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The oligotrophic southeastern Mediterranean Sea (SEMS) is frequently exposed to

desert-dust deposition which supplies nutrients, trace metals and a wide array of viable

airbornemicroorganisms. In this study, we experimentally examined the impact of aerosol

addition, collected during an intense dust storm event in early September 2015, on the

biomass and activity of pico-phytoplankton and heterotrophic bacterial populations at

the sea-surface micro layer (SML) relative to the sub surface layer (SSL). Aerosol (1.5mg

L−1) was added to SML and SSL water samples in microcosms (4.5 L) and the water

was frequently sampled over a period of 48 h. While the aerosol amendment triggered

a moderate 1.5–2-fold increase in primary production in both the SML and the SSL,

bacterial production increased by ∼3 and ∼7-folds in the SSL and SML, respectively.

Concurrently, the abundance and flow-cytometric characteristics (green fluorescence

and side scatter signals) of high nucleic acid (HNA) and low nucleic acid (LNA) bacterial

cells showed a significant increase in the %HNA, in both SML and SSL samples following

aerosol amendment. This shift in nucleic acid content took place at a much faster rate

in the SML, suggesting a more active heterotrophic community. These changes were

likely a result of higher rates of carbon utilizations in the SML following the dust addition,

as assessed by a selected hydrocarbons and saccharides analysis. Additionally, a high

absorption rate of hydrocarbons by the aerosol particles was measured following the

additions, leaving less than 10% of these molecules available for potential heterotrophic

microbial utilization. Our results suggest that the heterotrophic microbial community

inhabiting the SML is more efficient in utilizing aerosol associated constituents than the

community in the SSL.

Keywords: microlayer, aerosols, microcosms, mediterranean region, bacterial productivity

INTRODUCTION

The sea-surface microlayer (SML) is the uppermost layer of the oceans (20–400µm thick), located
between the subsurface layer (SSL) waters and the atmosphere (Liss and Duce, 1997). The SML is
a unique physiochemical and biological habitat that covers∼70% of Earth’s surface. This boundary
layer may play a significant role in many biogeochemical processes including air-sea gas and heat
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exchange (Liss and Duce, 1997) and the cycling of various
elements (Wurl and Holmes, 2008). Its chemical content is
different from the one usually found in the SSL. For example,
higher concentrations of saccharides, hydrocarbons, amino acids,
and polysaccharides were detected at the SML compared to the
SSL (Engel et al., 2004). Hydrocarbons in the form of alkyl chains
(i.e., n-alkanes) are highly enriched in the microlayer due to
their hydrophobic character and low density (Marty and Saliot,
1976). It is assumed that high concentrations of organic matter
in the SML may aggregate with sticky Transparent Exopolymer
Particles (TEP) that are also enriched in the SML, resulting in
gel-like particulate matter (Cunliffe et al., 2010). These aggregates
may also include bacteria cells (Passow and Alldredge, 1994)
and potentially various other molecules. In addition bacteria
cells embedded in these particles may use these hydrocarbon
molecules in the aggregates as an energy source (Grossi et al.,
2007; Yakimov et al., 2007; Sevilla et al., 2015). Unsaturated
alkyl chain like molecules as in the case of α-olefins (1-alkenes),
might show elevated photo-oxidation rates and as a result light
induced degradation (Mouzdahir et al., 2001). These differences
may affect microbial activity (Reinthaler et al., 2008; Sarmento
et al., 2015), enhance/reduce extracellular enzymatic activity
(Kuznetsova and Lee, 2001; Engel and Galgani, 2016) and affect
microbial diversity and abundance (Reinthaler et al., 2008; Vila-
costa et al., 2013).

The SML communities (frequently termed “Neuston”) are
composed of diverse groups of phytoneuston (autotrophs) and
bacterioneuston (heterotrophs) (Liss and Duce, 1997; Cunliffe
et al., 2010), which thrive on the relatively enriched organic
matrix (Guitart et al., 2013; Engel and Galgani, 2016). One of
the main external sources of nutrients to the SML is wet or dry
atmospheric depositions (Cunliffe et al., 2010; Guieu et al., 2014).
Deposited aerosols first interact with the SML and then sink
through the SSL to deeper waters, supplying nutrients such as
N, P, and Fe (e.g., Herut et al., 1999, 2002; Chien et al., 2016).
They may also introduce viable airborne microbes (Griffin, 2010;
Peter et al., 2014; Rahav et al., 2016a,b). Therefore, any dry or wet
deposition has the potential of changing the diversity and activity
of the phytoneuston and bacterioneuston communities.

The southeasternMediterranean Sea (SEMS) is a low nutrients
low chlorophyll marine province (Berman et al., 1984; Krom
et al., 1991; Yacobi et al., 1995; Rahav et al., 2013; Kress et al.,
2014) dominated by small-size microbes with low productivity
(Yacobi et al., 1995; Bar-zeev and Rahav, 2015; Raveh et al., 2015).
Recent studies showed that these autotrophic microorganisms
are primarily limited by N or co-limited by N&P, whereas
heterotrophic bacteria are P or C limited during summertime
(Kress et al., 2005; Zohary et al., 2005; Rahav et al., 2016c).
Previous studies emphasized the significant role of atmospheric
deposition in supplying limiting nutrients to the SEMS (Herut
et al., 1999, 2002; Guieu et al., 2014). While these studies have
assessed the impact of atmospheric dust deposition on surface
phytoplankton and heterotrophic bacterial communities in the
SEMS (e.g., Ridame et al., 2011; Rahav et al., 2016b), none of these
studies distinguished between the SML and the SSL.

In this study, we present a microcosm experimental assay that
examines the response of the neuston and bulk bacterioplankton
communities, collected from the SML and SSL respectively

to the addition of dry deposition of aerosol including desert
dust (1.5mg L−1). Temporal dynamics of the autotrophic and
heterotrophic microbial abundances and activity were recorded
for 48 h at high temporal resolution (every 4–8 h). High nucleic
acid (HNA) concentration per bacterial cell, was reported as
an efficient measure for bacterial activity (Lebaron et al., 2001;
Talarmin et al., 2011; Van Wambeke et al., 2011) and thus
was included in this study in addition to bacterial productivity.
Chemical analyses of saccharides and selected hydrocarbons were
also examined. We hypothesized that due to the physiochemical
and biological differences between the SML and SSL, any external
atmospheric addition that delivers micro and macro-nutrients
may trigger distinct responses in these two layers.

MATERIALS AND METHODS

SML and SSL Sampling
SML water samples were collected on December 15, 2015 by
using a custom made rotating drum sampler as described in
Harvey (1966) with minor changes: the rotating drum used was
a glass tube (r = 18 cm; l = 60 cm). The drum was pre-cleaned
with a concentrated HCl solution and washed with sample water
for a few min prior collection. No silicon or plastic tubes were
used. The collector includes an indurated non-contaminating
silicon blade (0.5m) fixed on an aluminum grip holder, collecting
the water into a pre-combusted glass bottle. These changes are
consistent with the glass plate collection procedure (Harvey
and Burzell, 1972) by using similar materials. In addition, these
improvements allow for a fast cleaning procedure, avoiding the
contamination caused by reusing materials such as plastics and
silicon tubing. The SML sample (23 L in total) was collected
by connecting the sampler in parallel to a small boat (rotating
speed ∼5 RPM). SML thickness was approximately 75µm
thick, and collection time was 90min. Sampling starting point
selected was 1 km offshore (32◦49′34N, 34◦57′20E); collection
ended 560m northeast of the starting point. The study area is
a coastal oligotrophic water zone (see discussion below); with
low influence of urban runoff. The port of Haifa is located a
few kilometers north of our study area; however, the general
water circulation carries most of the bulk water away from
our study zone. The average bottom depth along the sampling
was 13m. SSL water sample (23 L in total) was collected from
1m depth along the same cruise-track. Samples were kept in
acid prewashed sealed containers until processed at the Israel
Oceanographic and Limnological Research (IOLR) institute. The
wind speed was <3.5 knots, with waves of up to 0.3 m, and the
seawater surface temperature was 18◦C. Though waves in the
same magnitude showed no impact on SML surfactants tension
and spreading rates (Hale and Mitchell, 1997), it is possible that
the SML collection may include minor amounts of SSL water
and thus the results presented here may be an underestimation
of the trends observed (i.e., dilution of the microlayer water with
sub-surface water).

Aerosol Collection and Experimental
Design
A dry deposition sample was collected on September 8–9,
2015, using a pre-clean 2m2 glass plate (more details in Rahav

Frontiers in Marine Science | www.frontiersin.org 2 November 2016 | Volume 3 | Article 222

http://www.frontiersin.org/Marine_Science
http://www.frontiersin.org
http://www.frontiersin.org/Marine_Science/archive


Astrahan et al. Aerosol Addition to the Surface-Microlayer

et al., 2016b). The pre cleaned glass plate was exposed for 48 h
during an extreme dust storm arriving from the north-east
(Supplementary Figure S1). Over this time 1 gr m−2 of aerosol
was deposited of plate area. Assuming a deposition rate of up to
50 g dust m−2 yr−1 in theMediterranean Sea (Lawrence andNeff,
2009), the accumulated aerosol in this time period corresponds
to ∼2–3% of the annual dust deposition in this system. We
added 1.5mg L−1 of the collected aerosol (in triplicate) to
acid-cleaned 4.5 L transparent High-density polyethylene
Nalgene bottles containing either SML or SSL water (6.7–6.8mg
aerosol in total to each bottle). This addition is equivalent to
the concentration reported for the upper mixed layer (top 5m)
during a heavy dust storm (Herut et al., 2002, 2005; Rahav
et al., 2016b), and is similar to the amounts tested in other
studies from the SEMS (Ridame et al., 2011; Herut et al., 2016).
Samples were incubated in an outdoor pool with seawater flow-
through to maintain ambient seawater temperature. The bottles
used allowed the penetration of most of the light spectrum,
excluding UV light. Blank treatments of SML or SSL water
without an aerosol addition were also carried out in parallel. SSL
bottles were submerged to a depth of 1m in the pool by using
weights. Subsamples of seawater from each incubation bottle
were collected for Synechococcus abundance, pico-eukaryotes
abundance, nano-eukaryotic abundance, heterotrophic bacterial
abundance, primary production, and bacterial production
measurements at 0, 1.5, 5, 9, 17, 21, 26, and 44 h after the aerosol
addition.

Pico-Phytoplankton and Bacterial
Abundance
Water samples (1.8mL) were fixed with 50% glutaraldehyde
(6µl, Sigma-Aldrich G7651), frozen in liquid nitrogen and
stored at −80◦C until analyzed. Pico-phytoplankton abundance
(namely Synechococcus and autotrophic eukaryotes algae)
was determined using an Attune R© Acoustic Focusing Flow
Cytometer (Applied Biosystems) equipped with a syringe-based
fluidic system and 488 and 405-nm lasers at a flow rate of 100µL
min−1 (Bar-zeev and Rahav, 2015). For heterotrophic bacterial
abundance determination, subsamples (100µl) were separately
incubated at room temperature for 15min with the nucleic acid
stain SYTO9 (1:105 vol:vol) and then run at a low flow rate of
25µL min−1 (Vaulot and Marie, 1999). Low nucleic acid (LNA)
and HNA bacteria were differentiated by coupling their green
fluorescence and side-scatter (Lebaron et al., 2001; Talarmin et al.,
2011; Van Wambeke et al., 2011). For more details, see (Rahav
et al., 2016b).

Primary Production
Photosynthetic carbon fixation rates were estimated using the
14C incorporation method (Nielsen, 1952). For more details, see
(Rahav et al., 2016b).

Bacterial Production
Bacterial production was estimated using the [4,5-3H]-leucine
incorporation method (Simon et al., 1990). A conversion factor
of 3 kg C mol−1 leucine incorporated was used, assuming an

isotopic dilution of 2.0 (Simon and Azam, 1989). For more
details, see (Rahav et al., 2016b).

Dissolved Monosaccharides Concentration
SML and SSL samples (10ml) were filtered using 0.22 µm
polycarbonate membranes (Osmonics INC). The dissolved
monosaccharides’ (no hydrolysis) concentration was determined
using the 2,4,6-Tripyridyl-s-Triazine (TPTZ) reagent (Sigma-
Aldrich) method according to Myklestad et al. (1997).
All samples were analyzed using an Uvikon 9100/9400
spectrophotometer (SECOMAM).

GC/MS Analysis
Samples (200ml) were filtered using 0.22µm non-absorbing
membrane, followed by the extraction of dissolved n-alkanes
and α-olefins from the water samples by liquid:liquid extraction,
using 3 × 30ml n-hexane extraction repeats, followed by 3 ×

30 ml dichloromethane. The organic extracts were combined,
concentrated to 1ml via rotary evaporation and dried by passing
through an MgSO4 column. Samples were analyzed using an
Agilent 6890 gas chromatograph coupled with a 5973 Agilent
mass spectrometer. Identification of the hydrocarbons was based
on ions analysis (alkane ions = 43, 57, 71... α-olefins = 41,
55, 69...) in addition to library matching (NIST 2) and external
standards R.T as described next. Quantification of the results was
achieved by using C8-C30 external standards of n-alkanes (Sigma-
Aldrich) and α-olefins (AccuStandard R©, Inc). Alkanes and α-
olefins adsorption to the membrane and to the experiment flasks
was lower than 10%, method quantitation level= 10 ng L−1.

Statistical Analyses
The different variables presented in the figures and tables
are averages and standard deviation (biological replicates,
n = 3). Changes in primary production, bacterial production,
the abundance of Synechococcus, pico/nano-eukaryotes, and
heterotrophic bacteria throughout the experiments (0–44 h)
were evaluated using a one-way analysis of variance (ANOVA),
followed by a Fisher LSD multiple comparison post hoc-test with
a confidence level of 95% (α = 0.05). Prior analyses, the ANOVA
assumptions were examined. The statistical analyses were carried
out using the XLSTAT software.

RESULTS

Initial SML and SSL Characteristics Prior
to Aerosol Addition
The SML at the study site was characterized by a higher
concentration of n-alkanes (52.5 ng L−1) and olefins, also
termed “1-alkenes” (1.12mg L−1), relative to the SSL (46.4 ng
n-alkanes L−1 and 0.70mg α-olefins L−1). Similarly, the SML
contained a higher concentration of monosaccharides relative
to the SSL, 890µg L−1 vs. 613µg L−1, respectively (Table 1).
The total α-olefins (1-alkenes) concentration in the SML was
more than 3 orders of magnitude higher than the alkanes and
monosaccharides, suggesting α-olefins were a dominant source
of carbon (Table 1).
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TABLE 1 | Dissolved 6 [alkanes(C8−C30)], 6 [α-olefins(C11−C32)] and monosaccharides in the SML and SSL, prior (T0) and 44 h after (T44) aerosol addition.

Variable Unit Prior aerosol addition (0 h) End of incubations (44 h)

SML SSL EF SML SSL EF

Total n-alkanes (C8-C30) ng L−1 52.5 46.4 1.13 23.7 n.d >2.37

Total α olefins (C8-C30) mg L−1 1.12 0.70 1.60 0.01 n.d >1000

Monosaccharides µg L−1 890 613 1.45 472 190 2.48

EF, enrichment factor (SML: SSL ratio).

n.d, not detected- below the quantitation level of 10 ng L−1.

Synechococcus dominated the picophytoplankton in the SML
and SSL (∼2.3× 104 cells ml−1), whereas in both layers the pico-
eukaryotes abundance was lower by an order of magnitude (1.0
× 103 to 1.5 × 103 cells ml−1) (Table 2). Heterotrophic bacterial
abundance was similar in both water layers (∼1.5 × 105 cells
ml−1), although high nucleic acid bacteria (HNA) accounted for
7% at the SML and ∼15% at the SSL. Primary production (PP)
was overall low, with 60% higher rates measured at the SML (0.08
± 0.00µg C L−1 h−1) compared to the SSL (0.05± 0.00µg C L−1

h−1) (Table 2). Similarly, bacterial production (BP) was ∼50%
higher at the SML (0.06 ± 0.00µg C L−1 h−1) than at the SSL
(0.04± 0.01µg C L−1 h−1) (Table 2). Nevertheless, these activity
rates resulted in a similar BP:PP ratio (∼0.75:1), suggesting a
weak dominance of autotrophic metabolism (over heterotrophic
metabolism) in both water layers.

Aerosol Characteristics
The aerosol sample used in our experiment was collected during
an exceptional dust storm event that arrived from the northeast
rather than the more common southwest (Saharan desert)
sources (Supplementary Figure S1). Based on the aluminum
(Al) concentration in the collected aerosol, the Al settling
velocity, and the weight of the particles collected, we calculated
a dry deposition concentration of 1.05mg L−1 at the upper 5m
mixed layer as reported in Rahav et al. (2016b). While such
an episodic and strong deposition event is considered high in
this system (reviewed in Guieu et al., 2014), it is well in the
range previously reported for the Mediterranean Sea (e.g., Herut
et al., 2002; Ridame et al., 2011, 2013) and similar to additions
tested in previous microcosm bioassays (Herut et al., 2005;
Rahav et al., 2016c). The micro and macro solubilized nutrients
concentrations that were leached off the added aerosol sample are
detailed in Rahav et al. (2016b) and discussed below.

Bacterioplankton Response to Aerosol
Addition
Following aerosol addition, the abundances of Synechococcus
(ranging from ∼2 × 104 cells ml−1 to ∼7 × 104 cells ml−1) and
nano-eukaryote (ranging from 250 cells ml−1 to 1200 cells ml−1)
in both layer samples were similar to the unamended treatments
(Figure 1) and thus they were not significantly affected by the
addition of the aerosols. Pico-eukaryote abundance following
the aerosol addition was similar to the unamended control
during the first 21 h in both layers (∼1000–2000 cells ml−1, P
> 0.05), thereafter increased ∼2-fold relative to the unamended
controls in the SML microcosms only (5000 cells ml−1, P <

0.01) (Figures 1B,E,Table 3). Heterotrophic bacterial abundance
increased ∼2-fold in the SML and SSL following the addition of
aerosol (from ∼1.5 × 105 cells ml−1 to ∼4 × 105 cells ml−1,
P < 0.05), with more profound differences between the treated
versus the non-treated sample for the SML (Figures 2A,C).
These differences were also apparent in the increased relative
abundance of HNA over LNA bacteria, with 2-fold higher HNA
bacteria (P = 0.02) recorded following the aerosol addition at
both the SML and the SSL (Figure 2, Table 3). While the changes
in microorganism abundance were relatively modest (Figures 1,
2), more profound differences were recorded for both PP and
BP rates following the aerosol addition (Figure 3, Table 3). PP
rates increased by ∼2-fold relative to the untreated control (P
< 0.05) 17 h post aerosol addition in both the SML and SSL.
This enhancement lasted for the experiment’s entire duration;
44 h post addition (Figures 3A,D, Table 3). Simultaneously, BP
exhibited a stronger response to the aerosol addition, ∼3-fold
higher rates recorded at the SSL (increasing from 0.04µg C
L−1 h−1 to 0.11µg C L−1 h−1, P < 0.05) and up to a ∼7-fold
increase at the SML (from 0.06µg C L−1 h−1 to 0.44µg C L−1

h−1, P < 0.05) relative to the unamended control that showed
no change (Figures 3B,E, Table 3). These differences resulted in
a higher BP:PP ratio at both water layers following the aerosol
addition relative to the unamended controls (Figure 3, P < 0.05).
Enrichment factors (EF) were calculated as the ratio between the
abundance or the activity in the SML divided by those measured
in the SSL (0–44 h). The EF-values for Synechococcus and nano-
eukaryotes were similar in both the unamended and the aerosol
addition bioassays (an insignificant change from a 1:1 ratio, P
> 0.05). In contrast, pico-eukaryotes abundance, heterotrophic
bacterial abundance, PP, and BP all exhibited significant higher
EF-values (>1) following aerosol addition (Figure 4, P < 0.05).

Dissolved Hydrocarbons Post Aerosol
Addition
Overall, the dissolved n-alkane concentration decreased
substantially with time (T0 vs. T44 h) in the SML and to a lower
level in the SSL following aerosol additions (Table 1). n-alkanes
at the SML were reduced by ∼50% at the conclusion of the
experiment (reaching 23.7 ng L−1), whereas a decrease to below
detection limit was observed in the SSL (Table 1). α-olefins,
which were the major carbohydrate found, were reduced by
two orders of magnitude in the SML and to below detection
limit in the SSL at T44 h (Table 1). Finally, monosaccharides
decreased by ∼50% at the SML (472µg L−1) and by ∼66% at
the SSL (190µg L−1) (Table 1). Based on the BP rates measured
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TABLE 2 | Initial biological characteristics of the SML and SSL prior aerosol addition (T0).

Water layer BP (µg C L−1 h−1) PP (µg C L−1 h−1) Total bacteria (cells ml−1) Synechococcus (cells ml−1) pico-eukaryotes (cells ml−1)

SML 0.06 ± 0.00 0.08 ± 0.00 160086 22653 1063

SSL 0.04 ± 0.01 0.05 ± 0.00 151870 24290 1550

EF 1.50 1.60 1.05 0.93 0.68

EF, enrichment factor (SML:SSL ratio).

FIGURE 1 | The temporal dynamics of Synechococcus (A,D), pico-eukaryotes (B,E) and nano-eukaryotes (C,F) in the SML (top panels) and SSL (bottom panels)

microcosms. Experiments including aerosol additions (1.5mg L−1) are presented in gray, control experiments (containing no additions) are colored white. Values are

the averages and standard deviation from 3 biological replicates (n = 3).

TABLE 3 | Summary of the net change (%) observed following aerosol addition (1.5mg L−1) in the SML and the SSL microcosms relative to unamended

controls.

Water sample Time from aerosol addition (h) BP PP LNA HNA Synechococcus pico-eukaryotes nano-eukaryotes

SML 1.5 126.8 12.2 1.7 87.6 0.6 18.4 3.6

5 142.6 n.a 49.0 85.5 −1.3 1.1 −12.7

9 108.9 n.a 16.8 49.2 −5.7 7.3 −15.6

17 514.6 83.5 −6.8 36.2 −8.0 −7.3 −4.1

21 643.1 48.6 7.4 40.9 −9.5 13.8 −2.1

26 757.5 n.a 9.7 14.7 0.0 58.1 21.9

44 503.3 83.1 20.7 101.8 3.7 87.7 16.0

SSL 1.5 67.3 2.0 −0.1 27.2 −7.8 25.4 −5.7

5 51.3 n.a 12.6 23.2 −1.3 23.6 −0.5

9 93.4 n.a 6.5 23.2 −1.9 4.2 −1.1

17 131.4 72.5 −1.5 49.8 −1.1 8.4 7.7

21 118.6 50.3 −1.0 31.1 2.2 −12.6 5.2

26 174.7 n.a 5.6 38.8 −0.8 17.8 −1.1

44 216.3 60.1 6.8 96.6 1.0 17.7 −3.4

n.a, not available.
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FIGURE 2 | The temporal dynamics of total heterotrophic bacteria (A,C) and the percentage of HNA from the total bacteria (B,D) in the SML (A,B) and SSL

(C,D) layers. Experiments including aerosol additions (1.5mg L−1) are presented in gray, control experiments (containing no additions) are colored white. Values are

the averages and standard deviation from 3 biological replicates (n = 3).

in the control treatments and the C-rich monosaccharides
concentration at the end of the experiment (T44), bacterial
activity can account for 2.7 and 2.2 µg C L−1 in the SML and
SSL unamended microcosms, respectively. Simultaneously,
the total consumption of [4,5-3H]-leucine (T44) in the
SSL+aerosol can account for 5.4µg C L−1 and up to 15.7µg
C L−1 in the SML+aerosol treatments. The concentration
(µg/Kg) of hydrocarbons delivered by the aerosol particles
only was negligible relative to the ambient concentration in the
water.

DISCUSSION

Several studies have examined the effect of dust and aerosols
on the marine bacterioplankton biomass and/or activity using
model simulations (e.g., Mahowald, 2007; Guieu et al., 2014;
Chien et al., 2016) and microcosm/mesocosm bioassays (e.g.,
Herut et al., 2005; Paytan et al., 2009; Marañón et al., 2010;
Guieu et al., 2010; Romero et al., 2011; Rahav et al., 2016a). To

the best of our knowledge, none of these studies distinguished
between the responses triggered by aerosol additions to the
SML and those triggered by such additions to the SSL. In fact,
these studies mostly considered the SSL (referred as “surface
water” or “surface mixed layer”). Since the SML is the uppermost
water layer that interacts with the atmosphere and to which
atmospheric particles are directly deposited, its bacteria and
plankton (neuston) inhabitants may respond differently than the
SSL populations (Cunliffe et al., 2010; Vila-costa et al., 2013).
Here we experimentally tested the response of these two water
layers to natural dry deposition aerosol addition and compared
the responses of the bacterioplankton communities in these two
layers at the SEMS.

SML Organic Enrichment
Our measurements demonstrate moderate, yet significant (P >

0.05), differences in saccharides and hydrocarbons concentration
between the SML and the SSL prior to the aerosol addition,
resulting in EF >1 (Table 1). Thus, the SML was enriched in
dissolved organic carbon, potentially bioavailable for bacterial
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FIGURE 3 | Temporal dynamics of primary production (A,D), bacterial production (B,E) and the BP: PP ratio (C,F) in the SML (A–C) and SSL (D–F) layers.

Experiments including aerosol additions (1.5mg L−1) are presented in gray, control experiments (containing no additions) are colored white. Values are the averages

and standard deviation from 3 biological replicates (n = 3).

FIGURE 4 | Box-plot distribution of the abundance or activity

enrichment factors (SML: SSL ratio). Central line indicates median value.

Interquartile box plot of abundance and activity enrichment factors: bottom

and top horizontal lines indicate the 10 and 90th percentiles respectively. *P <

0.05; **P < 0.01.

consumption, as observed in other marine environments
(Cincinelli et al., 2001; Guigue et al., 2011; Santos et al., 2011). The
major carbon source found in both layers was α-olefins. These

hydrocarbons may originate from oil contamination (Riley et al.,
1982), phytoplankton (Youngblood and Blumer, 1973) or even
aerosol particles downwind to algae bloom (Ovadnevaite et al.,
2011). It is possible that in the proximity to Haifa Bay industrial
and rural area, aerosol particles, or water runoff could enrich the
water with these hydrocarbons. Yet no other sign of such events
was observed.

SML Bacterioplankton Enrichment
Heterotrophic bacterial abundances prior to the aerosol addition
were similar in the SML and in the underlying SSL water
layer (EF ∼1, Table 2). These results agree with several studies
(Cunliffe et al., 2009, 2010), yet oppose others, which show
significantly higher bacterial abundances in the SML (e.g.,
MacIntyre, 1974; Hardy, 1982). Picophytoplankton abundance at
the SML was lower than at the SSL, especially the abundance
of pico-eukaryotes (EF < 1). Although studies reported an
elevated phyto-neuston abundance relative to the SSL (e.g.,
Södergren, 1993; Guitart et al., 2013), it is apparent that several
eukaryotic phytoplankton species, such as Chaetoceros, are less
abundant in the SML (Hardy et al., 1984) or are differently
effected by high light irradiation levels (Ruiz-González et al.,
2012). A low autotrophic abundance in the SML might be
explained by the intense radiation levels at this layer (particularly
UV), which may cause photo-damage to the cells, especially in
environments such as the SEMS in summer where radiation
levels may reach >1000µmol quanta m−2 s−1 (Dishon et al.,
2012).
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Activity in the SML and SSL
PP rates were higher at the SML relative to the SSL prior to
and after the aerosol addition (Table 3, Figure 3). In contrast, BP
rates were similar in both SML and SSL unamended microcosms
and were elevated in both layers following aerosol additions,
with a stronger response in the SML+aerosol microcosm. These
results reflect higher cell-specific activity (production per cell)
in the neuston communities that inhabit the SML relative
to the bacterioplankton in the SSL. Relative to the very low
concentration of inorganic nutrients characterizing this study
area (Azov, 1986; Krom et al., 1991; Yacobi et al., 1995; Raveh
et al., 2015), the addition of aerosol leached nutrients (as reported
for this aerosol in Rahav et al. (2016b) would result in nearly
doubling the levels of nitrate+nitrite (N, ∼550 nM) and in
a small increase in phosphorus concentration (P, ∼12 nM).
Assuming bacteria in the SEMS as P limited (Krom et al.,
2010) and a 10–20 fg C per bacterial cell (Simon and Azam,
1989), the addition of P from the aerosol tested here (using a
106:1 Redfield C:P ratio), could explain an increase in bacterial
abundance of up to ∼1 × 106 cells−1 mL−1, which is one
order of magnitude higher than that measured for both the
SML and SSL (net change of ∼1 × 105 cells−1 mL−1). It is
possible that a great fraction of the added phosphorous was
consumed by bacteria cells to fulfill their cellular metabolic needs
rather than for growth/cell devision. This is also examplified
in the increase in BP rates and the increase in %HNA bacteria
following aerosol addition but not in the overall abundance of
bacteria (Figures 2, 3). It may also suggest that the added P was
taken by other compartments within the food-web (Thingstad
et al., 2005; Pitta et al., 2016), or that P is not the limiting
nutirent for bacterial activity as recently suggested (Tanaka et al.,
2011; Rahav et al., 2016c). Alternativly, phosphorous might have
been utilized faster by other microorganisms and transferred
through the microbial food web directly to higher trophic levels
(e.g., Thingstad et al., 2005), or that heterotrophic bacteria are
not primarily limited by this element (e.g., Tanaka et al., 2011;
Rahav et al., 2016c). Autotrophic microbes did not exhibit any
significant increase in biomass, yet were more active as derived
from the elevated PP rate (Figures 2, 3). Further, although
relatively higher concentrations of hydrocarbons and saccharides
were measured at the SML prior to the aerosol addition (as
compared to the SSL), only slightly elevated BP or PP rates were
recorded at the SML. Thus, the different carbon concentrations
alone cannot explain the elevated BP and PP rates following the
aerosol addition. These results are in agreement with a recent
study performed in the same area showing amoderate increase in
BP rates following the addition of glucose as a single amendment,
while a significant enhancement in BP was reached after the
addition of glucose, nitrogen and phosphate simultaneously
(Rahav et al., 2016c). In addition to the aerosol derived N and
P input, other micronutrients from the aerosols may also be
limiting factors for microbial activity (e.g., Paytan et al., 2009).
Tovar-sánchez et al. (2014) showed that Fe originating from
aerosol particles was found to be unevenly distributed between
the SML and SSL following a dust storm event. Thus, when
considering the results described here and the work presented by
Tovar-sánchez and collegues, we assume that aerosol depositions

may trigger different impacts in these distinct layers. It is also
likely that a high concentration of carbon, along with other
aerosol-derived nutrients such as N and P or Fe that are added
to a nutrient-poor aquatic system such as the SEMS, may not
only alter the total microbial production, but also elevate the
activity of specific groups in the SML. The difference in microbial
production rates between the SML and SSL measured here
are in agreement with a few studies that showed an equal or
higher microbial activity in the SML relative to the SSL (e.g.,
Kuznetsova and Lee, 2001; Obernosterer et al., 2005), yet opposes
other studies (Stolle et al., 2009; Santos et al., 2011; Sarmento
et al., 2015). It is well-known that diverse bacterial groups have
different sensitivities to UV radiation (UVR). SAR11 activity,
for example, is known to be inhibited by high UVR, whereas
Gammaproteobacteria and Bacteroidetes show UVR resistance
(Alonso-Sáez et al., 2007; Santos et al., 2011). Hence, it is likely
that the unique community in the SML in the SEMS is well
adapted to the high-light conditions in this environment and can
take advantage of the higher carbon and nutrients concentration
in the SML, thus grow faster than the SSL microbial communities
despite the high radiation. We assume that the bulk microbial
activity rate depends on the bacterial species relative abundance,
their adaption to the microenvironment and the availability of
nutrients in the SML and SSL. The major reduction in dissolved
n-alkanes and α-olefins, measured 44 h after the aerosol addition
in the SSL and SML, may be attributed to either heterotrophic
consumption or adsorption by aerosol particles. So far only
a few bacterial strains isolated from polluted aquatic habitats
show high uptake rates of α-olefins or alkanes on timescales
similar to those examined here (Whyte et al., 1998). Thus, we
estimate that in addition to possible heterotrophic utilization
of these carbons, the major reduction in soluble alkanes and
α-olefins concentration was a result of adsorption to aerosol
particles.

Carbons Adsorption to Aerosol Particles
Contrary to alkanes and α-olefins for which concentrations
were almost completely reduced following aerosol amendment
(T0 vs. T44 h), monosaccharides decreased by only ∼50–
60% throughout the experiment’s duration (Table 1). The
monosaccharides’ consumption (after 44 h) was almost the
same in the SML and the SSL following aerosol additions
(∼420µg L−1), although different initial and end concentrations
were recorded in both water layers (Table 1). Monosaccharides
are considered as the energetically-favored carbon sources
for heterotrophic bacterial metabolism (Kirchman, 2012), as
opposed to alkanes and α-olefins, which can be utilized only
by a few specialized groups (Yakimov et al., 2007; Sevilla et al.,
2015). Yet, based on the total leucine C incorporation during
the experiment (derived from the BP measurements), less than
10% of the monosaccharides’ reduction could be attributed
to bacterial consumption in both water layers. We therefore
assume that the physical adsorption of saccharides by the
aerosol particles was more significant, and accounted for the
remaining monosaccharides reduction. Relative to alkanes and
α-olefins, monosaccharides are more hydrophilic, we assume
that as a result, these saccharides show a reduced adsorption
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rate to the surface of the aerosol particles (“preferring” the
water phase). Thus, unlike alkanes and α-olefins that are more
hydrophobic andwere cleared from the soluble fraction following
aerosol addition (primarily via adsorption), monosaccharides
showed only a low reduction in concentration in the soluble
fraction. Considering the abiotic removal via adsorption onto
dust particles, a dust storm event such as the one examined
here (September 2015), could substantially change the carbons
availability to heterotrophic bacteria in the upper water layer and
thus shift the PP to BP ratio from being “autotrophic-dominated”
to “heterotrophic dominated.” Moreover, since considerable
amounts of dust and aerosol are usually deposited in the SEMS
(Herut et al., 1999, 2002), a chronic adsorption of various
carbon substances to aerosol particles and their transfer down
the water column may be a mechanism to transfer carbon
to the deep water. The different types of carbon containing
compounds (polar and hydrophobic) that were possibly adsorbed
by the aerosol particles could later be leached off the particles
at greater depths such as the deep chlorophyll maxima (usually
100–150m in the SEMS, Kress et al., 2014) or even at the aphotic
layer, thereby contributing to deep-water heterotrophicmicrobial
activity. This adsorption may depend on aerosol concentration,
composition, and timing of the deposition, and may thus have
significant implications on the microbial loop. This mechanism
may contribute to the relatively highmetabolic activity of bacteria
in the deep waters of the Mediterranean Sea attributed to the
relatively warm conditions of this system (Luna et al., 2012).
Further work should examine this mechanism of carbon transfer
to the aphotic layers, as well as its availability to the subsurface
microbial communities in the SEMS.

CONCLUSIONS

We suggest that one of the major differences between the SML
and SSL is the higher SML bacterioneuston activity rates that
most probably resulted in the higher carbon utilization rate
observed. It is possible that in this experiment, the consumption
rate of monosaccharides differs between the SML and the SSL,
although the same amount was consumed at the experiment end.
Vila-costa et al. (2013), who studied freshwater SML’s bacteria
and archaea communities following two Saharan dust storms,
reported that the abundance of these groups did not change
significantly following the dust storms. This finding is also
supported by other studies in the Mediterranean (e.g., Tovar-
sánchez et al., 2014). Yet, Vila Costa’s group reported that
the composition of these groups was altered following aerosol
introduction, resulting in a community shift (Vila-costa et al.,
2013). In this study however, we did not characterize bacterial
diversity (using molecular approaches such as 16S rRNA or 18S

rRNA) and thus we cannot determine whether community shifts
occurred following aerosol additions. Nevertheless, the increase
in bacterial activity in the SML following aerosol addition and
the relative increase in HNA bacterial abundance (Table 3), may
be an indication of the presence of bacterioneuston that are
specifically adapted to take advantage of the constituents supplied
by aerosols.

This study demonstrates the opportunistic character of the
bacterioneuston community once nutrient-carrying airborne
particles are introduced to the SML. Further, studies of the
seasonal changes in the biodiversity and physiology of these
communities in relation to atmospheric deposition from different
sources are needed. Finally, the nature and dynamics of nutrients,
metals (and microorganisms) exchange between the SML and
SSL is currently unknown and warrants more study. In addition
to carbon utilization, physical adsorption of these molecules by
the aerosol particles may deliver carbon from the surface into
deeper water, from the enriched SML to more oligotrophic layers
of the sea.
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