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Benthic infaunal species and communities have been extensively used to evaluate quality

of the marine environment. Within the MSFD, community composition is addressed

most commonly through Descriptor 6 (Seafloor integrity), criterion 6.2 (Condition of

benthic communities). At the same time, the Directive has stipulations for addressing

and assessing indicators linked with pressures in an explicitly spatial manner. At larger

scales, achieving this through point sampling may be impractical or unfeasible; hence

predictive methods are being increasingly employed to produce the large scale spatial

data that are often required for marine spatial planning and management. The aim of the

current work was to develop statistical and spatial modeling tools that can predict the

distribution of soft-sediment benthic polychaetes in the Aegean coast of Turkey. To do

that, we employed Species Archetype Models (SAMs), a novel analytical and modeling

framework which uses mixture models to cluster species responses to the environment,

producing a number of “archetypal” responses assumed to represent species with

similar ecological/physiological tolerances. Polychaete presence/absence data were

obtained from the literature andmodeling was performed against environmental variables

reflecting the main natural and anthropogenic gradients in the region. The resulting

models are interpreted in light of the sensitivity/tolerance classification scheme for benthic

invertebrates. Three Species Archetypes were identified through the analysis. In brief,

Species Archetype 1 consists of the most prevalent species in the dataset and primarily

follows the salinity and temperature gradients. Species Archetype 2, present in the central

and southern Aegean, is dominated by sensitive and indifferent species and responds

negatively to chlorophyll a, whereas Species Archetype 3 represents mostly tolerant and

opportunistic polychaetes with increased probability of occurrence in eutrophic, shallow,

inshore areas throughout the region. Predictive performance was constrained by the

information contained in our data. These results from a limited data set show promise

that SAMs as a modeling tool can offer valuable insights into patterns of benthic species

distribution and coexistence and increase our capacity to provide predictive advice.

Keywords: polychaetes, species archetype model, composition, community-level model, Aegean, benthic

invertebrates, ecological groups, soft-sediment
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INTRODUCTION

The Marine Strategy Framework Directive is the current legal
framework under which EU Member States are required to
assess and protect the health of the marine environment with
the ultimate target of achieving “Good Environmental Status”
(EU, 2008). Understanding the links between the different
components of marine ecosystems and the pressures resulting
from human activities is a key element of the conceptual
framework underpinning the MSFD and a prerequisite for the
effective management of the seas (Smith et al., 2014; Berg et al.,
2015). At the same time, the Directive has stipulations for
addressing and assessing indicators linked with pressures in an
explicitly spatial manner. This has a number of implications
for the design of monitoring and assessment strategies, starting
from defining meaningful and relevant ecological scales to
demonstrate state-pressure links (Lynam et al., 2015) and
establish the “naturalness” or natural background variability of
the system in order to set reference conditions for assessment
or environmental targets for management (Van Hoey et al.,
2010). Strengthening this knowledge base can be greatly aided
by modeling tools and predictive methods for the distribution
of species and communities according to their responses to
environmental parameters (Reiss et al., 2015).

Benthic infaunal species and communities, due to their
space-use patterns and well-documented relationships with
various forms of ecological stress (Gray and Elliott, 2009), are
a biotic group that has been proven highly appropriate to
demonstrate natural and anthropogenic impacts to the seabed
and is extensively used to evaluate the quality of the marine
environment (Muxika et al., 2005; Dimitriou et al., 2012;
HELCOM, 2013). Community composition of the benthos is
addressed within the MSFD most commonly through Descriptor
6 (Seafloor integrity), criterion 6.2 (Condition of benthic
communities) and is currently better addressed by what we
could call traditional ecological indices (Piroddi et al., 2013).
These are based on the Pearson and Rosenberg paradigm
(Pearson and Rosenberg, 1978) that describes the responses and
succession of benthic invertebrates to the organic enrichment
gradient and generally rely on the proportion of opportunistic
to sensitive species in benthic samples (Carletti and Heiskanen,
2009). Modeling capabilities that can produce information and
indicators to address community condition are currently lacking
(Piroddi et al., 2015; Tedesco et al., 2016) and the development of
habitat suitability models is encouraged in order to address this
gap (Tedesco et al., 2016).

Current approaches for the assessment of soft-sediment
benthic habitats within the framework of the MSFD include
3 steps, (i) defining habitat types, (ii) setting reference/target
conditions taking into account the natural background variability
of each habitat, and (iii) choosing suitable indicators for
assessment (Van Hoey et al., 2013). With respect to the first
step, predictive modeling of community composition has been
extensively employed to integrate the biological components
of the seabed with physical characteristics in order to define
and map benthic habitats. This is usually accomplished with
some application of the “assemble first–predict later” approach,

sensu Ferrier and Guisan (2006), whereby communities or
species groups are usually first delineated through algorithmic
multivariate analyses, followed by modeling of these entities
against environmental parameters (Degraer et al., 2008; Buhl-
Mortensen et al., 2014, 2015; Gonzalez-Mirelis and Buhl-
Mortensen, 2015; Gogina et al., 2016; Rubidge et al., 2016).
While variations of this strategy have served the modeling
community well, they have their shortcomings and limitations.
For instance, distance-based methods have been criticized for
confounding location and dispersion effects by misspecifying the
mean-variance relationship in the data (Warton et al., 2012)
with severe consequences in identifying “characteristic” taxa and
detecting multivariate effects. As another example, sites that are
not well classified in the “assemble” step and are commonly
assumed to represent transitional communities result in entities
that are either poorly predicted (Gogina et al., 2016) or are
discarded from the “predict” step (Degraer et al., 2008), resulting
in information loss that can be substantial for limited data sets.

A recent surge of interest in model-based methods for the
analysis of multivariate data has resulted in an expanding
number of statistical tools that offer an alternative to site-
based multivariate analyses by making species or species groups
the response unit, thereby allowing formal description and
inference about their relationship with environmental variables
and a greater flexibility in modeling species co-existence
(Warton et al., 2015b). These include methods for unconstrained
ordination (Hui et al., 2014; Hui, 2015), correspondence analysis
(Pledger and Arnold, 2014), exploring community-environment
associations and fitting predictive models (Wang et al., 2012),
model selection (Madon et al., 2013). A major challenge however
when modeling multiple species responses to the environment is
how to reduce the number of coefficients in the model based on
ecologically meaningful criteria (Dunstan et al., 2013b; Warton
et al., 2015a), both for computational but also for interpretability
reasons. For soft sediment benthos this is even more pertinent
since, with the exception of habitat forming and alien/invasive
species, it is the response of the assemblage that is usually of
greater interest.

A statistical approach that achieves model reduction by
“seeking shared patterns in environmental filtering” (Ovaskainen
et al., 2016) is Species Archetype Models (SAMs) (Dunstan et al.,
2011). SAMs is a regression-based modeling method which uses
mixture models to cluster species responses to the environment,
producing a number of “archetypal” responses assumed to
represent species that have similar ecological/physiological
tolerances. As such they are likely to respond to pressures in a
similar manner and consequently require similar management
measures. SAMs have been used so far for purposes of
bioregionalization (Woolley et al., 2013), exploring competing
concepts of community assembly (Leaper et al., 2014) and
investigating fish-assemblages’ responses to bottom trawling
pressure (Foster et al., 2015).

In the current study Species Archetype Models are employed
to examine group responses of soft-sediment polychaetes to
natural and anthropogenic gradients and produce modeling tools
to predict their distribution in the Aegean coast of Turkey.
Aiming to present modeling outputs that can be interpreted
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according to the same principles underlying the assessment of
benthic community condition, the resultingmodels are presented
in light of the sensitivity/tolerance classification scheme for
benthic invertebrates (Grall and Glémarec, 1997). Thus, this
approach brings together elements of habitat modeling with the
concept of sensitivity to disturbance (used here as a collective
term that encompasses a number of different impact sources
eliciting similar responses–Rosenberg, 2001; Muxika et al., 2005;
Josefson et al., 2009; De Backer et al., 2014). Combined with
the ability of SAMs to model simultaneously species clustering
with their response to the environment, it is believed that this
modeling framework can offer valuable insights into the drivers
of benthic assemblage composition and the scales at which
significant patterns occur.

METHODS

Data
Benthic Data

The biological data consist of a matrix of polychaete
presence/absence (total of 327 taxa) by 52 sites. Samples
were collected in August 2011 with a Van Veen grab sampling an
area of 0.1m2 during a pollution monitoring project —see (Çinar

and Dagli, 2013) for details–and the locations are presented
in Figure 1. Species present in at least 5 stations were divided
into Ecological Groups according to the sensitivity/tolerance
classification scheme as summarized in Grall and Glémarec
(1997).

Group I: Species very sensitive to organic enrichment and
present in normal conditions.
Group II: Species indifferent to enrichment, always present in
low densities with non-significant variations in time.
Group III: Species tolerant of excess organic matter
enrichment. These species may occur in normal conditions
but their populations are stimulated by organic enrichment.
Group IV: Second-order opportunistic species. These are the
small species with a short life cycle, adapted to a life in reduced
sediment where they can proliferate.
Group V: First-order opportunistic species. These are the
deposit feeders that proliferate in sediments reduced up to the
surface.

Species were assigned sensitivity scores (Ecological Group shown
in Table S1) following a national database constructed specifically
for the benthic invertebrates of Turkish waters (TUBITAK-MRC
andMoEU-GDEM, 2014; Çinar et al., 2015). The choice of a local

FIGURE 1 | Small map: Aegean Sea with the extent of the Aegean pilot area defined within the DEVOTES project and soft-sediment areas of the

seabed with depths <200m in light brown. Big map: Model prediction area (i.e., shallow, soft-sediment areas extending up to 10 km from the mainland coastline)

in light brown with sampled locations for benthic polychaetes.
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classification database as opposed to amore widely used one (e.g.,
the AMBI classification database) was driven by findings that
species can shift their tolerances between biogeographic regions
with different dominant environmental gradients (Zettler et al.,
2013) and the need to adjust species classification to ecological
groups identified for the Aegean by Simboura and Reizopoulou
(2007) and Çinar et al. (2012).

Environmental Data

A number of publically available gridded data were screened
and predictors were chosen (Table 1) based on their relevance to
benthic infauna distribution patterns. Sea Surface Temperature is
used to define broad biogeographical regions (related to species
distributions at geological timescales) and, together with salinity
define different water masses, whereas bottom temperature and
salinity are directly relevant to species’ physiological tolerances.
Salinity can be particularly important in areas of substantial
freshwater input such as shallow and estuarine environments
(Reiss et al., 2015). In this study, we used winter (February
data) and summer (August data) bottom temperature and
salinity in order to capture the seasonal gradients observed
along the coast. Euphotic depth determines the depth at which
photosynthesis can occur and macrophytes can exist. This can
be important for the benthos, especially in the current study
where a number of samples were collected from within or
around Posidonia oceanica beds. Primary production is the
most common descriptors of trophic condition for marine
waters.

TABLE 1 | Environmental variables considered for modeling polychaete

assembalges (abbreviations in brackets used throughout the document,

variables highlighted with gray were removed from the analysis due to

collinearity problems).

Parameter Units Source Native

resolution

(km)

Sea Surface Temperature (SST) ◦C MARSPECa 1

Sea Surface Salinity (SSS) psu MARSPECa 1

Bathymetry (depth) m EMODNETb 0.25

Bottom temperature winter (tbotF) ◦C EMISc 4

Bottom temperature summer (tbotA) ◦C EMISc 4

Bottom salinity winter (sbotF) psu EMISc 4

Bottom salinity summer (sbotA) psu EMISc 4

Primary production (pp) gCarbon.

m−2.day−1
EMISc 4

Chlorophyll a (chla) mg.m−3 EMISc 2

Euphotic depth (zeu) m EMISc 2

Substrate type - Michelid 1

Demersal destructive fishing (ddf) - Michelid 1

Distance from ports (ports) m WPIe/this

study

1

a(Sbrocco and Barber, 2013) http://www.marspec.org/.
bhttp://www.emodnet-hydrography.eu/.
chttp://emis.jrc.ec.europa.eu/.
d (Micheli et al., 2013) https://www.nceas.ucsb.edu/globalmarine/mediterranean.
ehttp://msi.nga.mil/NGAPortal/MSI.portal?_nfpb=true&_pageLabel=msi_portal_page_

62&pubCode=0015.

As far as pressure variables are concerned, chlorophyll a
concentration was regarded as a measure of eutrophication.
Demersal destructive fishing is one of the most important
anthropogenic activities with well-known and documented
impacts on the benthos (Kaiser et al., 2006; Hiddink et al., 2009).
The fishing pressure index included in this study was constructed
from spatial disaggregation of landings data and is used in
full knowledge of its limitations and criticisms (Halpern et al.,
2008; Heath, 2008) especially regarding its reliability to represent
impacts on the seabed. Distance frommajor ports was considered
as a pressure variable encompassing a number of processes, such
as increased turbidity and disturbance from re-suspension, ship-
based pollution and the presence of exotic/invasive polychaete
species transferred by ballast water, an issue well-documented in
Izmir Bay (Çinar et al., 2006, 2012).

All environmental layers we initially clipped to the extent
of the eastern Aegean pilot area (Figure 1) defined for the
DEVOTES project (http://www.devotes-project.eu/study-sites/),
projected to geographic projection Lambert Azimuthal Equal
Area centered on the Mediterranean sea and resampled by
bilinear interpolation to a common resolution of 1 km2.
Rasters were subsequently masked by the extent of the
soft sediment areas at depths of 0–200m, (layer extracted
from https://www.nceas.ucsb.edu/globalmarine/mediterranean).
Finally, model predictions were restricted to soft-sediment areas
of the seabed extending up to 10 km from the shore, in order
to reduce the extent of unsampled locations in covariate space.
10 km is an arbitrarily chosen distance which covers all sampled
locations (largest distance from the coastline for any sampling
site was approximately 9 km). Data coverage was not the same for
all environmental layers; poor fit between the end of the predictor
layer and the coastline were filled by interpolation. Point values
of the predictor variables at the 52 stations were extracted from
continuous layers with the extract function of the raster package
(ref) in R. Spatial analysis was carried out in R (R Core Team,
2014) and SAGA GIS (Conrad et al., 2015).

Chlorophyll a and distance from ports were log(x+1)
transformed prior to analysis. Collinearity of the environmental
variables was investigated with the Variance Inflation Factor
method with a cut-off threshold of 3 and with Spearman’s
correlation coefficient >0.7. Primary production, euphotic depth
and chlorophyll a were highly collinear; retaining chlorophyll a
in the predictor data set reduced the VIF to acceptable levels and
was considered preferable as it indicates both trophic conditions
and eutrophication pressure. Similarly, Sea Surface Temperature
and Sea Surface Salinity were correlated with each other (at
r > 0.7) and with bottom temperature and were discarded from
further analysis, as was winter bottom salinity with summer
bottom salinity. It was considered that high summer bottom
salinity better reflects stress imposed on benthic organisms
within the range of salinity values investigated and was thus
included in the data set. For final mapped outputs of selected
predictor variables (Table 1) see Figure S1.

Modeling

Multi-species responses to environmental variables were
modeled by mixing generalized linear models (GLMs) employing
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finite mixture models in a method developed by Dunstan et al.
(2011) and implemented in the R package “SpeciesMix”
(Dunstan et al., 2013a). The finite mixture model has the
capability to identify species with statistically indistinguishable
responses to environmental gradients, parametrize the individual
GLMs and cluster them into one or more common generalized
linear models without any supervision. The resulting models
are termed Species Archetypes and may represent one or many
species that have similar ecological/physiological tolerances. The
estimation of the group composition occurs simultaneously with
the estimation of the shared response, such that the fitted models
return both the probability of a species belonging to a particular
species archetype and the model components (coefficients and
standard errors) of the archetypal GLMs which describe the
response of that entire group to the environment (Leaper et al.,
2014).

Because species are classified into archetypes in a probabilistic
manner (Hui et al., 2013), it is possible by a species to be
represented by more than one archetype, and the probabilities
of species membership to archetypes (tau) are an indication
of how well a species response is aligned with each archetypal
response. In order for all species to be assigned to an archetype,
membership in the present study was defined based on a
probability threshold of 0.5, however, the implications of
different membership probabilities are discussed later in the
manuscript, following Foster et al. (2015), who consider a
probability>0.8 to mean that a species is strongly affiliated to
the particular Archetype, whereas probabilities between 0.5 and
0.8 are interpreted as indicative of species membership to an
Archetype.

In our analyses linear and quadratic terms were considered
in order to increase the flexibility of the models to capture
species responses (Leaper et al., 2014; Woolley et al., 2013) and
covariates were standardized to zero mean and unit standard
deviation to avoid dimensional issues. The biological response
matrix included taxa present in at least 5 stations (109 taxa).
Model selection was performed in two steps. (I) Determining the
number of archetypes (G) was achieved by comparing models
fitted with all covariates (including linear and quadratic terms)
with different numbers of species archetypes; the model with
the lowest Bayesian Information Criterion (BIC) is considered
the most parsimonious and is used to select the number of
archetypes. Multiple starts were performed in order to avoid
convergence at local maxima (Dunstan et al., 2013b). (II) Further
variable selection was based on minimisation of the BIC and
examination of the Standard Errors (SEs) of the coefficients for
the model terms (with optimum G determined in the previous
step). Coefficients with high relative standard errors (RSE) are
considered of lower importance. Moreover, coefficients which
never exhibited low SEs and RSEs for any of the Species
Archetypes were preferentially removed from the model. The
model with the lowest BIC was retained for predictive mapping
of the resulting Species Archetypes’ distribution.

Covariate effects of the final model predictors were also
visualized with partial effects plots were the effect of each
covariate is modeled separately, while all other covariates are held
at their respective means.

The performance of the models was evaluated for individual
species. We did not fit individual species models. Rather,
expected probabilities of occurrence were calculated for every
species i per station j (εij) from the predicted probability of
occurrence of each archetype per station and the species tau for
each archetype (given in Table S1) according to the formula.

εij = pjSA1 × tauiSA1 + pjSA2 × tauiSA2 + pjSA3 × tauiSA3

where pj is the probability of occurrence of each archetype for
station j and taui is the membership probability of species i for
each archetype.

Predictions were obtained with the function predict. archetype
in the SpeciesMix package from the fitted archetype models,
hence no individual model selection was performed.

The terms were added, since the combined probability of
presence of each species in all archetypes (sum of tausi) cannot be
higher than 1 and the probability of presence of each archetype in
every station is independent of the probability of presence of all
other archetypes in the same location.

Once expected and observed frequencies were obtained
and tabulated per species and station, model performance
was assessed in two ways. Model accuracy was assessed with
Spearman’s correlation coefficient and discriminatory power
(ability to correctly predict absences and presences) with the Area
Under the receiver operator characteristic (ROC) Curve with the
package modEvA (Barbosa et al., 2015).

RESULTS

Initial model selection was performed for values of G ranging
from 1 to 8 and the number of Archetypes that minimized the
Bayesian Information Criterion was G = 3 (BIC = 5727, Table
S1). Subsequent variable selection for three Species Archetypes
retained summer bottom salinity, winter bottom temperature,
depth, chlorophyll a and distance from port as predictors.
Quadratic terms for bottom temperature and salinity were also
included in the most parsimonious model with BIC= 5714.

Archetype membership for most of the species was well
estimated with probability values close to 1, particularly for
Species Archetype 1 (Table S1). Out of the 109 modeled taxa
only 8 were indicatively affiliated with an Archetype (0.5 <

tau < 0.8) and most of them belong to Species Archetype 3.
Species Archetype 2 (SA2) contains the highest number of species
(S = 60), followed by Species Archetype 3 (SA3) with 28 species
and Species Archetype 1 (SA1) which represents the 21 most
frequently observed species.

In terms of composition, all three archetypes seem to be
dominated by species belonging to ecological groups EGII
(disturbance indifferent) and EGIII (tolerant) (Figure 2). What
differentiates them is the higher relative representation of EGII
in Species Archetype II, the relative proportions of the other
ecological groups and the species identities of each archetype
(see Table S1). A close inspection of histograms in Figure 2

reveals two clear trends; an increase in disturbance sensitive
and indifferent species as we move from SA3 to SA1 and
finally SA2 and a respective decrease in the relative proportion
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FIGURE 2 | Composition of the 3 Species Archetypes in terms of

percentage of species belonging to each ecological tolerance group

(sensitivity scores assigned according to the Turkish national

database). Definition of species tolerance groups: EGI, disturbance sensitive;

EGII, disturbance indifferent; EGIII, disturbance tolerant; EGIV, second-order

opportunist; EGV, first order opportunist.

of tolerant and opportunistic species. Species identities are
also important in understanding the composition of the
archetypes; thus Species Archetype 1 contains no first-order
opportunists but species indicative of transitional assemblages,
such as Lumbrineris geldiay,Monticellina heterochaeta, Sigambra
tentaculata, Aricidea claudiae. On the other hand, first-order
opportunists (EGV), such as Prionospio fallax and Heteromastus
filiformis, are found in Species Archetype 3, together with
the second-order opportunists (EGIV) Mediomastus, Lanice
conchilega, Pseudopolydora pulchra, and Podarkeopsis galangaui
and many disturbance tolerant species. Two notable exceptions
here are the species Schistomeringos rudolphi and Spio decoratus,
which, although they are opportunists, were classified in Species
Archetype 2 (SA2), where one can find all but one of the sensitive
to disturbance species (EGI), a much lower proportion of EGIII
species and only these two opportunists.

The regression coefficients and associated standard errors
(Table 2) describe the relationship of the archetypes with the
environmental variables, whereas the shape of the responses is
illustrated in the partial effects plots of Figure 3. The importance
of each covariate is considered to increase as its relative standard
error decreases. Thus, Species Archetype 1 is predominantly
determined by summer bottom salinity, displaying a strong
quadratic response with highest probability of presence at
intermediate salinity values. At the same time, it responds
negatively to chlorophyll a and depth but these variables are
of secondary importance. Species Archetype 1 is the most
widespread of the three archetypes and follows mostly the
large scale environmental gradients in the region (Figures 4A,D,
Figure S1). Its strong affinity with bottom salinity results in the
avoidance of the less saline Northern Aegean waters and a higher
probability of occurrence in the central Aegean. It is also less
likely to be encountered in the eutrophic waters of inner and
middle Izmir Bay and in the deeper parts of the south-eastern
Aegean.

The response of Species Archetype 2 to the environment
seems to be better defined by the covariates, judging by the

size of the relative SEs. Its probability of presence generally
increases with winter bottom temperature to level off close to
the high temperature values encountered in the southernmost
region of the region (Figure S1). It is alsomore likely to be present
in deeper waters, away from ports and responds negatively to
chlorophyll a concentration (Figure 4B). Species Archetype 2
has a more patchy distribution, predicted with the lowest degree
of uncertainty (prediction SE.SA2, Figure 4E). Even though it
contains most of the modeled species (present in 5-21 stations),
it is characterized by the lowest probabilities of occurrence. It
shows a higher affinity for deeper, more exposed areas of the
coastline, particularly of the central and southern Aegean and is
predicted to be mostly absent from shallow, inshore areas.

Species Archetype 3 is characterized by weaker associations
with the predictor variables, it does however respond positively
to chlorophyll a and shows a similar response pattern to bottom
salinity as SA1. Its probability of occurrence decreases linearly
with depth but increases with increasing distance from ports.
Species Archetype 3 has a very localized predicted distribution
with moderately high probability of presence in a few inshore
areas throughout the whole Aegean coast (Figures 4C,F). These
are regions that coincide with areas of high chlorophyll a
concentration (Figure S1). While there is a certain degree of
overlap in the distribution of archetype 1 with the other two
archetypes, model predictions for Species Archetypes 2 and 3
indicate that they almost never occur together. Uncertainty in the
estimation of the model parameters was higher for archetype 3
and had a similar magnitude and spatial pattern as SA1.

The predictive accuracy of the Species Archetype models
for individual species is generally moderate, with less than half
the modeled species displaying significant Spearman correlation
coefficients between observed and predicted values (Table 3,
Table S1). Predictive performance increases not only with
decreasing species prevalence, (with more species from Species
Archetypes 2 and 3 being accurately predicted and very few from
SA1), but also with the number of species represented by each
archetype. Similar behavior is observed for the discriminatory
power of the models, which is moderate for archetypes 1 and 3
but markedly better for archetype 2 with more than 60% of its
species being very well predicted with AUC>0.7.

DISCUSSION

Species Archetype Modeling is a model-based approach that
classifies species objectively, in an unsupervised way, into
groups according to their responses to environmental (Woolley
et al., 2013; Leaper et al., 2014) and/or pressure gradients
(Foster et al., 2015). In the current study an attempt was
made to integrate the influence of environmental and relevant
pressure parameters on benthic species distribution patterns and
assess the resulting predictive models. The Species Archetypes
that emerged are interpreted on the basis of a long-standing
classification scheme of their member species along the tolerance
to disturbance gradient. Additional functional traits were not
considered since the sensitivity scores essentially synthesize
a number of morphological, life-history and life-style traits
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TABLE 2 | Coefficients (coeff), Standard Errors (SE) and Relative Standard Errors (RSE) for the environmental predictors of the most parsimonious model

for all Species Archetypes.

SA1 SA2 SA3

Coeff SE RSE Coeff SE RSE Coeff SE RSE

Intercept −0.157 0.072 −46.1 −1.900 0.080 −4.2 −1.651 0.094 −5.7

sbotA 45.062 12.404 27.5 1.376 8.245 599.0 48.579 30.083 61.9

sbotA2 −44.798 12.383 −27.6 −1.314 8.259 −628.7 −48.201 30.029 −62.3

tbotF 1.340 1.258 93.8 5.814 1.366 23.5 −1.916 1.790 −93.4

tbotF2 −1.435 1.256 −87.5 −5.215 1.326 −25.4 1.805 1.813 100.5

chla −0.130 0.092 −70.7 −0.775 0.161 −20.8 0.216 0.107 49.6

Depth −0.102 0.072 −70.7 −0.177 0.059 −33.3 −0.204 0.109 −53.3

Ports 0.024 0.077 323.5 0.229 0.066 28.7 0.367 0.102 27.7

Values in bold indicate variables with low relative standard error (RSE), considered as the most important in determining the Species Archetype. Abbreviations as in Table 1.
2quadratic terms.

(Paganelli et al., 2012) and can represent different combinations
of their modalities.

The species archetypes arrived at by this modeling technique
are not “traditional” communities as commonly defined per site
based on species composition. They are groups of species with
statistically similar responses to environmental parameters and
their presence is not mutually exclusive. The final assemblage in
a location will result from the co-occurrence of species from all
the Archetypes that are likely to be found in that environmental
setting. As such, it does not need to conform to pre-defined
“community types” and this offers increased flexibility to predict
co-occurrences in scenarios of environmental conditions that
have not yet been encountered (Ferrier and Guisan, 2006).
Polychaete species indifferent or tolerant to pollution are able
to exist in a large range of environmental conditions and this is
demonstrated by their common membership in all three Species
Archetypes. The mixed composition of the archetype groups
corroborates the long-standing knowledge that Mediterranean
benthic fauna is generally evenly distributed with no one species
naturally displaying strong dominance (Carletti and Heiskanen,
2009). In the case were presence/absence data is used instead
of abundances, these differences may be even less pronounced
(Muxika et al., 2012), particularly for EGII species which are
“always present in low densities” and EGIII species, which “may
occur in normal conditions but their populations are stimulated
by organic enrichment.” With the above in mind, the relative
distribution and dominance of groups EGII and EGIII in the
three archetypes is not surprising. However, it is the relative
proportion of the other Ecological Groups that differentiates the
three archetypes, as well as their responses to environmental
variables, discussed in more detail below.

Species Archetype 1, with its widespread distribution,
primarily reflects the main biogeographic gradients in the
Aegean, determined by salinity, temperature and basin/sub-basin
scale circulation patterns (Durrieu de Madron et al., 2011). The
colder, more productive waters of the Northern Aegean above the
Dardanelles, resulting from the inflow of riverine waters along
the northern coast and brackish, rich Black Sea water through
the Turkish Straits system, constitute a distinct sub-region of the

study area (Velaoras and Lascaratos, 2010; Sayın et al., 2011),
where SA1 is less likely to be found compared to the Central
Aegean. Another faunistically distinct region is observed where
the Aegean meets the Levantine Sea and extends to the Bodrum
Peninsula. The south-eastern Aegean is the point of entry of
warm, hypersaline Levantine waters, where the thermohyaline
and atmospheric forcing result in a clear and oxygen rich
water column and reduced organic carbon fluxes to the bottom
(Lykousis et al., 2002), creating an “ocean margin” environment.
SA1 therefore could be regarded as a persistent faunal group
of the central Aegean coast of Turkey which avoids the most
stressful environments. It may be argued that the delineation
of Species Archetype1, consisting of the most common taxa, is
largely determined by species prevalence. This modeling issue,
resulting from mixing GLMs on all the parameters including the
intercept, has been acknowledged in previous studies (Dunstan
et al., 2013b; Hui et al., 2013) and may mask, to some degree,
the strength of association of species based on shared responses.
However, member species of archetype 1, such as Lumbrineris
geldiay,Monticellina heterochaeta, Sigambra tentaculata,Aricidea
claudiae have been reported to occur together and characterize
transitional assemblages in previous studies of Izmir Bay (Doğan
et al., 2005; Ergen et al., 2006; Çinar et al., 2012) and Edremit Bay
(Albayrak et al., 2007) at locations that concur with the current
distribution; it is hence believed that SA1 is a valid response
group. Moreover, the absence of any second-order opportunists
and the relative proportion of the other Ecological Groups would
place it in the slightly to moderately disturbed conditions of a
degradationmodel for benthic community health (see Borja et al.,
2000; Simboura and Zenetos, 2002; Muxika et al., 2012).

Modeled species at the two ends of the disturbance tolerance
spectrum are almost never grouped together under the same
Archetype. Stress sensitive and indifferent species with high
ecological requirements dominate Species Archetype 2 which is
primarily characterized by its negative response to chlorophyll
a, a reliable indicator of eutrophication (HELCOM, 2009) and
its higher affinity for the south-eastern Aegean. Previous studies
of the area have reported rich fauna with high diversity values
(Ergen and Çinar, 1994; Pancucci-Papadopoulou et al., 1999;
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FIGURE 3 | Partial effects plots of Species Archetype responses to each predictor variable when all other variables are held constant at their

respective means. Values on the x-axis are standardized to zero mean and unit standard deviation.

Okuş et al., 2007) and attributed it to the hydrodynamic regime
and the influence of Levantine waters. The composition of
SA2 points to undisturbed/slightly disturbed conditions, or an
assemblage of good to high status. Although the coexistence
of opportunists (in low numbers) with sensitive species is
predicted by degradation models for benthic faunal structure
at slightly disturbed conditions (Grall and Glémarec, 1997;
Borja et al., 2000), the inclusion of Schistomeringos rudolphi
and Spio decoratus in SA2, both of which are documented
opportunists and pollution indicators (Simboura and Zenetos,
2002; Çinar et al., 2015), is somewhat inconsistent with the
general patterns of the current results and problematic for
prediction purposes. A possible reason could be the use of

presence/absence data in the current study that contains less
information than abundance data, which, for opportunistic
species in particular, is a determining property. Abundance data
are anticipated to produce response curves and membership
patterns that will more accurately represent species responses
to pressures, particularly eutrophication. Another reason could
be population fluctuations of these species (e.g., Doğan et al.,
2005; Çinar et al., 2006, 2012, for comparison with previously
reported data), and a lack of temporal replication to capture these
fluctuations.

Species Archetype 3 is a species group devoid of sensitive
taxa and with the highest overall representation in opportunistic
species generally regarded as pollution indicators. In contrast
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FIGURE 4 | Top panel: Probability of occurrence of the three Species Archetypes (A) SA1; (B) SA2; (C) SA3. Bottom panel: prediction standard errors (D)

SE.SA1; (E) SE.SA2; (F) SE.SA3. Notice the different scale bars in each map.

with the EGIV species of archetype 1, which are relatively
long-lived, free living predators, the opportunists of SA3
are burrowing or tube-building deposit-feeders, characteristic
of reduced sediments. The predicted extent of SA3 largely
coincides with shallow, inshore areas in response to their high
chlorophyll a concentration. This is particularly true for bays
and gulfs with high urban pressure and around estuaries and
lagoons, where sediment and nutrient loads are generally high,
confirming expectations of where high numbers of tolerant and
opportunistic species may be found. More specifically, Saros Bay
receives nutrient rich discharges from the Evros (Meric) river
and Black Sea water, Edremit Bay is impacted by increasing
summer housing development, olive oil industry and bottom
trawl fisheries (Kucuksezgin et al., 2013), Izmir Bay is an intensely
urbanized and industrialized area with a major shipping port and
the BüyükMenderes river delta receives large amounts of, mostly
untreated, municipal and industrial waste through the adjoining
river basin (Yesilirmak and Anac, 2008). The Dardanelles strait
is a water body heavily impacted by sewage pollution and intense
shipping traffic (Ateş et al., 2014) and, even though benthic data
from the Dardanelles were not used for the parametrization of

the models in the current work, existing studies have reported
generally moderate to poor ecological status throughout the
strait (Ateş and Katağan, 2011) and a comparable polychaete
composition, with 16 out of the 28 SA3 species and 16 out
of 21 SA1 species present in the northern part, close to the
Marmara Sea (Çinar et al., 2011). Thus, SA3 is considered to
represent moderately disturbed conditions based on summer
samples (which generally display higher status, compared with
autumn or winter samples - Çinar et al., 2012, 2015). Contrary to
our expectations, this archetype’s response to distance from port
seems to be counter-intuitive in that it is predicted more likely
to occur away from port areas. The environmental setting of the
ports included in the analysis is far from homogeneous and, with
the exception of the port of Izmir, which is a large international
port situated in a shallow, sheltered bay, the rest are small to
medium ports/harbors in relatively exposed areas with steeper
seabed slopes. Thus, the initial assumptions about the processes
this predictor would represent were either not met or were
relevant at different scales in the majority of cases, in which case
capturing the impacts of this pressure would require a different
grain of sampling. Nevertheless, distance from port emerged as
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TABLE 3 | Summary of the predictive performance of the Species

Archetype Models, evaluated by species and expressed as the number

and the percentage of species with rs: Spearman’s rank correlation

coefficient, where * denotes significant values at the p < 0.05 level and

AUC: Area Under the ROC Curve (numbers in parentheses are total

number of species for each archetype).

No of species %

rs* SA1 3 (21) 14.3

SA2 33 (60) 55

SA3 6 (28) 21

0.5<AUC<0.7 SA1 19 (21) 90.5

SA2 20 (60) 33.3

SA3 19 (28) 67.9

AUC>0.7 SA1 1 (21) 4.8

SA2 38 (60) 63.3

SA3 8 (28) 28.6

the most influential predictor of archetype 3 distribution and it is
possible that its spatial pattern co-varies with the spatial structure
of a different variable that truly affects the distribution of tolerant
and opportunistic polychaetes in a negative way.

A number of environmental parameters with well established
relationships with the benthos, namely hydrodynamic variables,
such as current speed and wave orbital velocity (Jenness
and Duineveld, 1985; Wright et al., 1987, 1997; Hall et al.,
1994) and sediment characteristics, particularly granulometric
composition and organic carbon content (Snelgrove and Butman,
1994; Degraer et al., 1999; Ellingsen, 2002; Van Hoey et al.,
2004; Çinar et al., 2012, 2015) were not addressed in this
study due to the lack of available data layers of sufficient
resolution and information. Even though, at the scale studied
here, the sedimentary environment may be of lesser importance
for predicting distributions due to its small scale variability
(Reiss et al., 2011), missing explanatory variables and the
inherent uncertainty in the existing predictors have undoubtedly
affected the uncertainty in predictions and subsequent model
performance.

Uncertainty in SAMs is propagated through the analysis from
the raw data to the final probability estimates, with standard
errors of regression coefficients estimated from the variance-
covariance matrix and standard errors of the fitted probabilities
calculated from the model components and measures of
uncertainty (Dunstan et al., 2011). It thus follows that better
estimated archetypes with lower relative standard errors will
display lower uncertainty values; such is the case for archetype
2, while uncertainty increases for archetypes 1 and 3. This can
reflect how well the individual species’ responses are aligned
with their respective archetypical response (Woolley et al., 2013);
indeed archetype 3 has the largest proportion of indicatively
affiliated species (Table S1). Furthermore, uncertainty and
predictive performance improve with the number of species
represented by each archetype, in agreement with findings
that the more observations a group response contains the
better it is predicted (Elith and Leathwick, 2007; Gogina et al.,

2016). For archetypes 1 and 3 it is possible that the smaller
number of included species is not adequate for an accurate
characterization of the group response or that these groups have
a more heterogeneous species composition. More importantly,
each archetype may be better defined by a slightly different set
of covariates and variable selection simultaneously across all
archetypes may fail to demonstrate that (Hui et al., 2015). As
an alternative, separate models could have been developed with
a different statistical method once the appropriate number of
archetypes had been established. However, one of the attractive
features in the SAMs approach is the unsupervised classification
of species into group responses, which can change as variable
selection progresses and predictor terms are dropped from the
models (i.e., the posterior probability of group membership tau
for each species may change and adjustments to the final species
groupings will occur accordingly). Thus, it was considered that
the benefits of proceeding with the SAMs analytical framework
outweighed the potential drawbacks of simultaneous variable
selection.

Species Archetype Modeling is a novel methodology that is
continuously being developed and refined. There is certainly
scope for improvement in many aspects, such as variable
selection and model evaluation, use of species-specific intercepts
in the models, adopting a different archetype model (e.g.,
Generalized Additive Model or Boosted Regression Tree in
place of a GLM). While some of these issues are already being
addressed (Dunstan et al., 2013b; Foster et al., 2015; Hui et al.,
2015), they are still a work in progress and have not yet been
implemented in an available software tool (Scott Foster, personal
communication). Other modeling issues on the other hand,
such as addressing species interactions through the inclusion of
latent variables for instance, are more challenging and remain
to be investigated (Dunstan et al., 2013b; Warton et al., 2015a).
Nevertheless, SAMs have been shown to outperform single
species GLMs in big data sets, especially when the ratio of the
number of species to the number of stations is high, as they
borrow strength from common species and even perform better
than single GAMs for very rare species (Hui et al., 2013).

At appropriate scales, benthic species archetypes can
complement existing efforts for the bioregionalization of the
Aegean and the Mediterranean (Reygondeau et al., 2014), as
Woolley et al. (2013) have demonstrated for south-western
Australia and provide “an appropriate statistical method that can
link the ecological information to the pressures” (Foster et al.,
2015) as we have demonstrated here for benthic polychaetes
and eutrophication. From a spatial management and planning
perspective the use of archetype groups is attractive because it
can summarize a large amount of complex information in a
robust and parsimonious way that offers ease of interpretation.
The archetypes of benthic polychaetes identified in this study
may constitute a departure from our conventional scheme of
delineating marine benthic communities, they do however
offer an alternative and intuitive way to study and visualize the
distribution of benthic species groups at scales that incorporate
both biogeographical and more localized, often human-induced
or enhanced, processes. In this regard, possibilities could be
envisaged for the development of distributional (ICES, 2016)
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or surveillance indicators (Shepard et al., 2015) from such a
modeling approach.

Distributional indicators can help identify drivers and
directions of change in a spatially explicit manner and serve as
a first “alarm bell” that problems have occurred which require
managers’ attention and further study or mitigation measures
(ICES, 2016). Moreover, they can provide valuable information
on the natural background variability of different sections of an
area under study. At the sub-regional scale the current SAMs
confirm the ecological significance and the geographic extent
of the three Aegean biogeographic areas (northern, central and
southern) specifically for benthic polychaetes of shallow soft
sediments, which are however a good proxy for the whole
benthic community. At more local scales, they provide a good
indication of areas where eutrophication impacts to the benthos
are more strongly manifested. It is in these areas, where SA1
is complemented by or replaced with SA3 that distributional
shifts or expansion of either of these two archetypes will
be informative for management purposes. Similarly, areas of
overlap, or substitution of SA1 with SA2 is where “mostly
undisturbed” conditions may be sought for the central and
southeastern Aegean, after water bodies and typologies have been
established (for Turkish waters see TUBITAK-MRC and MoEU-
GDEM, 2014). In contrast, our results indicate that “reference
conditions” or “naturalness” for the northern Aegean will be
somewhat different and mostly characterized by indifferent and
tolerant species. It is recommended thatmonitoring schemes take
into account the transition zones between the three Archetypes,
where the direction of change in response to pressures may be
better detected and visualized.

CONCLUSIONS

Within the limitations of the information contained in our
datasets, our application of SAMs captured both the natural and
the adequately quantified pressure gradients, distinguished the
responses of sensitive and opportunistic benthic polychaetes and

performed rather well in predicting their distribution. It thus
serves as a first step to demonstrate the potential of this modeling
framework to strengthen our knowledge base about the ways and
the scales at which benthos respond to natural and anthropogenic
gradients and offer insights into patterns of species co-existence,
supporting the implementation of area oriented monitoring and
assessment.
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Ateş, A. S., Katağan, T., Sezgin, M., Özdilek, H. G., Berber, S., and Bulut, M.
(2014). The effects of some domestic pollutants on the cumacean (Crustacea)
community structure at the coastal waters of the Dardanelles, Turkey.
Arthropods 3, 27–42.

Barbosa, A. M., Brown, J. A., Jimenez-Valverde, A., and Real, R. (2015). modEvA:
Model Evaluation and Analysis. R package version 1.0/r72. Available online at:
http://R-Forge.R-project.org/projects/modeva/

Berg, T., Fürhaupter, K., Teixeira, H., Uusitalo, L., and Zampoukas, N.
(2015). The Marine Strategy Framework Directive and the ecosystem-
based approach - pitfalls and solutions. Mar. Pollut. Bull. 96, 18–28. doi:
10.1016/j.marpolbul.2015.04.050

Borja, A., Franco, J., and Perez, V. (2000). A marine Biotic Index to establish
the ecological quality of soft-bottom benthos within European estuarine and
coastal environments. Mar. Pollut. Bull. 40, 1100–1114. doi: 10.1016/S0025-
326X(00)00061-8

Buhl-Mortensen, L., Buhl-Mortensen, P., Dolan, M. F. J., and Holte, B. (2015).
The MAREANO programme – A full coverage mapping of the Norwegian
off-shore benthic environment and fauna. Mar. Biol. Res. 11, 4–17. doi:
10.1080/17451000.2014.952312

Buhl-Mortensen, L., Buhl-Mortensen, P., Dolan, M. J. F., and Gonzalez-
Mirelis, G. (2014). Habitat mapping as a tool for conservation and
sustainable use of marine resources: some perspectives from the MAREANO
Programme, Norway. J. Sea Res. 100, 46–61. doi: 10.1016/j.seares.2014.
10.014

Carletti, A., and Heiskanen, A. (2009). Reports Water Framework Directive
intercalibration technical report. Part 3: Coastal and Transitional waters. JRC
Scientific and Technical.
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Okuş, E., Yüksek, A., Yılmaz, N., Aslan-Yılmaz, A., Karhan, S. Ü., Öz, M. İ.,
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