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This article describes the formation of reactive oxygen species as a result of the oxidation

of dissolved sulfide by Fe(III)-containing sediments suspended in oxygenated seawater

over the pH range 7.00 and 8.25. Sediment samples were obtained from across the

coastal littoral zone in South Carolina, US, at locations from the beach edge to the

forested edge of a Spartina dominated estuarine salt marsh and suspended in aerated

seawater. Reactive oxygen species (superoxide and hydrogen peroxide) production was

initiated in sediment suspensions by the addition of sodium bisulfide. The subsequent

loss of HS−, formation of Fe(II) (as indicated by Ferrozine), and superoxide and hydrogen

peroxide were monitored over time. The concentration of superoxide rose from the

baseline and then persisted at an apparent steady state concentration of ∼500 nM

at pH 8.25 and 200 nM at pH 7.00, respectively, until >97% hydrogen sulfide was

consumed. Measured superoxide was used to predict hydrogen peroxide yield based on

superoxide dismutation. Dismutation alone quantitatively predicted hydrogen peroxide

formation at pH 8.25 but over predicted hydrogen peroxide formation at pH 7 by a

factor of approximately 102. Experiments conducted with episodic spikes of added

hydrogen peroxide indicated rapid hydrogen peroxide consumption could account for its

apparent low instantaneous yield, presumably the result of its reaction with Fe(II) species,

polysulfides or bisulfite. All sediment samples were characterized for total Fe, Cu, Mn,

Ni, Co, and hydrous ferric oxide by acid extraction followed by mass spectrometric or

spectroscopic characterization. Sediments with the highest loadings of hydrous ferric

oxide were the only sediments that produced significant dissolved Fe(II) species or ROS

as a result of sulfide exposure.

Keywords: nanomaterial, ISCO, hydroxyl radical, mineralization, catalytic

INTRODUCTION

Reactive oxygen species (ROS, including superoxide, hydrogen peroxide, and hydroxyl radical)
are critical for enabling abiotic reaction paths between organic carbon and atmospheric oxygen
in surface waters. Abiotic ROS production in seawater is usually attributed to photoprocesses
involving the direct reduction of oxygen by photoexcited natural organic matter or by Fe(II)
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generated by photoinduced ligand to metal charge transfer (Zepp
et al., 1998; Powers andMiller, 2014). In the latter case, oxidizable
ligands can include a wide variety of organic molecules and
some ligands that are not ordinarily considered reductants,
including water and chloride (Sulzberger and Laubscher, 1995;
Sima and Makanova, 1997; Voelker et al., 1997). However,
there are other abiotic sources of reductive equivalents that
can reduce Fe(III) to Fe(II) without the need for sunlight;
including hydrogen sulfide, polysulfides, some forms of organic
carbon (e.g., polyhydroxylated phenols, organothiols etc.), and
superoxide (Poulton et al., 2004; Carey and Taillefert, 2005;
Larsen et al., 2006; Ma et al., 2006; Konovalov et al., 2007; Rickard
and Luther, 2007; Gartman et al., 2011; Johnston et al., 2011;
Chirita and Schlegel, 2012; Wan et al., 2014; Chirita and Schlegel,
2015; Havig et al., 2015; Peiffer et al., 2015; Duinea et al., 2016).
Our own interest in Fe(II) is associated with the tidally driven
efflux of anoxic porewater and this has led us to investigate
the potential for ROS formation as a consequence of the non-
photochemical reduction of Fe(III) by sulfide and other reduced
sulfur species (Figure 1).

The oxic portion of the biosphere is a metastable mixture
of different oxidation states of carbon, sulfur and oxygen
energetically poised from equilibrium by the net rate differentials
between photosynthetic carbon fixation and its metabolic or
abiotic oxidation (Watson et al., 1978). Sedimentary carbon
burial widens this gap by imposing a significant mass transfer
limitation on the rate of carbon transport between the
lithosphere, atmosphere and hydrosphere. It also restricts oxygen
transport, forcing microbial metabolism of buried material to
rely on alternative electron acceptors such as sulfate or carbon
dioxide. The anaerobic microbial metabolism of buried carbon
results in the reduction of ∼11.3–75 × 1012 moles of sulfate

FIGURE 1 | Microbial oxidation of buried carbon results in the

production of Fe(II), HS−, and ROS. Anaerobic microbial respiration is often

based on the use of Fe(III) or SO2−
4 as electron acceptors. When resulting Fe(II)

and HS− in porewater (present as ions or FeS) mix with the oxic portion of the

water column their abiotic oxidation leads to the formation of ROS along with

the regeneration of Fe(III) and SO2−
4 .

to sulfide per year in marine sediments and coastal marshes
(Bottrell and Newton, 2006; Luther et al., 2011; Bowles et al.,
2014). This range is compiled from recent efforts to reconcile
older sulfate reduction estimates based on spatial averaging
to more recent measurements correlating the global carbon
flux to sediment with sulfate reduction (see the recent work
by Bowles et al., 2014 and references therein). Based on the
more conservative estimate of 11.3 × 1012 moles of microbially
produced sulfide/yr, and applying accepted percentage outcomes
for the fate of sulfur in the sulfur cycle, approximately 2.3× 1012

moles of this is immobilized annually in the process of pyrite
burial. The remaining 9.0 × 1012 moles sulfide is reoxidized and
returned to the water column (primarily as sulfate). The direct
oxidation of sulfide by dioxygen is thermodynamically favorable
but kinetically unfavorable and requires the intercession of a
catalyst such as sedimentary Fe(III) or Mn(IV) (Equations 1–
9; Vazquez et al., 1989; Roden et al., 2004; Carey and Taillefert,
2005; Bottrell and Newton, 2006; Aller R. C. et al., 2010; Johnston
et al., 2011; Kubo et al., 2011; Luther et al., 2011; Lin et al., 2012;
Rickard, 2012; Bowles et al., 2014; Murphy et al., 2014).

Here we focus on the impact of sulfide oxidation on
the ferric/ferrous iron system given its relative geographical
importance, kinetic facility, and potential for generating ROS.
The non-photochemical interaction between the carbon, oxygen
and sulfur cycles as ROS sources is interesting because the
potential ROS generation capacity is so large, as indicated by
the number of moles of Fe(II) produced/yr globally by the
reoxidation of microbially produced hydrogen sulfide (vide
supra; Bottrell andNewton, 2006; Luther et al., 2011; Bowles et al.,
2014). The initial oxidation of sulfide and bisulfide by Fe(III)aq
or hydrous ferric oxides [represented collectively Fe(III)OHx

in the following equations] results in a mixture of Fe(II)-
containing species as summarized in Equations (1–6) (Rickard,
1975; Afonso and Stumm, 1992; Rickard et al., 1995; Luther
et al., 1996; Rickard and Luther, 1997, 2007; Poulton et al., 2004).
These may undergo rapid oxidation by dissolved O2, generating
the reactive oxygen species superoxide (O2·

−) and hydrogen
peroxide (H2O2) while regenerating Fe(III)OHx to continue
sulfide oxidation (Equations 5, 6). The fate of HS· is unknown,
although dimerization to produce H2S2 or reaction with excess
HS− to produce polysulfides are possible (Rickard et al., 1995;
Rickard and Luther, 2007; Wan et al., 2014). The self-reaction
of superoxide with its conjugate acid HOO·(Equation 8) is the
kinetically favored outcome for superoxide at typical seawater pH
unless there is a significant quantity of Fe(II) present, in which
case superoxide may be reduced directly by Fe(II) to yield Fe(III)
and hydrogen peroxide (Equation 9; Bielski, 1978; Bielski et al.,
1985).

Fe(III)OHx +HS− ⇆ Fe(III)S− +H2O (1)

Fe(III)S− ⇆ Fe(II)S· (2)

Fe(II)S· +H2O ⇆ Fe(II)+HS· +HO− (3)

Fe(II)+HS− ⇆ [Fe(II)SH]+ (4)

Fe(II)+O2 ⇆ Fe(III)(OH)x +O2·
− (5)

[Fe(II)SH]+ +O2 ⇆ Fe(III)(OH)x

+ O2 ·
−
+ Soxidized (6)
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O2 ·
−
+H2O ⇆ HOO×

+HO−(pKa = 4.83) (7)

O2 ·
−
+HOO· +H2O ⇆ H2O2 +HO−

+O2 (8)

O2 ·
− /HOO· + Fe(II)+H2O ⇆ H2O2

+HO−
+ Fe(III) (9)

If one conservatively assumes a 1:1 stoichiometry between
Fe(III) and HS− this implies a 1:1 conversion of the reductive
equivalents in sulfide to superoxide. Given the most significant
loss of superoxide is through formation of hydrogen peroxide
(Equations 7–9) this implies an annual global sulfide-driven
ROS formation potential of 9.0–4.5 × 1012 moles, depending on
whether the terminal ROS is superoxide or hydrogen peroxide
and based on the assumption that 75–90% HS− oxidation is
abiotic (Bottrell and Newton, 2006, and references therein).
There are relatively few estimates of annual photochemical ROS
production in surface waters to compare this to, but recent
work by Powers and Miller suggests the marine average is
between 2.9 and 10.9 × 1012 moles ROS in the top meter of
the oceans/yr (Powers and Miller, 2014). There are other sources
of sulfide not considered in this estimate such as volcanic and
hydrothermal vents so the overlap between potential sulfide-
driven ROS production and the estimated photochemical ROS
production demonstrated here is not quantitative (Field and
Sherrell, 2000; Moore et al., 2009a; Yucel et al., 2009; Gartman
et al., 2011). There are also other sources of Fe(II), such as
the direct reduction of Fe(III) by facultative anaerobes (Perry
et al., 1993; Coates et al., 1998; Dollhopf et al., 2000; Sekar
and DiChristina, 2014). Nonetheless, the estimated values are
intriguingly close, certainly within the same order of magnitude,
and that serves as justification for studying potential mechanisms
for sulfide-driven ROS generation.

Here we report an investigation of the sources and
mechanisms of ROS formation in sediment suspensions
containing dissolved hydrogen sulfide (and bisulfide) and
oxygen. These conditions are rarely observed in the open
water column but are often encountered at the sediment/water
interface. Specific examples include conditions associated with
bioturbation, undersea mudflow, dredging, wave-driven mixing,
and the trailing edges of the tidal prism (Luther et al., 1991;
Precht et al., 2004; Aller and Blair, 2006; Rickard and Luther,
2007; Moore et al., 2009b; Aller J. Y. et al., 2010; Aller R. C.
et al., 2010; Michaud et al., 2010; Santos et al., 2012). This
work is a continuation of an investigation of ROS generation
associated with the oxidation of reduced transition metals at
sediment surfaces (Burns et al., 2010, 2011a,b; Murphy et al.,
2014). It reports a test of the hypothesis that the conditions of
frequent episodic anoxia set the stage for pulsed ROS production
inmarine littoral zones, focusing on the roles of hydrogen sulfide,
ferric oxides, and pH on superoxide and hydrogen peroxide
production (Figure 1). The oxidation of reduced sulfur species
by dissolved Fe(III) and hydrous ferric oxides is much more
rapid than by more crystalline iron oxides such as goethite,
lepidocrite, or magnetite, and a central hypothesis tested by this
work was that hydrous ferric oxides would play a correspondingly
more important role in ROS formation than other ferric iron

sources (Kostka and Luther, 1995; Poulton et al., 2004; Ma et al.,
2006; Rickard and Luther, 2007; Cai et al., 2010; Luther, 2010;
Luther et al., 2011). Sediments were collected from across the
marine littoral zone in South Carolina, from the beach face to the
forested inland edge of a saline Spartina alterniflora-dominated
estuary. The addition of pulses of HS− to aerated suspensions
of collected sediments resulted in rapid Fe(II) production with
concomitant superoxide and hydrogen peroxide formation. After
a brief initiation phase superoxide essentially reached a steady
state in the tested systems while hydrogen peroxide was more
dynamic and sensitive to instantaneous concentration of Fe(II).
This pump-and-probe experimental strategy of interrogating
sediments for ROS production capacity was applied to all
sediments tested and marsh sediments were additionally exposed
to multiple sequential pulses of HS− and hydrogen peroxide.
All sediments tested consumed HS- but only marsh sediments
produced significant ROS.

MATERIALS AND METHODS

Reagents
Iron(III) chloride hexahydrate (99+%) and sodium sulfide
nonahydrate (99.99+% trace metal free), potassium superoxide
(98%), and chromatographic sand were purchased from Aldrich
and used without further purification. Hydrochloric acid
(ACS grade) was obtained from BDH. Horseradish peroxidase
and 2-methyl-6-(p-methoxyphenyl)-3,7-dihydroimidazo[1,2-
a]pyrazine-3-one (MCLA) were obtained from Sigma-Aldrich.
10-Acetyl-3,7-dihydroxyphenoxazine (Amplex Red, 97%)
was purchased from American Advanced Scientific and the
latter three reagents were stored in a desiccator at −5◦C.
Diethylenetriaminepentaacetic acid (98+%) and iron(II)
chloride anhydrous (99.5+%) were purchased from Alfa Aesar.
Iron(II) chloride was stored in a desiccator and all solutions were
kept under nitrogen in a glove box. Ferrozine iron reagent (98%)
was purchased from VWR. All other salts used as purchased
from (Fisher, 99%).

Sediment Characterization
Sediment samples were obtained from the top 2 cm of material
at five locations (Figure 2) across the marine littoral zone
of coastal South Carolina. The total organic carbon content
(TOC, in %) for each sample was determined by loss of mass
on ashing. Sample locations included (progressing toward the
ocean) the landward forested edge of a S. alterniflora dominated
salt marsh (33◦20′24.36′′N; 79◦12′9.23′′W, TOC 1.47%), the
bank of a dredged canal between the marsh and a barrier
island (33◦42′51.22′′N; 78◦55′17.79′′W, TOC 0.79%), the sand
dunes on the same barrier island (33◦42′0.74′′N; 78◦52′10.77′′W,
TOC 0.16%), the swash zone at the surf ’s edge (33◦42′0.69′′N;
78◦52′8.54′′W, TOC 0.01%), and at a depth of 1m below the
surf edge at low tide (33◦42′0.11′′N; 78◦52′7.28′′W. TOC 0.13%).
A control sample was prepared from commercially available
sand (Sigma Aldrich) that was triple washed with aqua regia
(60min exposure/wash) followed by a triple rinse with 18 M�

deionized water to purify the sample of solution accessible acid
soluble metals (TOC 0.00%). Samples were sieved, dried and
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FIGURE 2 | Sediment collection points and metal content (dry weight). Sediment surface samples were collected from several points across the South Carolina

marine littoral zone, including a coastal marsh (A), manmade intracoastal water way (B), a barrier island dune crest (C), the beach face or swash zone (D), and at a

depth of 1m below the low tide line (E). Samples were sieved (4mm) and air dried before analysis for metals or use in experiments. The control sample was

chromatographic sand treated with aqua regia and washed. Characterization for transition metals in all samples was achieved by acid extraction followed by

inductively coupled plasma mass spectrometry or ascorbate/HCl extraction followed by Ferrozine (amorphous Fe only).

analyzed for metal content using inductively coupled plasma
mass spectrometry. Fe was the dominant transition metal in all
samples. Samples were digested in alternately concentrated HCl
or ascorbic acid in accordance with the procedures detailed in
Kostka and Luther (1994) to determine total Fe (crystalline and
amorphous) and the hydrous ferric oxide fraction respectively
(Kostka and Luther, 1994). Approximately 25% of the total Fe
in sample A from the forested marsh edge was hydrous ferric
oxides, all other samples were less than 10% hydrous ferric oxides
(Figure 2).

Experimental Procedure
Sediment samples (1.00 wt%) were suspended in 500mL pH-
adjusted seawater (adjusted by dropwise addition of HCl; Luther,
2010; Murphy et al., 2014). Reactions took place in 1 L beakers
open to the atmosphere with suspension and aeration achieved
simultaneously with rapid vortex mixing, using procedures
published in earlier work (Murphy et al., 2014). All reactions and
sample handling took place in darkened laboratories. Minimal
lighting was provided from sources with 500 nm cutoff filters.
All samples and stock solutions were stored in light-tight,
blackened drawers until needed. After a 30min equilibration
period sufficient aqueous hydrogen sulfide was added to each
suspension to yield a concentration of 300µM. This level
was chosen because it represented a conservative midpoint
between the concentrations for HS− often reported at dynamic

oxic/anoxic interfaces in estuaries or bays (0–30µM) and anoxic
porewater (600–1000µM; Rozan et al., 2002; Taillefert et al.,
2002; Snyder et al., 2004; Carey and Taillefert, 2005; Lewis
et al., 2007). Aliquots of known volume were periodically
withdrawn for analysis of sulfide accessible Fe, HS−, and H2O2

over time (Stookey, 1970; Zhou et al., 1997; Simpson, 2001).
Aqueous sediment loading was 10.00 g L−1 of air dried, sieved
sediment, consistent with the low range of solid/liquid ratio (99%
porosity) observed in the top layers of many coastal surface
sediments (Aller J. Y. et al., 2010). Samples were removed from
the reactors and centrifuged on a Baxter Dade Immufuge II
centrifuge at 3225 rpm for 30 s to remove suspended solids
before subsequent spectroscopic assays. This basic experimental
design was varied by adding replicates that included episodically
spiked “refreshers” of hydrogen sulfide or hydrogen peroxide
to determine the effect of rapidly resupplying or depleting
Fe(II) on the system. Samples were withdrawn during the 30
min equilibration period prior to HS− addition to serve as
controls and quantify background Fe(II), superoxide or hydrogen
peroxide. Ferrozine-responsive Fe(II) was detected prior to HS−

addition in salt marsh suspensions (sterile and nonsterile) at a
concentration of ∼20µM and this was stable on the timescale of
the equilibration period. Fe(II) was below the method detection
limit in all other sediment suspensions during the equilibration
phase. Superoxide and hydrogen peroxide were observed at
concentrations of ∼10 nM or 500–800 nM, respectively, during
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the equilibrium phase in all sediment suspensions and these
concentrations were stable. The lattermeasurements included the
aqua regia washed sand control sediment so these measurements
were indicative of background. The stability of the background
hydrogen peroxide and superoxide in marsh sediment during
the equilibration phase indicated detected Fe(II) was stable
toward oxidation, presumably as a result of complexation by
humics (Anastacio et al., 2008; Catrouillet et al., 2014; Veverica
et al., 2016). Previously published work has demonstrated that
HS− is kinetically stable in sterile, trace-metal free solutions
over the time scale of these experiments and does not evolve
detectable levels of hydrogen peroxide (Luther, 2010; Murphy
et al., 2014). Experimental data reports t0 as equivalent to the
time of hydrogen sulfide addition for the sake of graphical
clarity.

Analytical
Iron(II) and sulfide measurement. Fe(II)aq and hydrogen
sulfide were monitored colorimetrically using the Ferrozine and
methylene blue methods respectively as previously reported
(Cline, 1969; Stookey, 1970; Burns et al., 2011a,b). Samples were
withdrawn from the reactors and added directly to developing
solutions (varied by analyte). Particulates were removed by
immediate centrifugation (3225 rpm; Dade Immufuge II).
Supernatant was removed by pipetting directly into a 96-
well glass microplate. Absorption spectra were recorded on a
Spectramax M5 plate reader.

Hydrogen peroxide measurements were episodic.
Slurry samples were withdrawn from reactors and
dispensed into precharged vials containing 0.01M
Diethylenetriaminepentaacetic acid adjusted to pH 7.4. Particles
were removed by immediate centrifugation and an aliquot of the
supernatant was transferred to a 96-well plate before subsequent
derivatization and spectroscopic analysis using the Amplex
Red technique (Zhou et al., 1997). Horseradish peroxidase was
dissolved in a 0.05M sodium phosphate buffer at pH = 7.4
and a 100µL aliquot was added to each sample, followed by
100µL of 10mM 10-acetyl-3,7-dihydroxyphenoxazine prepared
in dimethyl sulfoxide. The samples were incubated at room
temperature for 30min and then analyzed for development of the
indicator resorufin by fluorescence and absorbance spectroscopy
(Zhou et al., 1997). At least one full calibration curve was run
with each plate, for a minimum of 5 replicate calibration curves
per day of analysis. All glassware was cleaned in a muffle furnace
and acid washed in a 10% HCl/1 M oxalic acid mixture. After
rinsing with 18M� deionized water, glassware was handled and
stored as trace metal clean glassware to prevent inadvertent
oxidation of sulfide in the absence of added metals. Superoxide
was continuously measured by flow injection analysis (Waterville
Analytical) with the MCLA chemiluminescence technique (Rose
et al., 2008; Godrant et al., 2009). All initial flow rates (sample
and MCLA) were 2.5mL/min. The flow cell volume was 2.0mL
and the PMT integration time set to 0.200 s. Calibration was
performed daily against spectroscopically verified superoxide
stock solutions (UV absorbance at 240 nm) made up at pH 10
(NaOH) or higher.

Quality Assurance/Quality Control
Replicate blanks (n = 3) were obtained for all reagents. Blanks
were updated with preparation of fresh reagent solutions.
Reference standards were interrogated for peroxide analysis at
a frequency of 1 reference check/5 unknown determinations.
Peroxide reference standards were externally calibrated against
the optical absorbance of the concentrated stock at 254
nm. The detection limit for each method was defined by
the linear dynamic range of the calibration curves. All
experiments were run in triplicate. All experimental data
were reported as the mean of the triplicate experiments. All
error estimates were ± one standard deviation about the
mean.

FIGURE 3 | The effect of sediment slurries on sulfide oxidation.

Sediment suspensions (1.00 wt%) were made up in pH adjusted seawater.

Suspensions were maintained and aerated through rapid mixing. At time = 0 s

sufficient HS−
(aq)

was added to bring its solution concentration 300µM. HS−

was monitored for a minimum of 7200 s from zero. Results from pH 8.25

shown.

FIGURE 4 | Fe(II) evolution after HS− addition. The introduction of HS−
(aq)

to aerated sediment suspensions (1.00 wt%) seawater resulted in the

formation of Ferrozine-responsive Fe(II). The highest yields of Fe(II) were

obtained from sediments with high concentrations of hydrous ferric oxides.

Results from pH 8.25 shown.
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FIGURE 5 | Superoxide formation followed HS− addition. The addition of HS− to 1.00 wt% suspensions of marsh sediments was followed by a rapid increase in

superoxide at pH 7.00 and pH 8.25. The apparent stability of superoxide relative to its estimated half-life (max t1/2 ∼ 100 s) indicated continuous generation during

the experiment.

FIGURE 6 | Estimated cumulative superoxide production. The measured, instantaneous concentration of superoxide was used as input with Equation (11) to

solve for the total number of moles of superoxide generated over the course of the experiment at 7.00 and pH 8.25. The instantaneous concentration of superoxide

was lower at pH 7.00 than 8.25 but the cumulative production was higher, correlating with an increased loss of superoxide from dismutation at the lower pH and

consistent with Equation (8).

RESULTS AND DISCUSSION

Hydrogen sulfide was added to separate, aerated suspensions

of all sediments studied or a sediment-free control at pH 7.00,

7.50, 8.00, and 8.25. The systems were monitored for changes in

sulfide, Fe(II), superoxide, and hydrogen peroxide for 120 min

following sulfide addition. Sulfide consumption followed two

profiles; an extremely rapid decay (95+%) in the first 30 s with
a slow decay thereafter or an overall slow decay that in many
cases was not statistically different than the control (Figure 3).
Sediments from the marsh fell in the former category at all pHs
studied, whereas the sediments from the intracoastal waterway,
dune, or beach swash zone displayed the latter. Marsh sediments
were also the only samples to experience significant increases
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FIGURE 7 | Modeled vs. predicted hydrogen peroxide, pH 7.00. Modeled superoxide was used to predict hydrogen peroxide observed in sediment suspensions.

In marsh sediment suspensions at pH 7.00 the model over predicted hydrogen peroxide by approximately a factor of 100, indicating the presence of an unknown

hydrogen peroxide sink. Correlation between model and data shown in the insert.

in Fe(II) (as indicated by Ferrozine) over the timescale of the
experiments (Figure 4), obtaining a maximum Fe(II) of 45.0 ×

10−6 M very rapidly (<60 s) at pH 8.25. In contrast, intracoastal
waterway sediment yielded the second highest apparent Fe(II)
concentration of 7.3 × 10−6 M at ∼600 s. These results justified
focusing primarily on the marsh system. For marsh sediments
the instantaneous concentration of Fe(II) at a given time never
exceeded an amount corresponding to an Fe(II) yield above
15% of HS− consumed at the same time. Given that total iron
and hydrous ferric oxides were both in stoichiometric excess to
HS− in marsh sediment the low yield of Fe(II) was attributed
to competitive losses of HS− through formation of polysulfides
(Giggenbach, 1972; Hoffmann and Lim, 1979; Fukuto et al., 2012;
Cunha et al., 2016). The apparent half-life for Fe(II) was also
considerably slower than would be expected based on existing
Fe(II) oxidation models (e.g., over 1000 s; King et al., 1995;
Santana-Casiano et al., 2005; Trapp and Millero, 2007; Burns
et al., 2011a,b; Peiffer et al., 2015). These results can be explained
by two exclusivemodels of the system; one where Fe(II) oxidation
was slowed by the presence of a stabilizing ligand or one
where Fe(II) oxidation was kinetically facile and the measured
concentration was actually the product of simultaneous Fe(III)
reduction and Fe(II) oxidation. The two models were resolved by
examination of the concentration vs. time profiles for superoxide
(Figure 5) in marsh sediments. Both pH conditions experienced
a sudden increase in superoxide upon the addition of hydrogen
sulfide, indicating at least some of the total Fe(II) was available
for oxidation by dioxygen (Equation 5). The half-lives for
superoxide were calculated based on dismutation (Equation 8)
using the maximum observed superoxide as initial concentration
(Equation 10):

t½ =
1

k[O−

2 ]0
(10)

where at pH 7.00 k = 5.01 × 105 M−1s−1 and superoxide =

204 × 10−9 M and at pH 8.25 k = 1.78 × 104 M−1s−1 and
superoxide= 514× 10−9 M (conditional k-values obtained from
a comprehensive review by Bielski et al., 1985). T½ under these
conditions was 9.8 and 109.0 s at pH 7.00 and 8.25, respectively.
Given the apparent stability of superoxide in the experiments
(Figure 5) and the truism that dismutation sets the minimum
rate of superoxide decay in aqueous systems we concluded that
superoxide was continually replenished by the oxidation of Fe(II)
in both cases; i.e., the kinetically facile model was correct. This
meant the instantaneous concentration of Fe(II) at any point was
a function of the relative rates of parallel Fe(III) reduction by
reduced sulfur species (including HS-, polysulfides, bisulfite etc.)
and the parallel oxidation of Fe(II) by dioxygen, superoxide, and
hydrogen peroxide (Warneck and Ziajka, 1995; Lichtschlag et al.,
2013; Lohmayer et al., 2014; Wan et al., 2014; Cunha et al., 2016).
Since only a few of the required bimolecular rate constants are
known for these reactions and the concentration of the secondary
sulfide oxidation products was not measured it was not possible
to convert the instantaneous Fe(II) concentration to a direct
estimate of the ROS formation potential of the system.

The stoichiometry of the conversion of reductive equivalents
from HS− to hydrogen peroxide was investigated by
comparing the outcome of integrated superoxide production vs.
instantaneous hydrogen peroxide. The production of superoxide
between any two time points (time a and b) was estimated by
calculating the loss from time a to time b by dismutation and
adding the difference between the new concentration and that
observed (Equation 11):

O−
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2
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2
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FIGURE 8 | Modeled vs. predicted hydrogen peroxide, pH 8.25. Modeled superoxide was used to predict theoretical hydrogen peroxide observed in sediment

suspensions. Theoretical concentrations were compared to measured concentrations to test the conservatism of hydrogen peroxide. In marsh sediment suspensions

at pH 8.25 the model predicted measured hydrogen peroxide with an r2 = 0.992, indicating dismutation was the sink for superoxide. Better agreement between the

modeled and observed data (insert) suggested the unknown peroxide sink exhibited a strong pH dependence.

where k = the conditional pH dependent dismutation value,
t = the elapsed time between times a and b (0.5 s in this study)
and assuming measurement times were close enough so not all
superoxide was consumed between times a and b. The latter
assumption was supported by the half-life calculations (Equation
10, vide supra) that demonstrated superoxide had a half life
over an order of magnitude longer than the sampling interval
for the superoxide technique. The approach allowed the overall
estimation of the total moles of superoxide produced during the
experiment. The accumulated superoxide was summed over the
duration of the experiment (7200 s) and plotted against time
to obtain a nearly linear estimated net increase in superoxide
produced (r2 = 0.998 and 0.991 for pH 7.00 and 8.25 respectively,
Figure 6). Given that superoxide production came at the cost
of Fe(II) oxidation, the negatives of the slopes in Figure 6

were the rates of Fe(II) consumption at the two pHs and the
reaction was zero order in Fe(II). This was consistent with
the model of ferric and ferrous iron playing the role of a
kinetically saturated catalyst for HS− oxidation. The net loss of
Fe(II) in Figure 4 indicated that Fe(II)/Fe(III) cycling was not
perfectly efficient and is speculatively a result of Fe(III) removal
through precipitation. The stoichiometry of the process was
investigated by assuming all superoxide produced was consumed
by dismutation and comparing the measured hydrogen peroxide
yield to that predicted from dismutation (Figures 7, 8 for pH 7.00
and 8.25, respectively). At pH 7.00 superoxide was consumed
very rapidly with little hydrogen peroxide production and at pH
8.25 superoxide was converted nearly quantitatively to hydrogen
peroxide. The insert plot of hydrogen peroxide predicted vs.
measured in Figure 8 is notable for a slope of nearly 1. However,
thismodel was inadequate for predicting hydrogen peroxide yield

at pH 7 (Figure 7 and insert). The overall yields of hydrogen
peroxide based on HS− consumed were <0.3% at pH 7.00 and
∼1.6% at pH 8.25. Presumably this was a result of a pH dependent
reaction (or reactions) that consumed either superoxide or
hydrogen peroxide more effectively at the lower pH, such as the
reaction of hydrogen peroxide with bisulfite or Fe(II), or more
likely their reaction with an FeS species (Rush and Bielski, 1985;
Warneck and Ziajka, 1995; Chirita and Schlegel, 2012; Giel et al.,
2013; Theil et al., 2013; Duinea et al., 2016). It was also possible
that at the lower pH some hydrogen peroxide or superoxide was
consumed by reactions involving natural carbon in the sediments
or through the Fenton reaction (Bielski, 1978; Bielski et al., 1985;
Rush and Bielski, 1985; Deguillaume et al., 2005).

The effects of sequential reductant and oxidant additions
were measured in marsh sediments at pH 8.25. Additional
hydrogen sulfide or hydrogen peroxide additions occurred at
time = 1800, 3000, and 4500 s after the initiating hydrogen
sulfide pulse, with each addition sufficient to bring the system
to a nominal concentration of 300 × 10−6 M HS− or
experience a net increase of 10 × 10−6 M hydrogen peroxide.
Each additional HS− spike oxidized rapidly and the nominal
concentrations were only directly observed in sediment-free
controls. In sediment suspensions measured sulfide fell typically
by 95% within the first 30 s after addition. The concentration of
Fe(II) roughly followed the time profile of HS− over multiple
additions, indicating the sediments sustained their ability to
oxidize sulfide with very short reoxidation times (Figure 9).
The ROS response of this system was also monitored. The
sequential addition of HS− spikes to these samples resulted
in an apparent decrease in superoxide immediately after each
addition, however hydrogen peroxide tended to increase in

Frontiers in Marine Science | www.frontiersin.org 8 November 2016 | Volume 3 | Article 227

http://www.frontiersin.org/Marine_Science
http://www.frontiersin.org
http://www.frontiersin.org/Marine_Science/archive


Murphy et al. ROS from Sediments

FIGURE 9 | Sulfide spiked into sediments correlated with brief

reappearances of Fe(II). Multiple aliquots of sulfide were added to

sediments in the presence of oxygen. Sulfide was consumed rapidly in all

cases with the nominal concentration of 300 × 10−6 M at each spike not

detected. Dissolved Fe(II) increased slightly corresponding with each addition

but was reoxidized on a similar timescale to that of the initiating pulse (

indicates time of sulfide addition, pH 8.25, 1.00 wt% marsh mud shown).

FIGURE 10 | Hydrogen sulfide addition decreased instantaneous ROS

concentrations. The repeated addition of separate aliquots of hydrogen

sulfide resulted in initial declines in ROS followed by slow recovery to pre-spike

level. However, the system was robustly catalytic for ROS production overall

and the variance between the highest and lowest ROS concentrations was

generally less than a factor of 2 ( indicates time of sulfide addition, pH 8.25,

1.00 wt% marsh mud shown, each addition sufficient for a net 300 × 10−6 M

increase in sulfide).

concentration after the pulse while superoxide fell or plateaued
(Figure 10). Hydrogen peroxide did not rise to higher levels
than previously observed, indicating that consumption was
occurring simultaneously with production. Regardless of brief
changes in the relative slope of the time profile of superoxide
or hydrogen peroxide, the introduction of multiple HS− pulses
reduced the apparent plateau concentrations of superoxide by
∼25% and hydrogen peroxide by ∼50%. It is possible these
reductions were an outcome of the accumulation of partially
oxidized S species in the system such as S8, which coat sediment
surfaces and inhibit their ability to act as catalysts or directly
scavenge oxidants (Rickard et al., 1995; Rickard and Luther,
2007).

FIGURE 11 | Contrasting sequential additions of hydrogen peroxide

had no statistically significant effect on Fe(II) or HS−. Therefore,

hydrogen peroxide was not a source of feedback or reductive equivalents that

affected Fe(II) or the rate of HS− oxidation ( indicates time of peroxide

addition pH, 8.25, 1.00 wt% marsh mud shown, each addition sufficient for a

net 10 × 10−6 M increase in peroxide).

FIGURE 12 | Sequential hydrogen peroxide spikes were increasingly

stable. The initial hydrogen peroxide addition decayed rapidly while the latter

two were essentially stable additions, indicating that peroxide-consuming

reactions were still taking place at the time of first addition. ( indicates time of

peroxide addition pH, 8.25, 1.00wt% marsh mud shown, each addition

sufficient for a net 10 × 10−6 M increase in peroxide).

In contrast added hydrogen peroxide pulses did not have a
statistically significant effect on measured HS− or Fe(II) under
these conditions (Figure 11). However, superoxide appeared to
experience a (50–100) × 10−9 M increase after each addition
(Figure 12). The most interesting result from this experiment
was the changing slope of hydrogen peroxide post-spike; it was
evident that the initial spike was consumed rapidly while the
latter two appeared to demonstrate more of a step function-like
increase. Presumably this was due to consumption of oxidizable
sulfur species, at least on the time scale of this study, so that later
additions were more stable.

CONCLUSIONS

This work demonstrated the potential for the global sulfide
reoxidation flux to participate in ROS production in parallel to
more recognized photoproduction of ROS. Specifically addition
of hydrogen sulfide to oxic muds resulted in the rapid production
of Fe(II) species, superoxide and hydrogen peroxide. The
choice of hydrogen sulfide re-oxidation as an initial strategy to
parameterize non-photochemical ROS production was justifiable
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because the speciation and redox characteristics of the sulfur
cycle are well-established. It was particularly important that
sulfate is very soluble in seawater and that there are no naturally
occurring, known abiotic mechanisms for reducing sulfate to
hydrogen sulfide in oxygenated solutions. In contrast, although
the Fe cycle is well-studied, Fe(III) can be readily directly reduced
by organic carbon or some ROS in the water column and its
solubility is limited. These factors made it much more difficult
to analyze reported Fe fluxes and extrapolate the number of
reductive equivalents potentially transferred to O2.

The production of ROS was not quantitative and between
50 and 5% of the sulfide consumed appeared to contribute to
ROS production in this system (based on estimated superoxide
production and measured peroxide). These estimates are based
on the assumption hydrogen peroxide was conservative in this
system on the timescale of the experiment. Based on the sulfide
re-oxidation budget posited in the introduction this suggests
global HS− derived superoxide input on the order of 4.5–2.25
× 1012 moles/yr near the sediment/water column interface.
In environments where the oxic/anoxic mixing zone is very
near the sediment surface this implies an ROS production
intensity comparable to photoderived ROS production in surface
waters. Hydrous ferric oxides played the most significant role in
promoting ROS formation over short time scales. The time scale
of the experiments shown corresponds to previously measured
efflux of the anoxic portion tidal prism through estuarine muds
during the falling tide, suggesting that hydrous ferric oxides will

be important sources of ROS in those ecosystems. They are also
likely to be influential for ROS production in other episodic
events, such as bioturbation, storm-driven agitation, dredging
etc. It is notable that elevated levels of antioxidant enzymes are
frequently observed in biota at environmental compartments that
fall in this category, including hydrothermal vents (Bebianno
et al., 2005; Geszvain et al., 2012; Genard et al., 2013), cold
seeps (Bernhard and Bowser, 2008), and the surface sediments of
many coastal salt marshes (Abele et al., 1998a,b; Company et al.,
2006). These observations range from single-celled (planktonic)
to complex multicellular organisms (limpets, worms) and suggest
ROS may have an unexpected ecological importance even in
niches that are reliably aphotic because of depth.
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