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Coral reef net ecosystem calcification (NEC) has decreased for many Caribbean reefs

over recent decades primarily due to changes in benthic community composition.

Chemistry-based approaches to calculate NEC utilize the drawdown of seawater total

alkalinity (TA) combined with residence time to calculate an instantaneous measurement

of NEC. Census-based approaches combine annual growth rates with benthic cover and

reef structural complexity to estimate NEC occurring over annual timescales. Here, NEC

was calculated for Hog Reef in Bermuda using both chemistry and census-based NEC

techniques to compare the mass-balance generated by the twomethods and identify the

dominant biocalcifiers at Hog Reef. Our findings indicate close agreement between the

annual 2011 census-based NEC 2.35± 1.01 kg CaCO3•m
−2 1•y− and chemistry-based

NEC 2.23 ± 1.02 kg CaCO3•m
−2•y−1 at Hog Reef. An additional record of Hog Reef

TA data calculated from an autonomous CO2 mooring measuring pCO2 and modeled

pHtotal every 3-h highlights the dynamic temporal variability in coral reef NEC. This ability

for chemistry-based NEC techniques to capture higher frequency variability in coral reef

NEC allows the mechanisms driving NEC variability to be explored and tested. Just

four coral species, Diploria labyrinthiformis, Pseudodiploria strigosa,Millepora alcicornis,

and Orbicella franksi, were identified by the census-based NEC as contributing to 94 ±

19% of the total calcium carbonate production at Hog Reef suggesting these species

should be highlighted for conservation to preserve current calcium carbonate production

rates at Hog Reef. As coral cover continues to decline globally, the agreement between

these NEC estimates suggest that either method, but ideally both methods, may serve

as a useful tool for coral reef managers and conservation scientists to monitor the

maintenance of coral reef structure and ecosystem services.

Keywords: coral reef, net ecosystem calcification, budget, accretion, dissolution, calcium carbonate,

biogeochemistry
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INTRODUCTION

Coral reefs provide a great multitude of ecosystem goods and
services to humanity including renewable food and material
resources, shoreline protection, and nutrient cycling (e.g.,
Smith, 1978; Salvat, 1992; Spurgeon, 1992; Done et al., 1996;
Moberg and Folke, 1999; de Groot et al., 2012). However,
tropical reef coral cover is currently declining due to a
combination of local and global pressures (i.e., overfishing,
sedimentation, disease, warming, and acidification) with ∼80%
declines in coral cover observed across the Caribbean since
the mid-1970s (Gardner et al., 2003). These declines in overall
Caribbean coral cover are combined with an overall loss of
reef structural complexity (Alvarez-Filip et al., 2009) and coral
community shifts toward more slowly calcifying and less-
structurally complex opportunistic coral species (Alvarez-Filip
et al., 2013). Consequently, losses in coral cover, and changes
in coral community composition have resulted in decreased
net coral reef calcium carbonate (CaCO3) production across
the Caribbean (Perry et al., 2013, 2015). While hermatypic
scleractinian corals are typically the dominant coral reef CaCO3

producers (Vecsei, 2004), coral reef net ecosystem calcification
(NEC) is the sum of gross calcification and gross CaCO3

dissolution (Chave et al., 1972). Coral reef accretion and
maintenance of geomorphic structure therefore depends on NEC
as well as the net import, export, and erosion of CaCO3 material
(e.g., Scoffin, 1992; Milliman, 1993; Kleypas et al., 2001; Perry
et al., 2008; Montaggioni and Braithwaite, 2009; Tribollet and
Golubic, 2011; Perry et al., 2012).

The topic of spatial scale is of particular importance for the
study of ecological phenomenon (Levin, 1992 and references
therein) including coral reef calcification (e.g., Kinsey, 1985;
Andréfouët and Payri, 2000; Vecsei, 2004; Edmunds et al., 2016).
Measurements of coral reef calcification range from organismal
to ecosystem and global scales (see discussion in Edmunds et al.,
2016). By necessity, measuring CaCO3 production at organism
scales (e.g., Bak, 1976; Jokiel et al., 1978) fundamentally utilize
different approaches than studies examining entire reef and
global scales (e.g., Kinsey, 1979; Milliman, 1993; Kleypas, 1997;
Vecsei, 2004). Coral reef CaCO3 production at sub-reef to reef
scales has historically been measured via census or accretion-
based CaCO3 budget approaches (e.g., Chave et al., 1972 and
references therein; Stearn et al., 1977; Hubbard et al., 1990; Eakin,
1996; Harney and Fletcher, 2003; Perry et al., 2012, 2013) and
chemistry-based alkalinity anomaly approaches (e.g., Broecker
and Takahashi, 1966; Smith and Key, 1975; Smith and Kinsey,
1976; Gattuso et al., 1996; and summarized in Atkinson, 2011;
Andersson and Gledhill, 2013).

Census-based budgets utilize bottom-up approaches to
sum up the calcification by individual CaCO3 producers
whereas chemistry-based budgets provide a top-down integrated
measurement of the entire reef NEC. Interestingly, CaCO3

production on coral reefs in the Atlantic has historically
been measured using census and accretion based approaches
while chemistry-based approaches have been more widely
used in the Pacific Ocean (Kinsey, 1981). Montaggioni and
Braithwaite (2009) summarized the literature finding that

global coral reef calcification estimates range from 1 to 10 kg
CaCO3•m

2•y−1 using census-based methods and from 0.5 to
10 kg CaCO3•m

2•y−1 based on alkalinity anomaly methods
thereby concluding that the two methods are generally in close
agreement. Measurements of census-based and chemistry-based
CaCO3 production at One Tree Island, Great Barrier Reef were
scaled to the entire reef using remote sensing with a remarkably
small 0.3% difference between the two methods (Hamylton et al.,
2013). Thus, a robust comparison of these two methods at the
same reef site allows the bottom-up census-based budget of
NEC to be weighed against the top-down chemistry-based NEC,
resulting in a more thorough understanding of the mechanisms
of CaCO3 production and maintenance of structure in coral reef
environments.

In this study, NEC was calculated using census-based and
chemistry-based budgets from September 2010 to September
2012 for Hog Reef (32◦27′26.39′′N, 64◦50′5.10′′W), located on
the northwestern rim reef of Bermuda between deeper oceanic
waters and shallower sandy back-reef environments (Figure 1).
The Bermuda platform is a reef system surrounded by deep
oceanic waters located in the North Atlantic sub-tropical gyre
and at the current latitudinal limit for tropical coral reef
ecosystems (Kleypas et al., 1999; Andersson et al., 2014). The
history of Bermuda NEC measurements (e.g., Bates, 2002; Bates
et al., 2010) and characterization of Bermuda platform seawater
residence times (Venti et al., 2012) further make Hog Reef an
ideal location to conduct a chemistry-based NEC study. Briefly,
calcifying organism growth rates, microborer CaCO3 dissolution
rates, and CaCO3 sand dissolution rates were multiplied by their
respective benthic area to produce a census-based NEC budget
with seasonal variability at Hog Reef. NEC was calculated using
chemistry-based alkalinity anomaly of reef seawater relative to
offshore seawater via water samples taken monthly from Hog
Reef. Seasonal and diel NEC variability was estimated by TA
calculated from seawater measurements taken every 3 h by an
autonomous pCO2 mooring at Hog Reef. These estimates of coral
reef NEC provide valuable insight into the net balance between
calcification andCaCO3 dissolution, thus serving as an important
tool for monitoring the maintenance of coral reef structure and
ecosystem services as coral reef function and health continue to
change globally.

METHODS

Census Based Budget Formation
Reef Surveys
The census-based budgets were modeled after the standardized
methods outlined in the ReefBudget project (Perry et al., 2012).
Video transects were conducted in August 2010 at Hog Reef
as part of an ecological monitoring project consisting of five
permanent 30-m transects stationed at ca. 8m depth at the reef
site. For each transect, a video camera was pointed perpendicular
to the benthos at a constant distance to film a 1-m wide
band to the left side of each transect generating 5 • 30m2

transects. Each video transect was analyzed for percent cover by
coral species, gorgonian, zoanthid, sponge, sessile invertebrates,
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FIGURE 1 | Map of the Bermuda coral reef platform showing Hog Reef, located on the northwestern portion of the rim reef. The black ellipse at Hog Reef

represents the estimated effective footprint for the benthic community influence on the overlying seawater chemistry.

macroalgae, turf algae, calcifying algae, dead coral, unknown
organisms, rock, rubble, and sand (Figure 2). Notably, mean
percent cover (±standard deviation) of hard scleractinian corals
at the survey site was 27 ± 5%. Due to the structural complexity
of the reef environment, reef rugosity (Spatial Scales I and II in
Dahl, 1973) was calculated for each site to determine the total
abundance of benthic organisms occupying a given planar area
of the reef environment (Dahl, 1973). The Segmented Line and
Measure tools in ImageJ were used to calculate reef rugosity
from the ratio of reef profile distance and horizontal planar
distance for each photograph (n = 12) resulting in a mean
(± standard deviation) rugosity of 1.5 ± 0.2. Hog Reef has a
very complex three-dimensional structure consisting of many
small caves and overhangs that is not currently measurable using
traditional rugosity approaches (e.g., Dahl, 1973) and precludes
some aspects of the benthos beneath underlying canopies from
being surveyed in the planar video transects (Goatley and
Bellwood, 2011). This additional structural complexity therefore
underestimates this study’s survey of benthic foraminifera,
coralline algae, cryptic Porifera sponges, cryptic corals, and
additional organisms or uncolonized substrate occurring in these
unsampled microenvironments.

In situ Calcification Rates
In situ calcification rates for Diploria labyrinthiformis and
Porites astreoides corals and literature reported annual mean
calcification rates aggregated in the ReefBudget data analysis
sheets (Perry et al., 2012) for all other corals and calcifying
algae were used in the formation of the census-based budget.
Colonies of D. labyrinthiformis (n = 17) and P. astreoides
(n = 14) were collected from Hog Reef and mounted on tiles at
Hog Reef from September 2010 to September 2012 to calculate
in situ calcification rates for the duration of the experiment.
During the growth rate study, each coral was weighed every
2–3 months using the buoyant weight method (Jokiel et al.,
1978) with a correction term for seawater density at the time
of measurement and subtraction of the weight of the tile and
Z-SPAR A-788 epoxy used to mount the coral to the tile. Mean
initial coral weights (±standard deviation) were 358 ± 122 g
for D. labyrinthiformis and 419 ± 124 g for P. astreoides. Mean
calcification rates for each growth interval were calculated as
the change in weight (mg) per day over each growth interval.
Calcification rates were normalized to surface area using the foil
method conducted at the end of the growth rate experiment
(Marsh, 1970). Mean (±standard deviation) individual coral
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FIGURE 2 | Summary of percent cover (±standard deviation) from the

benthic surveys conducted at Hog Reef. The benthic survey percent cover

data was used in conjunction with the effective footprint analysis to scale the

benthic composition onto larger spatial patterns of rocky reef-dominated (94.9

± 0.2%) and sand-dominated (5.1 ± 0.2%) substrates at Hog Reef.

colony surface areas in the growth rate experiment were 195 ±

31 cm2 forD. labyrinthiformis and 164± 48 cm2 for P. astreoides.

Seasonal Variability in Calcification
Temporal variability in D. labyrinthiformis and P. astreoides
growth rates was determined by dividing growth rates at each
weight interval by the mean growth rates over the approximately
2-year growth rate experiments to yield standardized growth rate
values. These standardized growth rates through time were fit
with a single-term Fourier model using the Curve Fitting Tool
in MATLAB to model the seasonal variability in growth rates
(±95% confidence intervals):

f (x) = 1.01± 0.05− (0.37± 0.13)cos [x (5.79± 0.22)]

− (0.29± 0.15)sin [x (5.79± 0.22) ] (1)

where x is the date in decimal years centered at the year 2010 and
f(x) is the proportional, standardized seasonal variation of the
mean annual growth rate. This seasonal variability relationship
was used to scale the literature-derived annual mean coral and
calcifying algal growth rates from the ReefBudget data analysis
sheets (Perry et al., 2012) to approximate seasonal variability
in the census-based data for comparison to the continuous
chemistry-based budgets in this study.

Similarly, the in situ measured growth rates for D.
labyrinthiformis and P. astreoides were fit with single-term
Fourier models using the Curve Fitting Tool in MATLAB

to construct continuous estimations of calcification rates for
the duration of the 2-year experiment. The equation for D.
labyrinthiformis growth rates (± 95% confidence intervals) is:

f (x) = 3.12 ± 0.17− (0.86 ± 0.56)cos[x(5.83 ± 0.30)]

− (0.97 ± 0.47)sin[x(5.83 ± 0.30)] (2)

where x is the date in decimal years centered at the year 2010
and f(x) is the seasonal variation of theD. labyrinthiformis annual
growth rate (kg CaCO3•m

−2•y−1). The equation for P. astreoides
growth rates (± 95% confidence intervals) is:

f (x) = 2.53± 0.19− (1.32± 0.39) cos [x (5.71± 0.30)]

− (0.53± 0.70)sin [x (5.71± 0.30) ] (3)

where x is the date in decimal years centered at the year
2010 and f(x) is the seasonal variation of the P. astreoides
annual growth rate (kg CaCO3•m

−2•y−1). The Fourier fitted
continuous growth rates for D. labyrinthiformis and P. astreoides
were used to model the seasonal-variability of the census-based
budget.

Summation of Net Calcification
Calcification rates of each calcifying species were multiplied
by reef rugosity and percent cover of each species from the
benthic surveys to determine species-level calcification at Hog
Reef. These species-level calcification rates were summed to
obtain the net calcification (kg CaCO3•m

−2•y−1) by the benthic
community at Hog Reef. Regrettably, calcification by benthic
foraminifera, which could represent up to 50% of the sand
composition at Hog Reef (unpublished data), was not included
in the budget due to the lack of benthic survey data on
these species. Despite large abundance in the sand, Bermuda
reef benthic foraminifera CaCO3 production was previously
estimated to be 0.080 kg CaCO3•m

−2•y−1 (Langer et al., 1997),
supporting earlier findings that the contributions by benthic
foraminifera on coral reef NEC are an order of magnitude
smaller than the CaCO3 produced by non-Acroporid corals
(Chave et al., 1972). Calcification by suborder holaxonia sea
fans and sea rods (16 ± 2% cover ± standard deviation of
the benthic survey data; Figure 2) were also excluded from this
analysis due to the high variability of calcified material within
individuals (Esford and Lewis, 1990) and a lack of reliable linear
extension rate measurements to pair with the percent cover
survey data. Of the other dominant biocalcifying components of
coral reef environments listed by Montaggioni and Braithwaite
(2009), Mollusca were insufficiently surveyed to reliably estimate
Mollusca calcification from the benthic survey data.

Net CaCO3 Dissolution
Calcium carbonate dissolution at Hog Reef was measured as
the sum of CaCO3 dissolution by sediments, microborers, and
sponges. Sediment CaCO3 dissolution at Hog Reef was directly
measured over a full diel cycle in summer 2015 (July) via
the alkalinity anomaly measured in three independent benthic
chambers following methods outlined in Cyronak et al. (2013b).
Net sediment CaCO3 dissolution (±standard deviation) for the
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sand at Hog Reef was −0.39 ± 0.11 kg CaCO3•m
−2•yr−1.

Given the lack of data for any temporal variability in sediment
CaCO3 dissolution at Hog Reef, this rate was assumed to
be constant throughout the year and was multiplied by the
percent sediment cover from the survey data at Hog Reef. No
sponges were recorded in our transect data thereby precluding
net CaCO3 dissolution by sponges from the calculation of
this budget. Mean (±standard deviation) microborer CaCO3

dissolution rates of −0.21 ± 0.09 kg CaCO3•m
−2•yr−1 were

determined from scanning electron microscopy of subsections
from 3 experimental coral blocks cut from a singlemassive Porites
lobata skeleton exposed at Hog Reef between September 2011
and September 2012 following methods outlined in Tribollet
et al. (2009). These methods for estimating CaCO3 dissolution
differed from the ReefBudget calculations in that this study
additionally included sediment dissolution, which is typically
absent from census-based budgets (Eyre et al., 2014), while
mechanical bioerosion by fish and urchins were omitted from
this study. This distinction between mechanical and chemical
bioerosion was made such that the census budgets would reflect
only the chemical balance of calcification and CaCO3 dissolution
to allow for a better comparison between the census-based and
chemistry-based budgets outlined in this study.

Effective Reef Footprint and Hydrology
To best compare the census-based and chemistry-based estimates
of NEC, an effective reef footprint (i.e., the spatial extent of
benthic community influence on water chemistry) was calculated
to link the benthos to overlying water column carbonate
chemistry. The mean water flow of the tidally driven currents at
Hog Reef was integrated over a complete tidal cycle to estimate
the spatial area of the benthos that a typical parcel of reefwater
travels over a tidal cycle. This calculated area of reef therefore
represents the estimated areal footprint over which the NEC
carbonate chemistry signal has been integrated in the seawater.
The estimated footprint was used with aerial imagery and digital
elevation model data to calculate the percent hard reef vs. sandy
substrate and an average water depth for calculations of the
census based and chemistry based Hog Reef NEC.

ANortek ASAquadopp Profilerwasmounted at approximately
12m depth to measure current speeds in 0.5m depth bins from
surface to bottom at a frequency of 1.0MHz from 18 July 2015 to
26 July 2015. In the absence of continuous current measurements
during the ca. 2-year study, this later current profiler deployment
was used to record many tidal cycles of the predominately tidally
driven flow regime at Hog Reef with the caveat that typical
current profiles may vary over longer time scales due to changing
wind and storm activity. Calculations using potential changes in
flow regime beyond the typically tidal influence have relatively
small impacts on measured census-based and chemistry-based
NEC due to the correspondingly small changes in percent hard
reef substrate and depth of the effective reef footprint. To avoid
the tidal influence on the occasional aerial exposure of the
uppermost surface current bins, only bins from 0.4 to 10.9m
distance from the profiler were analyzed. Current speeds were
converted into u and v components and averaged across depth
bins from 0.4 to 10.9m to yield the average water column

velocity for the duration of the deployment. An hourly low-pass
Lanczos filter was used on the top-bottom averaged u and v
components to filter out higher frequency turbulence from the
current data. A principal components analysis was performed
on the filtered top-bottom averaged u and v data following
procedures outlined in Glover et al. (2011) to identify the primary
(PC1) and orthogonal (PC2) principal components of seawater
current. PC1 (2.89 cm•s−1 at 335◦) therefore represents themean
speed and direction of the dominant current flow and PC2
(2.75 cm•s−1 at 245◦) represents the mean speed of the flow 90◦

to PC1. These components of current velocity were scaled by a
tidal period of 12.4167 h to yield a typical distance traveled by
a parcel of water over a complete tidal cycle. The tidally scaled
magnitudes and directions of these principal components (PC1:
1.29 km 335◦; PC2: 1.23 km 245◦) were centered at the Hog
Reef PMEL MAPCO2 mooring to estimate an elliptical effective
footprint (Figure 1) for the benthic community influence on
seawater chemistry.

The coordinates for the effective footprint were imported into
ArcMap R© software and layered onto a Bermuda 1 arc-second
sea level digital elevation model (Sutherland et al., 2014) and
Bermuda marine aerial imagery (Bermuda Zoological Society,
1997). The ArcMap R© Zonal Statistics as Table tool was used to
calculate the mean (±standard deviation) depth from the digital
elevation model for the elliptical Hog Reef footprint as 10.3
± 3.3m. The elliptical footprint was used to crop and export
the marine aerial imagery from ArcMap R© software to ImageJ
(Schneider et al., 2012) for analysis of percent cover by larger-
scale reef and sand patches in the effective footprint. The image
contrast was enhanced and converted to 8-bit grayscale before
applying a black-and-white threshold with additional manual
paintbrush tool interpretation of reef composition from the
photograph such that areas of reef became black pixels and areas
of sand became white pixels. The histogram of the ellipse was
analyzed to determine the percent of black and percent of white
pixels resulting in 94.9% hard reef and 5.1% sand composition.
Because the reef survey data was collected over the dominantly
reef section, the census-based budget data was scaled to represent
94.9% of the budget area and sand CaCO3 dissolution rates
were applied to the remaining 5.1% sand-covered portion of the
effective reef footprint. Notably, this scaling of the transect data
to the effective reef footprint resulted in a mean (±uncertainty)
of 26± 5% hard coral cover for Hog Reef.

Chemistry Based Budget Formation
Carbonate Chemistry Bottle Samples
Hog Reef seawater bottle samples were analyzed for total
alkalinity (TA) to calculate the chemistry basedNEC in this study.
All water samples were collected approximately monthly using a
5-L Niskin bottle at 0.5–1.0m depth according to best practices
(Dickson et al., 2007). Samples were stored using 200mL-Kimax
glass sample bottles, fixed using 100µL saturated solution of
HgCl2, and subsequently analyzed for TA using a VINDTA
3S system and DIC using VINDTA 3C and AIRICA systems
(Marianda Inc). The accuracy and precision of TA analyses
were verified against certified reference material (CRM) provided
by the laboratory of Prof. A. Dickson of Scripps Institution
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of Oceanography. Analysis of replicate CRMs yielded a typical
accuracy and precision of ±2–4µmol•kg−1 for both TA and
DIC. Temperature (accuracy ± 0.15◦C) and salinity (accuracy ±
1%) for all samples were measured using a YSI 556 Handheld
Multiparameter Instrument. Additional seawater samples were
collected for 66% of all bottle samples and analyzed for salinity
using an Autosal Salinometer (accuracy < ± 0.002). These
salinometer salinity values were preferentially used over the YSI
salinity measurements in the analysis for this project.

Offshore seawater bottle samples were collected
approximately monthly at the Bermuda Atlantic Time-series
Study (BATS; 31◦50′N, 64◦10′W) and analyzed for temperature,
salinity, and TA. BATS is located ∼80 km southeast of Bermuda
and represents typical surface seawater of the Sargasso Sea
making BATS carbonate chemistry samples an ideal offshore
reference for calculation of NEC in this study (Bates et al., 2001,
2010; Bates, 2002; Yeakel et al., 2015). BATS TA samples were
collected in 200mL-Kimax glass bottles, fixed with HgCl2, and
sealed until analysis at Bermuda Institute of Ocean Sciences
(Bates et al., 2012). TA was analyzed by a VINDTA 2S System
(Marianda Inc) with typical replicate accuracy and precision of
<0.2% determined daily using CRMs. TA for the Hog Reef and
BATS bottle samples were normalized to the mean salinity of
36.59 g•kg−1 measured at Hog Reef. Because the BATS bottle
samples were not collected at the same time as the Hog Reef
samples, the BATS bottle samples were linearly interpolated
to match the monthly Hog Reef seawater sampling dates for
analysis of NEC in this study.

Hog Reef MAPCO2 Mooring Carbonate Chemistry
Hog Reef seawater pCO2 and modeled pHtotal were used to
calculate TA every 3 h to estimate variability in Hog Reef NEC at
higher frequencies than the ca. monthly Hog Reef seawater bottle
samples. Seawater pCO2, atmospheric pressure, temperature, and
salinity were measured every 3 h by the NOAA PMEL MAPCO2

mooring stationed at Hog Reef (32◦27′26.39′′N, 64◦50′5.10′′W).
TheMAPCO2 mooring utilizes a Battelle Memorial InstituteCO2

system to measure CO2 mole fraction and a Sea-Bird 16plus
v2 plus to measure seawater temperature and salinity (Sutton
et al., 2014). The Sea-Bird sensors failed after a few months
during both deployments of the MAPCO2 mooring in this study
due to extensive biofouling. Mooring salinity records were thus
completed using linearly interpolated salinity data from the
monthly Hog Reef seawater samples. Daily averaged temperature
from four HOBO loggers (mean standard deviation ± 0.11◦C
between loggers) deployed at Hog Reef recording temperature
every 8-min were used for the duration of this study. An average
of the daily temperature values for the day before and the day
after a brief, 4-day interval lacking temperature record in mid-
July were used to fill that same 4-day interval to maintain a
continuous temperature record during the study.

Hog Reef seawater TA and DIC bottle samples were used to
calculate seawater pHtotal and pCO2 for each bottle sample. The
high correlation between bottle sample pHtotal and pCO2 was
used to predict seawater pHtotal from MAPCO2 mooring pCO2.
The combination of 3-h temporally resolved MAPCO2 mooring
pCO2 and pHtotal allowed Hog Reef TA to be calculated every 3 h

at Hog Reef. Hog Reef seawater TA and DIC bottle samples were
used to calculate seawater carbonate chemistry using CO2SYS
for MATLAB (van Heuven et al., 2011) using temperature and
salinity measured at the time of sampling, the pHtotal, K1 and
K2 dissociation constants by Mehrbach et al. (1973) refit by
Dickson andMillero (1987), KHSO4- by Dickson (1990), and total
boron by Uppström (1974). Calculated pHtotal was highly linearly
correlated (R2 = 0.998; p < 0.0001) with log(pCO2) resulting in
the following equation (± standard error):

pHtotal = (−0.393± 0.003) × log[pCO2 (µatm)]

+ (10.40± 0.02) (4)

The highly linear correlation between log(pCO2) and pHtotal over
the range of values in this study allowed us to use the above
equation to model pHtotal as a function of the Hog Reef mooring
pCO2 data to create a 3-h temporal resolution pHtotal record. The
Hog Reef mooring pCO2 and modeled pHtotal data were used to
calculate TA with CO2SYS for MATLAB (van Heuven et al., 2011)
using the HOBO temperature and interpolated seawater bottle
salinity data, and the same set of constants previously described.
TA from this output was normalized to the mean salinity of 36.59
measured at Hog Reef to compare with the BATS bottle samples
normalized to that same salinity. The BATS bottle samples
(collected approximately monthly) were linearly interpolated to
match the modeled TA data (calculated every 3-h) for analysis
of higher frequency measurements of NEC in this study. We
recognize using this modeled TA dataset yields some additional
uncertainty relative to direct TA measurements; however, the
higher frequency variability captured by this method provides
valuable insight on the range of Hog Reef NEC over shorter
timescales than would otherwise be possible from traditional
bottle samples.

Seawater density for the MAPCO2 mooring and bottle sample
data were calculated using the TEOS-10 Gibbs Seawater (GSW)
oceanographic toolbox (McDougall and Barker, 2011). For the
bottle samples, seawater density was calculated using salinity
of the bottles, temperature at the time of bottle sampling,
and atmospheric pressure at the time of sampling (from the
Bermuda Weather Service (2016) and MAPCO2 mooring). For
the MAPCO2 mooring, seawater density was calculated from the
MAPCO2 and interpolated seawater bottle salinity data, HOBO
logger temperature data, and MAPCO2 pressure sensor data.

Net Ecosystem Calcification
NEC represents the effects of gross calcification and gross CaCO3

dissolution integrated over a water column of given density (ρ),
depth (z), and residence time (τ) as per the following equation
(Smith and Key, 1975; Langdon et al., 2010):

NEC =
ρz(TAoffshore − TAreef)

2τ
(5)

NEC was calculated for the discrete TA bottle samples and
the MAPCO2 mooring TA data relative to interpolated BATS
offshore TA data, bottle and MAPCO2 mooring seawater density
data, depth of the effective footprint from ArcGIS, and a
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mean residence time (± standard deviation) of 2.5 ± 0.4 days
calculated at the nearby North Rock rim reef site using a
multi-tracer approach (Venti et al., 2012). Trapezoidal numerical
integration was used to calculate annual NEC for the bottle
samples. Regrettably, a full annual cycle was not measured
by the MAPCO2 data (0.91 years) for the duration of this
study (September 2010–September 2012). Trapezoidal numerical
integration was thus applied to the mooring NEC data, bottle
sample NEC data, and census-based NEC data over the longest
MAPCO2 mooring data record (0.91 year time period from
February 2011 to January 2012) to allow for a direct comparison
of the methods without temporal bias. The census-based NEC,
seawater bottle chemistry-based NEC, and mooring chemistry-
based NEC are hereafter referred to as the census NEC, bottle
NEC, and mooring NEC throughout the remainder of this
manuscript.

Propagation of Uncertainty
Uncertainty for the census, bottle, and mooring NEC budgets
was estimated using standard procedures for propagation of
uncertainties summarized by Ku (1966). Standard deviations
for all measured and calculated data were used to propagate
uncertainties with a few exceptions. Uncertainties in species-
level growth rates from the literature were not included in
this analysis. Uncertainty of measured TA (±4µmol•kg−1) was
obtained from replicate measures of CRMs. An uncertainty
of ±21µmol•kg−1 was used for the uncertainty in MAPCO2

mooring pH-pCO2 predicted TA values. The mean difference
between measured bottle TA and corresponding MAPCO2

mooring pH-pCO2 predicted TA at the time of water bottle
sampling was 20.5µmol•kg−1, which is also consistent with an
uncertainty of±21µmol•kg−1 estimated byMillero (2007) using
ship-based pCO2 and pH measurements. Subjective uncertainty
for the Hog Reef footprint percent composition of reef and sand
was estimated to be ±2% based on repeated ImageJ analysis of
Hog Reef benthic composition.

RESULTS

Census Based Budget Formation
The mean census NEC (±uncertainty) for the entire length of
the approximately 2-year in situ calcification study was 2.21 ±

1.01 kg CaCO3•m
−2•y−1 (Table 1; Figure 3). Calcification

(±uncertainty) accounted for 2.53 ± 0.99 kg CaCO3•m
−2•y−1

and CaCO3 dissolution (±uncertainty) was −0.32 ± 0.13
kg CaCO3•m

−2•y−1 (Tables 1, 2; Figure 4). The percentage
(±uncertainty) of total calcification for D. labyrinthiformis (15±
3%), Pseudodiploria strigosa (29 ± 10%), Millepora alcicornis
(26 ± 12%), and Orbicella franksi (24 ± 9%) show they
are the dominant CaCO3 producers (94 ± 19% for all four
species) at Hog Reef (Table 1; Figure 4). Although measured
rates of sand CaCO3 dissolution were higher than microborer
CaCO3 dissolution rates per unit area, the smaller total area
of sands resulted in areal CaCO3 dissolution (± uncertainty)
being dominated by microborers (93 ± 57%) with sand CaCO3

dissolution (7 ± 4%) making up the remainder (Table 2;
Figure 4). Integrated census NEC (±uncertainty) for 2011 was
2.35 ± 1.01 kg CaCO3•m

−2•y−1 and from 2011.2 to 2012.1 was
2.28± 1.01 kg CaCO3•m

−2•y−1 (Table 3).

Chemistry Based Budget Formation
The mean bottle NEC (±uncertainty) for the entire length
of the approximately 2-year in situ calcification study was
2.85± 1.02 kg CaCO3•m

−2•y−1 (Table 3). The integrated bottle
NEC for 2011 was 2.23 ± 1.02 kg CaCO3•m

−2•y−1 and from
2011.2 to 2012.1 was 2.46 ± 1.02 kg CaCO3•m

−2•y−1 (Table 3).
Similarly, the mean mooring NEC (±uncertainty) was 3.73 ±

1.34 kg CaCO3•m
−2•y−1 (Table 3). There was insufficient data

to calculate mooring NEC for 2011 using the MAPCO2 data with
the interval 2011.2–2012.1 representing the longest continuous
record for the mooring NEC data. The integrated mooring NEC
estimate for this interval was 4.09 ± 1.34 kg CaCO3•m

−2•y−1

(Table 3).

TABLE 1 | Summary table of calcification at Hog Reef.

Calcifying Mean survey Mean reef ReefBudget Mean study Mean reef % of Total

organism %-cover %-cover calcification rates interval rates calcification Hog Reef

(kg CaCO3•m−2
•y−1) (kg CaCO3•m−2

•y−1) (kg CaCO3•m−2
•y−1) calcification

Diploria labyrinthiformis 9± 2 9±1 4.64 3.00 0.38± 0.08 15±3

Pseudodiploria strigosa 10± 3 9±3 5.34 5.13 0.7± 0.2 30±10

Favia fragum 0.04± 0.09 0.04±0.09 9.76 9.38 0.01± 0.01 0.2±0.5

Madracis decactis 0.04± 0.09 0.04±0.09 33.46 32.16 0.02± 0.04 0.7±1.6

Millepora alcicornis 1.8± 0.8 1.6±0.7 28.10 27.01 0.7± 0.3 30±10

Montastraea cavernosa 0.6± 0.6 0.6±0.5 9.07 8.72 0.08± 0.07 3±3

Orbicella franksi 5± 2 5±2 9.06 8.71 0.6± 0.2 24±9

Porites astreoides 1.1± 0.3 1.0±0.3 6.32 2.36 0.04± 0.01 1.4±0.5

Coralline algae 1.2± 0.5 1.2±0.5 0.18 0.17 0.003± 0.001 0.12±0.05

Percent cover (± standard deviation) from the benthic surveys and estimated reef footprint are reported alongside literature calcification rates aggregated by ReefBudget and the

mean calcification rate over the entire study period after taking into account seasonal variability in calcification rates and using in situ calcification rate data for D. labyrinthiformis and P.

astreoides. Mean calcification rates and percent of total calcification (± uncertainties) are reported for each species.
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FIGURE 3 | Summary figure of Hog Reef Net Ecosystem Calcification (NEC) using the mooring NEC, bottle NEC, and census NEC approaches for the

study period. The dashed zero-NEC line indicates the tipping point between net calcification (above the line) and net CaCO3 dissolution (below the line).

TABLE 2 | Summary table of CaCO3 dissolution at Hog Reef.

CaCO3 dissolution Mean survey Mean reef Mean CaCO3 dissolution Mean reef CaCO3 % of Total Hog Reef

type %-cover %-cover rate (kg CaCO3•m−2
•y−1) dissolution (kg CaCO3•m−2

•y−1) CaCO3 dissolution

Microborer 99.3 ± 0.4 95 ± 2 −0.21± 0.09 −0.3± 0.1 90 ± 60

Sand 0.7 ± 0.4 5 ± 2 −0.39± 0.11 −0.02± 0.01 7 ± 4

Percent cover from the benthic surveys (±standard deviation) and calculated from the estimated reef footprint (±uncertainty) are reported for substrate available to dissolution by

microboring communities (dominated by pioneer chlorophytes such as Phaeophila sp. and Ostreobium sp.) and sand CaCO3 dissolution. CaCO3 dissolution rates (± standard deviation),

mean CaCO3 dissolution (± uncertainty), and percentage of total CaCO3 dissolution (± uncertainty) are expressed for microborer and sand dissolution at Hog Reef.

DISCUSSION

Annual NEC for 2011 calculated by the census NEC (2.35 ±

1.01 kg CaCO3•m
−2•y−1) and by the bottle NEC (2.23± 1.02 kg

CaCO3•m
−2•y−1) are in close agreement. Chemistry-based

NEC estimates measure NEC via the TA anomaly technique
thereby recording the integrated signal of calcification and
CaCO3 dissolution occurring within the reef ecosystem. These
findings that the census-based budget are in close agreement
with the bottle chemistry NEC suggest that the summation of
the components of coral reef calcification and CaCO3 dissolution
are representative of the total balance between calcification and
CaCO3 dissolution occurring at Hog Reef.

Annual NEC calculated for 2011 for Hog Reef using census
(2.35 ± 1.01 kg CaCO3•m

−2•y−1) and bottle-based (2.23
± 1.02 kg CaCO3•m

−2•y−1) methods in addition to other
census-based NEC studies from the Caribbean (Stearn et al.,
1977; Mallela and Perry, 2007; Perry et al., 2013) generally
fall within the 20–250mmol CaCO3•m

−2•d−1 (0.73–9.13 kg
CaCO3•m

−2•y−1) range of average global coral reef flat NEC

(Atkinson, 2011; Figure 5). The relationship between percent
hard coral cover and reef NEC in this study is in general
agreement with trends observed in other census-based studies
of Caribbean reefs (Stearn et al., 1977; Mallela and Perry, 2007;
Perry et al., 2013; Figure 5). Notably, the annual Hog Reef census
NEC and bottle NEC are in close agreement with the census NEC
calculated for a Bonaire reef (2.31 ± 1.05 kg CaCO3•m

−2•y−1)
with analogous hard coral cover (Hog Reef: 26 ± 5%; Bonaire
reef: 25.0 ± 4.5%) and depth (Hog Reef: 10.3 ± 3.3m; Bonaire
Reef: 10m; Perry et al., 2013; Figure 5). Collectively, these
findings support earlier claims by Montaggioni and Braithwaite
(2009) andmeasurements byHamylton et al. (2013) that net coral
reef calcification estimates using chemistry and census-based
approaches are generally in close agreement.

To test for any temporal bias in the NEC rates calculated from
daytime bottle sampling of NEC, the autonomous MAPCO2

mooring recorded seawater pCO2 every 3-h allowing for a higher
temporal resolution of NEC to be measured. The mooring NEC
values reveal the seasonal cycles and diel variability in NEC with
generally higher NEC values of 4.10 ± 1.34 kg CaCO3•m

−2•y−1
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FIGURE 4 | Census-based summary of mean calcification and mean CaCO3 dissolution. D. labyrinthiformis, P. strigosa, M. alcicornis, and O. franksi are the

dominant biocalcifiers and microborer activity dominates CaCO3 dissolution at Hog Reef.

TABLE 3 | NEC summary table for each method.

Method Mean NEC (kg NEC 2011 (kg NEC 2011.2-2012.1

CaCO3•m−2
•y−1) CaCO3•m−2

•y−1) (kg CaCO3•m−2
•y−1)

Census NEC 2.21 ± 1.01 2.35 ± 1.01 2.28 ± 1.01

Bottle NEC 2.85 ± 1.02 2.23 ± 1.02 2.46 ± 1.02

Mooring NEC 3.73 ± 1.34 Insufficient data 4.10 ± 1.34

NEC (±uncertainty) is calculated as the mean NEC over the entire study period, integrated

annual NEC for 2011, and integrated annual NEC for the first mooring deployment.

compared to 2.35 ± 1.01 kg CaCO3•m
−2•y−1 and 2.46 ±

1.02 kg CaCO3•m
−2•y−1 for the census NEC and bottle NEC

respectively during the same initial mooring deployment from
2011.2 to 2012.1 (Table 3; Figures 3, 6). These mooring NEC
values may be higher due to additional uncertainty generated
by modeling TA from MAPCO2 mooring pH-pCO2 and/or
could relate to higher frequency variability in reef processes. The
absolute mooring NEC values should therefore be treated with
some caution, but the range nonetheless highlights the dynamic
variability of Hog Reef NEC. Interestingly, agreement between
the census and chemistry-based NEC methods varies over the
2-year period further highlighting the dynamic variability of
coral reef environments (Figure 3). This may be in part due
to unmeasured temporal variability in the rates of dissolution
by microborers and sediments, species-level differences in
seasonal calcification responses, higher frequency variability in
calcification rates than the 2-month intervals measured by the
in situ growth rate experiments, and or changes in seawater
residence time resulting from changes in wind and currents.
Mean annual CaCO3 dissolution by microborers was used for
the census NEC; however, recent work has shown that CaCO3

dissolution of new substrates by microborers varies nonlinearly

due to succession of microboring communities over time and

a combination of biotic and abiotic factors (Vogel et al., 2000;
Carreiro-Silva et al., 2005; Aline, 2008; Tribollet et al., 2009;
Grange et al., 2015). Similarly, sediment CaCO3 dissolution rates

were measured once in the summer and thus do not account

for any potential temporal variability in CaCO3 dissolution

rates. Further research should be conducted to quantify shorter

temporal scale variability in growth rates of biocalcifiers, CaCO3

dissolution rates, and changes in coral reef seawater residence

time to better understand these changes and the factors driving

variable NEC (Venti et al., 2012; Teneva et al., 2013).

The census NEC in this study was limited by the high

structural complexity (i.e., caves and overhangs) of Hog

Reef, lack of calcification by suborder holaxonia and phyla

Mollusca, and potential differences in biocalcification rates in

Bermuda relative to literature reported rates for the tropical
Caribbean. The limitations imposed by “canopy effects” present
in the planar video surveys of structurally complex Hog
Reef (Goatley and Bellwood, 2011) lead to underestimates of
calcification by benthic foraminifera, bryozoans, corals, and
coralline algae as well as underestimates of CaCO3 dissolution
by cryptic bioeroders (Hutchings, 1986), uncolonized substrate,
and sediments occurring in unsampled caves. A prior estimate
of Bermuda coral reef benthic foraminifera CaCO3 production
(0.080 kg CaCO3•m

−2•y−1; Langer et al., 1997) is significantly
less than the census NEC (2.35 ± 1.01 kg CaCO3•m

−2•y−1)
suggesting the absence of benthic foraminifera has a small
influence on the Hog Reef NEC estimate. Additionally, the
lack of published calcification rates for suborder holaxonia
sea fans and sea rods and absence of phyla Mollusca and
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FIGURE 5 | Summary plot of Caribbean Reef percent hard coral cover vs. Net Ecosystem Calcification (NEC) adapted from Perry et al. (2013). Census

NEC and bottle NEC are the 2011 integrated NEC values from this study. The gray dashed lines represent the upper and lower bounds of typical global coral reef flat

NEC and the solid gray line indicates the mean global coral reef flat NEC from Atkinson (2011).

Echinodermata in the benthic survey data further underestimate
total calcification occurring at Hog Reef. Because Bermuda
is located at the edge of the latitudinal limit for coral reefs,
it remains unclear how the cooler waters may systematically
reduce calcification rates of all biocalcifiers in Bermuda relative
to literature reported rates for more tropical Caribbean reefs.
Annual in situ calcification rates for 2011 in this study for
D. labyrinthiformis (3.02 kg CaCO3•m

−2•y−1) and P. astreoides
(2.70 kg CaCO3•m

−2•y−1) were 35 and 57% lower respectively
than calcification rates aggregated by ReefBudget for Caribbean
corals at 10m-depth (Perry et al., 2012). Similarly reduced
growth rates in Bermuda relative to elsewhere in the Caribbean
were observed for P. strigosa, D. labyrinthiformis, P. astreoides,
and Scolymia cubensis (Tomascik and Logan, 1990; Logan
and Tomascik, 1991; Logan et al., 1994). These findings that
calcification rates are potentially lower in Bermuda suggest that
the Caribbean ReefBudget calcification rates (Perry et al., 2012)
used for many of the calcifying species in this study overestimate
Hog Reef NEC. While this study was unable to quantify the
contributions by each of these components, the close agreement
between the census NEC and the bottle NEC suggest the net
effect of these uncertainties on NEC may cancel out or are
small relative to the other components of the census-based
budget.

The bottle and mooring NEC in this study were limited by
the ability to measure residence time, reef depth, and TA of reef
seawater relative to source seawater. Estimations of NEC via the
alkalinity anomaly method are particularly sensitive to changes
in residence time and flow rates of the seawater overlying the reef
community (Venti et al., 2012; Zhang et al., 2012; Falter et al.,
2013; Teneva et al., 2013). Controlled volume experiments and

numerical models further elucidate the necessity in measuring
the height of the resulting mixed water column when calculating
NEC (Zhang et al., 2012; Falter et al., 2013; Teneva et al.,
2013). Prior work on residence times for nearby North Channel
by Venti et al. (2012) and Bermuda platform bathymetry data
from Sutherland et al. (2014) constrained these uncertainties in
residence time and depth such that bottle and mooring NEC
could be estimated for Hog Reef. To test for the contributions
of uncertainty in residence time and seawater depth in this
study, a sensitivity analysis was performed on the bottle NEC
to test for a range of variability introduced within one standard
deviation of mean residence times and depth of the effective reef
footprint of Hog Reef (Figure 7). The source seawater TA for
Bermuda rim reefs is well characterized by BATS making Hog
Reef an ideal location to estimate chemistry-based NEC. Reef
seawater TA for the bottle NEC estimates was directly measured
(±4µmol•kg−1) while mooring NEC in this study requires reef
seawater TA to be calculated from measured pCO2 and modeled
pHtotal (estimated ±21µmol•kg−1 from Millero, 2007). The
resulting error between bottle NEC (±1.02 kg CaCO3•m

−2•y−1)
and mooring NEC (±1.34 kg CaCO3•m

−2•y−1) reveals that the
uncertainty introduced from predicting mooring TA is less than
the combined uncertainties in seawater residence time and depth.
This collectively shows that uncertainty in bottle and mooring
NEC estimates are only as good as the ability to quantify the
residence time and volume of the seawater overlying the benthic
community.

The balance between coral reef calcification and CaCO3

dissolution is of particular concern to the persistence of coral
reef structure and other ecosystem services (Eyre et al., 2014).
Coral community shifts and declining coral cover have already
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FIGURE 6 | Integrated Net Ecosystem Calcification (NEC) (±uncertainty) during the first mooring deployment from 2011.2 to 2012.1 for the census

NEC, bottle NEC, and mooring NEC. The solid gray line and dashed gray lines represent the mean and range of NEC, respectively, for reef flats globally from

Atkinson (2011).

decreased Caribbean reef NEC with a tipping point from
positive to negative net CaCO3 production occurring when
hard coral cover falls below ca. 10% (Perry et al., 2013, 2015).
In this study, census-based estimates of calcification greatly
exceeded CaCO3 dissolution at Hog Reef (Figure 4); however,
chemistry based estimates reveal occasional measurements of
net CaCO3 dissolution occurring in spring and mid-summer
(Figure 3). Despite larger-scale patterns of coral cover decline
in the Caribbean over the most recent decades (Gardner et al.,
2003), mean Bermuda rim reef hard coral cover has remained
approximately constant over that time period (Dodge et al.,
1982; CARICOMP, 2000; Linton and Fisher, 2004; MEP, 2007;
Smith et al., 2013; Jackson et al., 2014). Because coral cover has
remained approximately constant, any decadal-scale changes in
calcification and CaCO3 dissolution are therefore more likely to
have changed due to changing rates and not changing benthic
community composition. Notably, recent studies have shown
that coral reef CaCO3 dissolution is stimulated by changing
climate and ocean chemistry (Andersson et al., 2009; Tribollet
et al., 2009; Cyronak et al., 2013a; Reyes-Nivia et al., 2013)
suggesting that even at constant coral cover, increased CaCO3

dissolution could drive declines in net CaCO3 production at Hog
Reef. Further research should be conducted to see how these
rates have changed in response to changing climate and ocean
chemistry to better understand potential calcification-CaCO3

dissolution tipping points for the rim reefs of Bermuda.
Continued global declines in coral cover and changing coral

community composition highlight the importance for NEC
measurements to be included in coral reef monitoring projects
to assess the ability of a given coral reef to maintain positive

CaCO3 production and therefore reef structure and function.
Because NEC measures the capacity for in situ coral reef CaCO3

production (Perry et al., 2012, 2013), it must be considered
within the context of additional import, export, and erosion of
CaCO3 material if the monitoring goal is to directly measure
net coral reef accretion (e.g., Scoffin, 1992; Milliman, 1993;
Kleypas et al., 2001; Perry et al., 2008, 2012; Montaggioni and
Braithwaite, 2009; Tribollet and Golubic, 2011). To date, much
attention has been given to reef accretion processes highlighting
the importance of additionally studying the dynamics of erosive
processes, especially dissolution of CaCO3 in sediment and by
microborers, sponges, and other bioeroders. Although sediment
dissolution was only a small component of the total dissolution in
this study due to the small percentage surface area of sands, other
reefs have a much larger percentage surface area of sands making
sediment CaCO3 dissolution a more important component of
the CaCO3 budget at those reefs (Cyronak et al., 2013a; Cyronak
and Eyre, 2016). Nonetheless, census and chemistry-based
NEC estimates represent relatively non-invasive means of
measuring coral reef CaCO3 production capacity. Census-based
NEC and the relative CaCO3 production contributions by
the dominant biocalcifying species for Caribbean coral reefs
can be estimated from benthic survey data using standardized
methods and literature reported rates from the ReefBudget
project (Perry et al., 2012). Notably, D. labyrinthiformis, P.
strigosa, M. alcicornis, and O. franksi contribute 94 ± 19% of
the total calcification at Hog Reef (Table 1, Figure 4) suggesting
conservation measures should focus on those four species to
preserve positive CaCO3 production at Hog Reef. Chemistry-
based NEC estimates require well-constrained estimates of
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FIGURE 7 | Sensitivity analysis for bottle NEC at Hog Reef during the 2-year study period. Bottle Net Ecosystem Calcification (NEC) was calculated iteratively

using mean depth ± one standard deviation (10.3 ± 3.3m) and mean residence time ± one standard deviation (2.5 ± 0.4 days) to determine the sensitivity of NEC to

the interacting uncertainty and variability of these measurements.

seawater residence time, bathymetry, source seawater TA, and
reef seawater TA to capture the entire sum of calcification
and CaCO3 dissolution over shorter time scales (e.g., Langdon
et al., 2010 and references therein). These shorter time scale
NEC measurements allow the mechanisms (i.e., Smith and
Buddemeier, 1992: temperature, light, carbonate chemistry,
hydrodynamics, nutrients, salinity, and sea level) driving NEC
to be further explored (Silverman et al., 2007; Shaw et al.,
2012, 2015; Albright et al., 2015), thus providing a greater
understanding of coral reef NEC and how coral reef CaCO3

production may be affected by global change. The results of this
study conducted at Hog Reef suggest that either method may
be used with remarkable agreement over annual time scales
(Hog Reef, 2011 census NEC 2.35 ± 1.01 kg CaCO3•m

−2•y−1

vs. bottle NEC 2.23 ± 1.02 kg CaCO3•m
−2•y−1) depending

on the available resources and goals of the reef-monitoring
agency. When used in conjunction, the census and chemistry-
based NEC approaches corroborate estimates of NEC
to provide species-level estimates of CaCO3 production
(census NEC; Table 1, Figure 4) while highlighting temporal
variability (chemistry NEC; Figure 3) in coral reef CaCO3

production.

CONCLUSIONS

The present study reveals that 2011 annual census NEC
(2.35 ± 1.01 kg CaCO3•m

−2•y−1) and bottle NEC (2.23 ±

1.02 kg CaCO3•m
−2•y−1) at Hog Reef are in close agreement.

Census-based budgets allow for NEC to be subdivided into the

individual contributions by species or substrate on calcification
and CaCO3 dissolution over annual time scales and revealed
that the vast majority of CaCO3 production at Hog Reef (94
± 19%) was by D. labyrinthiformis, P. strigosa, M. alcicornis,
and O. franksi. Alternatively, chemistry-based estimates capture
the NEC of the entire reef at shorter temporal timescales
allowing the high temporal variability of coral reef NEC to
be analyzed relative to the potential drivers causing NEC to
vary. Varying agreement between census-based and chemistry-
based NEC was found during the ca. 2-year study interval
further highlighting the dynamic nature of NEC and calling
for further investigation of the mechanisms driving variability
in biocalcification, dissolution, and seawater residence times
at Hog Reef. These findings collectively suggest that either
method, but ideally both methods, may be used to estimate
coral reef NEC depending on the goals or available resources
of the coral reef-monitoring project and that high temporal
variability in coral reef environments must always be considered
when studying biogeochemical processes such as calcification
and CaCO3 dissolution.
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