et al, 2011). In our study, calculations were done in the
MathWorks Matlab environment using the Neural Networks
Toolbox.

Model Training and Testing Procedure

The MLP neural network models we used are trained via Bayesian
regularized method (BR) using MATLAB’s native “trainbr’
function. BR training tends to show better performance when
the relationship between variables is non-linear (Sovan et al.,
1996; Archontoula et al., 2003). It also gives potentially better
generalizations because of its capability to automatically select
regularization parameters to optimize the network architecture
and limit the likelihood of over-fitting (Burden and Winkler,
1999, 2000). We chose the estimated mean of squared errors
(MSE) as the representative metric of performance of the model.
The smaller the MSE, the better the model fit. To further
minimize the risk of over-fitting the model, a validation stop
criterion was introduced to the BR training function, hence the
model training stopped as soon as it failed to minimize its error
for n-number consecutive training cycles, here n = 20 (e.g.,
Sjoberg, 1995; Amari et al., 1997).

To further avoid overtraining and to maximize
generalizability (i.e., ability to project correctly in unsupervised
mode) three-fold cross-validation was used to assess model
prediction accuracy, meaning that 1/3 of all available data points
from the 1976-1999 input time series were always excluded from
training a given set of models. In the training set the data was
further divided randomly for training and validation (70 and
30%, respectively) with a different random split for each model.
The training data set was used to iteratively adjust the connection
weights until a minimum error was found. The validation data
set was used to monitor network error after each training cycle,
enabling training to be terminated when the network began
to over-train or over-fit the data. We compared the test set
performances from the three-fold cross-validation and selected
the model with the best of the three test set MSEs.

Model Ensemble

Stochasticity needs to be considered as an important trade-off
when using data-driven approaches such as ANNs. In order
to account for the variability in model results, dependent on
the initial choice of weights and random data splitting during

training, we employed an ensemble model approach similar to
the suggestions discussed in Zhou (2003), and De Ona and
Garrido (2014). For each training data set we trained an N-
number of replicate models (herein N = 35), with identical
architecture (see Section Model Ensemble) but different set of
initial weights. The performance of the given ensemble member
model (m#; #=1, 2, ..., 35) was estimated on the test set through
a cross-validation procedure described above. The ensemble
model performance was considered equal to the median of all 35
replicate models.

To test the hypothesis that the larger the number of ensemble
members, the higher the performance of the ensemble, we
performed a sensitivity experiment, the results of which are
presented in Figure 3. In this analysis we checked the test set
performance of each ensemble and plotted the MSE of the
ensemble best model as a function of the number of ensemble
members ranging from 1 to 90, again applying three-fold cross-
validation as above. Each ensemble configuration was run with
10 replicates, and only the median of the 10 results was plotted in
Figure 3.

We found that there is a marked and consistent increase
in performance (decrease in MSE) of the ensemble best as the
number of ensemble members increased from 1 to around 10 to
15. However, no consistent and significant gain in performance
could be achieved when increasing the number of ensemble
members beyond the number 35. Figure 3 also illustrates that this
result does not depend on whether we select the best, the mean or
the median of the three-folds during cross-validation when used
to report the performance of each individual ensemble members.
While the absolute value of the ensemble MSE changes, all three
lines show little if any gain in ensemble performance beyond 35
ensemble members.

035
k-fold mean
0.3 k-fold median
’ best k-fold
? 0.25
®
L
S 02
w
n
= 0.15
=
e
kS
g 0.1
0.05
0 . . . : |
0 20 40 60 80 100

# ensemble members

FIGURE 3 | Test set MSE of the best model within an ensemble as a
function of the number of ensemble members. The results displayed are
the median of 10 replicates performed for each number of ensemble
members. All results obtained while applying the three-fold cross-validation
procedure for every model. Red line shows the results from choosing the best
of the three-folds, black line—median of the three-folds, blue line—mean of
the three-folds, for each individual ensemble member model.
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Model Architecture

The general architecture of the neural network model used in this
study is the same, i.e., there is one input layer, one output layer,
and a single so-called hidden layer with three computing units
(neurons). The number of neurons was set to three, optimized
based on the results of sensitivity analysis performed according
to the following procedure. Using a number of neurons in the
range from 1 to 30 we trained 20 nets with 9 input variables
for every number of neurons and recorded their average (mean
and median) performance (MSE criterion), both on training and
test sets (Figure 4). The 20 nets differed in terms of their initial
weights and distribution of training and test set on the 1976-
1999 input time series. The mean of the 20 replicates revealed
no consistent trends but the median results from 20 replicates
revealed that while training errors kept decreasing until the
number of neurons reaches 7 and then showed little if any change,
the median test set error reached a global minimum already
at three neurons in the hidden layer. Therefore, we opted for
the MLP model configuration with the simplest architecture and
highest generalization capability, i.e., with three neurons in the
hidden layer.

Input Layer Structure—Feature Selection

For the purpose of designing an optimal model capable
of predicting eastern Baltic cod recruits 2-years ahead we
constructed a series of MLP neural networks that differ from each
other by the number of input variables considered, on a range
from one to nine. In order to reduce the number of potential
input variable combinations we used a quantitative feature
selection method based on the results of variable importance
analysis, described in detail below. Additionally, we adopted a
qualitative criterion which restricted the number of potential
input variables to five, which had available data points from
the entire time period under study (RVmay, RVaugust, SSB,
NatMort, FishMort). Therefore, feature selection was applied

independently on two original models: MLP1—with nine input
variables, and MLP2—with five input variables. Based on the
results of feature selection analysis, which discarded those
variables whose importance was significantly lower than others
based on the median variable importance from the MLP
ensemble, we then identified and retrained two new models
with a reduced number of input variables (MLP3 and MLP4).
Performance of reduced models was compared to the original
ones with a full feature suite. Finally, we include one more
model into the analysis with only a single input variable SSB
(MLP5), thus mimicking the simplest possible stock-recruitment
relationship model.

Variable importance-based feature selection was performed
using two metrics derived from the distribution of connection
weights inside a trained model: (i) product-of-standardized-
weights (PSW) first defined in Garson (1991) and as applied
in Russo et al. (2011), and (ii) product-of-connection-weights
(PCW) based on Olden and Jackson (2002) and Olden et al.
(2004). Measures of variable importance for both methods
were obtained using MATLAB code. The two approaches are
briefly described below. For full documentation we refer to the
publications mentioned above.

In the PSW method the algorithm partitions hidden-output
connection weights into components associated with each input
neuron using absolute values of connection weights. It is
important to note that Garson’s PSW algorithm uses the absolute
values of the connection weights, thus the variable contributions
cannot reveal anything about the direction of the relationship
between the input and output variables. The PCW approach
of Olden and Jackson (2002) calculates the product of the raw
input-hidden and hidden-output connection weights between
each input neuron and output neuron and sums the products
across all hidden neurons. According to Olden et al. (2004),
the application of Garson’s algorithm may often be inadequate
because using absolute connection weights does not account

0.8 r

MSE on training set

0 5 10 15
# neurons in hidden layer

20

FIGURE 4 | Test and training set MSE as a function of the number of neurons in the hidden layer. The results displayed are the mean and median of 20
replicates performed for each number of neurons in the hidden layer, evaluated separately for the training set (Left panel) and the test set (Right panel).
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for counteracting connection weights in cases where there are
opposite directions for incoming and outgoing weights from the
hidden layer neurons. Therefore, when the two metrics revealed
contrasting variable importance ranks, we base our judgments on
the PCW approach.

Table 2 lists all the models considered in this study, both
before and after the qualitative feature selection.

RESULTS AND DISCUSSION

Feature Selection Analysis

Results of the feature selection process based on input variable
importance analysis are presented in Figure5. Using two
different algorithms to estimate the neural network connection
weights associated with individual input variables, we arrived
at similar conclusions as to which features (input variables)
are potentially redundant in the two models which use the
maximum number of available input variables for either the
1976-1999 training period (MLP1) or the entire time period
under study (1976-2009). Both the PCW and the PSW methods
applied to the MLP1 ensemble showed on average the lowest
importance given to: RVmay, RVaug, FishMort, OES, and EA.
According to the PSW method neither of these variables passed
a 10% relative importance in determining the model output,
taken as the mean of all ensemble members. NatMort and RPP
were ranked as the most important variables with LA and SSB
values also reaching above 10% on average across all ensemble
members. NatMort and RPP were also the variables with highest
average connection weights according to the PCW method,
which additionally revealed the opposing direction of influence
of these two variables—observation not possible to make with the
PSW approach. Here, the connection strength of SSB and LA only
slightly exceed the average weights assigned to connections traced
back to the two RV variables, FishMort, OES, and EA. Based
on these results, we reduced the feature space of MLP1 to four
input variables with highest average connection weights (SSB,
NatMort, RPP, and LA) which then determined the structure
of the new model MLP3. Figure5 also shows the results of
variable importance analysis on MLP3. We observed that RPP
and NatMort retained their highest relative variable importance,
with SSB showing a consistently lower importance relative to the
other inputs when compared to MLP1.

TABLE 2 | Different model structures and their recorded performance.

Model structure Ensemble median performance

(1976-2001; log scale)

Model Input variables MSE r2

MLP1  RVmay, RVaug, SSB, NtMort, 0.16 0.70
FishMort, OES, RPP, EA, LA

MLP2  RVmay, RVaug, SSB, NatMort, 0.12 0.81
FishMort

MLP3 SSB, NatMort, RPP, LA 0.13 0.74

MLP4 RVmay, RVaug, SSB, NatMort 0.11 0.80

MLP5 1.1.1.1, SSB 0.20 0.72

Analysis of connection weights in the MLP2 model ensemble
confirmed the high relative importance of NatMort. The second
most important variable, according to both the PCW and PSW
algorithms, was RVmay. According to the PCW results, FishMort
showed no consistent direction of influence on the model output
and displayed the weakest average connection with the output.
Consequently, we decided to rule out only this variable when
reducing the feature space of MLP2 for the purpose of building
the MLP4 model. As in the case of MLP3, the reduction of
the feature space did not alter the relative weight distribution
significantly. NatMort and RVmay were retained as the most
influential variables for determining the model outputs.

In Section Model Performance Evaluation, we further analyze
the effects of our feature selection analysis on model performance
in order to choose the optimal FishANN MLP configuration.

Model Performance Evaluation

In Table 2 we compared the performance of the five MLP models
using two statistical metrics: MSE and squared correlation of
determination coefficient (2). Please note that both the MSE and
+? values reported here represent the ensemble median model
performance on those samples from the 1976 to 2001 time-series
for which there was a complete suite of input variables available.
In terms of MSE the best performance was provided by the MLP4
ensemble, although the improvement over MLP2 was marginal.
While the 72 of MLP4 was in fact 0.01 lower than that of MLP2,
we must bear in mind that r? also likely increased due to a mere
increase in the number of features. To test that, we calculated
the adjusted r* of MLP4 (0.75) which turned out slightly higher
than that of MLP2 (0.74). These results suggest that the variable
importance-based feature selection performed on MLP2 led to an
improvement in the model performance in form of MLP4.

Reducing the number of features in the MLP1 model resulted
in an even more pronounced improvement in the model
performance in terms of MSE and r2. Nonetheless, the improved
model MLP3 was found to have a lower overall performance than
MLP2. It is interesting that the most complex model with nine
input variables (MLP1) had a lower 72 than the simplest stock-
recruitment model with only SSB in its feature space (MLP5).
Reducing the feature space of MLP1 led to MLP3 with an 72 above
that of MLP5, however, with an adjusted 2 (0.67) still lower than
that of MLP5 (0.70).

These observations and conclusions were additionally
confirmed by the results displayed in the Taylor diagram
(Figure 6), which shows a more comprehensive multi-statistical
analysis of the differences in performance between the five
models. Considering not only the correlation of determination
coefficient r, but also the central root mean square difference
(RMSD) and standard deviation patterns relative to the ICES
data. While the differences in terms of correlation and RMSD
are narrow between all models, and small gains in reducing the
feature space from MLPI to MLP3, and MLP2 to MLP4, there is
an increase in the standard deviation exhibited by the reduced
models, with MLP3 standard deviation being in fact the closest
to the ICES reference value.

In comparison with previous Baltic cod recruitment
models in similar studies, Koster et al. (2003) tested existing
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FIGURE 5 | Variable importance based on the PCW and PSW algorithms, for all 5 MLP models. Box plots show the distribution of connection weights within
each ensemble member providing a variable importance metric for all model inputs. Red lines mark the median weights, boxes are 75% percentiles, whiskers 2
standard deviations, and red crosses mark the outliers. Top panels show the results obtained using the PCW algorithm, with connection weights in absolute values.
Bottom panels show the results obtained using the PSW algorithm, with variable importance given in %.
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environmentally sensitive stock-recruitment relationships
(Koster et al., 2001) and performed linear regressions of cod
recruitment (in numbers) on SSB, using cod Age 2 dependent
variables per subdivisions 25, 26, and 28 (R> = 0.16, R?> = 0.23,
and R? = 0.41, respectively). Rockmann et al. (2007) presented a
linear regression of the spawning stock size in time series 1976
1999, with combined model estimates that “explained 72% of the
variance of ICES standard stock assessment estimates.” In this
approach, recruitment refers to 0 group cod (Age 0). Margonski
et al. (2010) demonstrated two different models in their model
comparisons for the Eastern Baltic Cod stock: a linear and
additive model (R? = 0.73) and a linear and polynomial model
(R? = 0.725). We assume that the authors considered Age-2 cod
as recruiting to the fishery, although this was not stated in the
paper.

Time-series comparison of MLP-derived and ICES-based
Age-2 numbers estimates displayed in Figure 7 provide also
additional information: (a) how well the different ensemble
median MLPs perform in the distinct high and low recruitment
regimes, and (b) what is the level of uncertainty due to picking
any random ensemble member model projection, here defined as

the range of variability around the median within each ensemble
model.

In Figure7 we see that when considering the range of
ensemble variability as twice the standard variation of ensemble,
then the majority of ICES Age-2 numbers data points fall
inside the model projections. The narrowest range of ensemble
projections was exhibited by models MLP3 and MLP4. While
models MLP1 and MLP3 underestimated only a few very high
recruitment years in the 1970s and early 1980s, MLP2 and
MLP4 also overestimated a few low recruitment events in the
last two decades. Nevertheless, all these four models in general
perform well in both the high (1970-1980s) and low recruitment
regimes (after 1990). This is in marked contrast to MLP5 which
though seems to capture the overall level and trends in the
low recruitment period, fails to capture both the timing and
magnitude of the high recruitment events.

One important difference between the MLP4 and MLP2
ensembles, is for instance the fact that MLP4 shows a very
consistent direction of forecast in the last 5 years of the time
series, unlike MLP2 whose range of predictions reveal a wide
spread with possible both decreasing and increasing trend toward
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FIGURE 6 | Taylor diagram for multi-statistic model performance
evaluation of the 5 MLP models in comparison to the ICES Age-2
numbers reference. RMSD —centered root mean square difference which is
a variation of the mean square of errors used to train the MLP models.
Correlation of determination here equivalent to the square root of r2 reported
in Table 2. Standard deviation and RMSD units expressed on log scale.

the end of the time series, with the half an order of magnitude
range of predicted Age-2 numbers.

Considering all the statistical metrics reviewed in Table 2 and
Figure 6, the additional information inferred from Figure 7, as
well as the fact that preference should always be given to a
simpler model, we conclude that the best FishANN configuration
is obtained by using the MLP4 ensemble. Furthermore, we
propose that the range of MLP4 ensemble projections could
be interpreted as a measure of the model uncertainty, possibly
replaced with formal confidence intervals for the purpose of
making operational model forecasts.

Unfortunately, due to lack of availability of published data on
RPP and LA we cannot fully evaluate the predictive potential of
MLP3 to the same extent as the currently preferred model MLP4.
Considering the marginally lower performance of MLP3 relative
to MLP4, MLP3 could still demonstrate better generalizability
when presented with more independent input variables.

Variable Importance in Ensemble Modeling
Box plots in Figure 5 provided the summary of the distribution
of connection weights and inferred variable importance across
all ensemble members from MLP1-4. We have already discussed
which of the input variables play the key role in the respective
models, when taking the ensemble average into considering. It
is however interesting to try and analyze the specific differences
between the two individual ensemble members which might
represent extreme responses under low and high recruitment
regimes.

In Figure8 we show the time series projections of Age-
2 recruits from ICES, and MLP4 ensemble median and two
individual algorithms from the ensemble: m23 and m29. We can

see that m23 cannot properly detect the very high recruitment
levels in the early parts of the time period under study, and at
the same time, it grossly overestimates recruitment in the latter
part of the time series. In fact, the results of m23 alone would not
allow to distinguish a low and high recruitment regime which is a
pronounced feature of the ICES estimated time series. The results
of m23 are in marked contrast to the m29 ensemble member
which can capture the high recruitment signal and at the same
time follows the observed low recruitment very well. Perhaps
the only advantage of m23 over m29 is the fact that it captures
the recruitment in the 1985-1990 transition period much better,
namely, it does not simulate a high recruitment year in 1985—
a feature not seen in the data but present in almost every MLP4
ensemble member algorithm.

In the four bottom panels of Figure8 we analyze the
differences in assigned connection weights between m23 and
m29. In the case of m23, both the PCW and PSW approach
lead to a similar conclusion that NatMort and RVmay were most
influential in the model with only their rank reversed in the two
approaches. SSB played a visibly lower role than all other input
variables. In the case of m29, there are very strong differences
between PCW- and PSW-based interpretations of the variable
importance. While both PCW and PSW point at an increased
role of SSB in m29 relative to m23, the latter assigns nearly
40% relative importance to SSB making it the key variable in
the model. The PCW approach draws a very different picture
with RVmay being by far the most dominant input variable, with
NatMort also having a stronger connection weight to the output
than SSB.

In order to try and resolve which approach draws a more
accurate picture of variable importance in MLP4, we actually
use the results of MLP5 which we know was solely based on
the relationship between SSB and number of recruits. Figure 7
clearly illustrated that SSB-based MLP5 captured neither the
timing nor the magnitude of the very high recruitment events
from the beginning of the time series under study. It is therefore
highly unlikely that assigning a higher relative weight to SSB
would make m29 fit the high recruitment regime so much better
than m23. On the other hand, giving more weight to SSB also
does not explain the large overestimates in the low recruitment
period, as MLP5 rather tended to underestimate recruitment
after 1990. Thus, we conclude based on these observations that
the PCW approach is more adequate to describing the variable
importance in ANN models. It therefore also follows that RVmay
might be the key variable needed to correctly project high
recruitment events 2 years ahead. On the other hand, we also
note that m29 projects false recruitment peaks, i.e., in 1985 and
in 1996. Figure 2 reveals that there was a large increase in RVmay
in 1994, 2 years prior to the project 1996 peak. It thus appears
that a high RVmay in that year did not lead to a marked increase
in recruitment, as predicted by m29, and that other factors need
also be considered. Therefore, while it appears that NatMort and
RVmay are key predictors for FishANN in general, the challenge
remains to assign such relative weights to SSB and RVaug to
further maximize the 2-year ahead predictive capacity of MLP4.

Moreover, we conclude based on these results that it is
imperative not to assign a single fixed set of weights to individual
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FIGURE 7 | 1976-2011 time-series predictions of five different FishANN MLP structures compared to the ICES number of Age-2 recruits. Gaps in
prediction time series are caused by missing input variables at those years. Solid blue lines—ICES reference values in numbers of individuals. Solid black lines are the
MLP ensemble model median predictions. Dotted black lines mark the confidence intervals of the MLP predictions equivalent to +2 standard deviations of the
predictions from all 35 ensemble members. The dashed red vertical line separates the time period used for every MLP model training and evaluation (left of the line)
from the time period used as a completely independent test data set (right of the line) not used at all during the cross-validation procedure.

processes represented by the selected input variables in Baltic
cod recruitment models as their role in explaining recruitment
patterns is very likely shifting depending on the environmental
and recruitment regime (see also Margonski et al., 2010 for a
discussion on that). Due to the adaptive structure of neural
networks (i.e., variable activation of its computing units in
response to changes in the input space), mimicking a set
of weighted regression models in place of a single best fit
model, such a variable distribution of weights is accomplished.
Nonetheless, as indicated by the substantial differences between
individual model ensemble members, distinct patterns of
assigned weights may lead to model projections that are both
statistically sound (high performance in terms of r* and MSE)
but which have distinct biases of great consequence in potentially
using these tools as support for fish stock management.

One approach would be to use expert judgment or another
criterion (e.g., precautionary) to select a single best algorithm.
The second approach, preferred by us, is to take an ensemble
median/mean result with associated confidence intervals from
a number of algorithms of the same structure, both in terms
of complexity of the computing units and the number of

input variables considered. In this study we also demonstrated
that taking the ensemble approach still enables interpretation
of variable importance through a sum of both positive and
negative non-linear interactions inside an ANN model. We
thus presented a pragmatic approach to a very complex
problem of predicting fish recruitment under a highly variable
environment.

As a potential future development, we hypothesize that
applying a weighted majority vote scheme to our ensemble
model building in place of the simple median majority vote
would further increase the probability of correctly classifying
recruitment numbers under unknown sets of inputs variables
(Kuncheva, 2004). Implementing such a more complex ensemble
scheme is currently hindered by the limited number of sample
points in the training dataset, but is likely necessary when dealing
with very contrasting environmental and recruitment regimes as
in case of the eastern Baltic cod.

Assumptions and Limitations
At this stage, there are some points we need to put into
consideration. First, more data may be needed to ensure the
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actual quality of prediction and training. As stated in Doan
and Liong (2004) “the length of the test set has an impact
on the prediction capability of the trained model” and our
results, given the small amount of data in which the model
was trained in, could be open to interpretations. Lek et al.
(1996) mention that “repeated resampling of test data sets
reduces the potential for sampling error caused by choice
of a validation or test data set.” We believe we have used
means to address to this issue (i.e., k-fold cross validation)
but a longer data set could provide a better overview. While
sampling error is not common when “extremely large and
functionally homogenous data sets are used and it is likely to
be a factor when used for actual ecological data sets where
data availability is limited” (Kemp et al, 2007). This could
be a reason behind the fact that the model underestimates
high recruitment. It is also possible that data may contain
some errors. FiShANN seems to constantly overestimate one
specific recruitment year. At this point, it needs to be said
that we didn’t account deep-water salinity data in our study, as
suggested by Heikinheimo (2008). We would have considered
including average deep-water salinity as an additional input
variable, should its higher explanatory power relative to RV be
also relevant in our case. It is noted that Heikinheimo (2008)
examined the variability in Baltic cod age-0 recruitment. All in
all, deep-water salinity data was not included due to lack of
sufficient availability of the data set. The ICES database offers
access to relevant salinity data only until 2004. In order to
facilitate reproducibility of results we opted to restrict ourselves
to those input variables that are readily available, even though
this information could add potential improvement of model
predictive skills.

Third, we assumed for our data that mechanisms across
Baltic subdivisions are roughly the same, since the integrated
abundance of all spawning areas should be unaffected by
transport between spawning areas (Koster et al, 2005). We
kept this spatial homogeneity within the Central Baltic, similar
to studies by Sparholt (1996) and Jarre-Teichmann et al.
(2000). We can’t be sure to what extent this decision affects
the interpretations of complex non-linear relationships for
recruitment.

Fourth, the level of analysis in variable importance presented
is restricted to semi-linear relations. There might be some
additional non-linear effects between them. The question if the
available inputs capture this encrypted variability may be more
suitable to investigate with emerging tools for non-linear analysis
of the relationship of variables used in neural network models
(e.g. Fischer, 2015).

The “black box” term is no longer an appropriate term
for ANNs. Recent advances in the field of environmental
sciences have provided a “set of techniques to determine the
relative importance of each input variable” (Fischer, 2015).
These techniques include sensitivity analyses (Lek et al., 1996;
Recknagel et al., 1997), partial derivatives (Dimopoulos et al.,
1999; Reyjol et al., 2001; Gevrey et al., 2006), “input variable
relevancies and neural interpretation diagrams” (Ozesmi and
Ozesmi, 1999), significance randomization tests (Olden, 2000;
Olden and Jackson, 2002). All these approaches are “based

on the fact that the contribution of each independent variable
depends on the magnitude and direction of the connection
weights between neurons” (Olden et al., 2008). However, only
a handful of methods have been documented for visualizing
non-linear effects of input variables in literature (Garson, 1991;
Dimopoulos et al., 1995, 1999; Lek et al., 1996; Fischer, 2015),
an important issue to consider when dealing with complex
ecosystem scenarios. So far, to our knowledge, there are no
relevant studies using these techniques for predicting fish
recruitment with ANNS.

Recommendations for Future Work
In 2008, Houde (2008) highlighted some critical research needs
in understanding causes of recruitment variability:

e Implementing/continuing long-term surveys on early-life
stages.

e Better understanding of larval behavior.

e New and improved coupled biological-physical models: Most
coupled biological-physical models have been developed as
“explanatory or inferential tools” (Miller, 2007) and relatively
few as tools to test hypotheses: the biggest contribution to
understanding variability in recruitment ultimately may come
from that approach.

Research that goes beyond life stages.

e Understanding effects of climate change.

e To enable not only short-term but also long-term
recruitment projections under scenarios of climate
change/variability.

For the future, the statistical nature of ANNs could be
combined with dynamic IBMs, fuzzy logic (Chen and Ware,
1999; Chen and Hare, 2006) or expert knowledge to address
more complex long term recruitment scenario forecasting in
fisheries. By combining process knowledge and statistics (e.g.,
capelin migration model—Huse and Ellingsen, 2008) we could
also enable future scenario testing for long term recruitment
hypotheses, and provide “continuous learning” operational
predictive models, i.e., with evolving connection weights. This
approach, together with an articulate methodology to overview
ranking of non-linear variable importance techniques, could
enable automated process monitoring, biological systems control,
and advance decision making to a new level. We believe that
this might be an appropriate approach for a CAS and that
ANN tools can contribute significantly toward this direction.
The case of the Baltic cod stock exemplifies the multitude
of effects biotic interactions (clupeid predation on cod eggs,
competition between clupeids, and cod larvae for common
zooplankton resources) and climate variability may have on a
fish stock, and it underscores the importance of knowledge
of these processes for understanding the dynamics of fish
stocks.
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