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Heterotrophic bacterial abundance and production, dissolved free amino acid (DFAA) and

dissolved combined amino acid (DCAA) concentrations, and other microbial parameters

were determined for seawater samples collected at a fixed station (maximum water

depth, 56m) deployed on the Chukchi Sea Shelf, in the western Arctic Ocean, during

a 16-day period in September 2013. During the investigation period, the sampling

station experienced strong winds and a subsequent phytoplankton bloom, which was

thought to be triggered by enhanced vertical mixing and upward nutrient fluxes. In this

study, we investigated whether bacterial and dissolved amino acid parameters changed

in response to these physical and biogeochemical events. Bacterial abundance and

production in the upper layer increased with increasing chlorophyll a concentration,

despite a concomitant decrease in seawater temperature from 3.2 to 1.5◦C. The

percentage of bacteria with high nucleic acid content during the bloom was significantly

higher than that during the prebloom period. The ratio of the depth-integrated (0–20m)

bacterial production to primary production differed little between the prebloom and

bloom period, with an overall average value of 0.14 ± 0.03 (± standard deviation,

n = 8). DFAA and DCAA concentrations varied over a limited range throughout the

investigation, indicating that the supply and consumption of labile dissolved amino acids

were balanced. These results indicate that there was a tightly coupled, large flow of

organic carbon from primary producers to heterotrophic bacteria during the fall bloom.

Our data also revealed that bacterial production and abundance were high in the bottom

nepheloid (low transmittance) layer during strong wind events, which was associated

with sediment resuspension due to turbulence near the seafloor. The impacts of fall

wind events, which are predicted to become more prominent with the extension of the

ice-free period, on bacterial processes and the dynamics of organic matter in the Chukchi

Sea Shelf could have far-reaching influences on biogeochemical cycles and ecosystem

dynamics in broader regions of the Arctic Ocean.
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INTRODUCTION

The Arctic Ocean is highly vulnerable to climate change (Hoegh-
Guldberg and Bruno, 2010; Wassmann et al., 2011), with sea-ice
reduction becoming increasingly evident (Stroeve et al., 2007;
Kwok et al., 2009). Sea-ice reduction allows more sunlight to
penetrate into the water column, which is thought to enhance
primary production in the Arctic Ocean (Arrigo and van Dijken,
2011). Recent data have indicated that the Arctic regions are now
developing a fall phytoplankton bloom, indicating a shift in the
pelagic ecosystem from a polar mode (a single annual bloom)
to a temperate mode (two blooms in spring and fall) (Ardyna
et al., 2014). The fall bloom is associated with delayed freeze-up
and increased exposure of the sea surface to wind stress, which
promotes vertical mixing and nutrient replenishment to the sun-
lit layer (Rainville et al., 2011; Ardyna et al., 2014). However,
there are significant gaps in our understanding of the regulation
of primary production and its effects on the Arctic regions,
particularly in regard to how fall storms affect the magnitude
and patterns of biogeochemical fluxes. This lack of knowledge
severely hampers our ability to predict future changes in Arctic
ecosystems.

To examine the effects of fall storms on the biogeochemistry
of the Chukchi Sea Shelf, a time series survey was conducted on
board the R/V “Mirai” (MR13–06 cruise) over a period of 16
days at a sampling station (water depth, 56m) deployed on the
Chukchi Sea Shelf (fixed-point observation [FPO]; Kawaguchi
et al., 2015; Nishino et al., 2015). As previously reported, the FPO
station experienced strong wind events, with the most prominent
event induced by a high-pressure system over the East Siberian
Sea (Inoue et al., 2015), and a subsequent phytoplankton bloom
during the investigation (Nishino et al., 2015). This provided
the first field evidence of the initiation of a fall bloom following
storm events in the Arctic shelf. Data on the hydrography,
turbulence, and nutrient distribution indicated that the bloom
was triggered by enhanced vertical mixing and upward nutrient
fluxes (Nishino et al., 2015). Furthermore, the strong wind events
were accompanied by enhanced currents in the deeper layer and
turbulent mixing near the seafloor (Kawaguchi et al., 2015).

As part of the FPO project, in the present study, we examined
how bacteria responded to the storm-induced bloom and other
changes in environmental conditions. Heterotrophic bacteria are
the major consumer of dissolved organic matter (DOM) and
play an important role in regulating bioelement fluxes in oceanic
environments (Azam, 1998). Early studies have suggested that
bacterial activity is strongly suppressed by low water temperature
in polar regions (Pomeroy and Deibel, 1986). More recent data
indicate that the bacterial production to primary production ratio
(BP:PP ratio) has a median value of 0.04 in Arctic waters, which
is lower than the general value of 0.1 obtained for lower latitude
oceans (Kirchman et al., 2009b). This implies that the fraction of
primary production that passes through DOM-bacteria coupling
is lower in colder than warmer oceanic regions. The uncoupling
between DOM production and consumption may allow DOM
to be exported to the oligotrophic basin, which, if proven to be

Abbreviations: FPO, fixed-point observation.

the case, has important biogeochemical implications (Davis and
Benner, 2007). However, other studies have cast doubt on the
low-temperature suppression hypothesis, reporting high BP:PP
ratios (>0.2, Rich et al., 1997; Kirchman et al., 2009a) and high
metabolic activities of bacteria (Yager et al., 2001; Alonso-Sáez
et al., 2014; Børsheim and Drinkwater, 2014) even at near- or
sub-zero temperatures in Arctic waters. These results suggest that
either low DOM supply (Kirchman et al., 2009b), high mortality
(Bird and Karl, 1999; Brum et al., 2016), or both, rather than
low temperature per se, limit bacterial production, although the
effects of temperature and other factors on the BP:PP ratio and
bacteria-DOM coupling on Arctic shelves remain ambiguous.

We tested two opposing hypotheses. Hypothesis 1 was that
bacteria respond to enhanced DOM production during the
fall bloom, leading to an increase in bacterial production with
the development of the bloom. Hypothesis 2 was that low
temperatures suppress bacterial consumption of DOM and
bacterial production, allowing DOM to accumulate during the
bloom. In addition, we examined whether bacterial production
was enhanced in the water layer near the seafloor in response
to the increased physical perturbation. We collected data on
bacterial abundance and production, other microbial parameters
[percentage of bacteria with high nucleic acid content (%HNA,
a physiological indicator of bacteria) and the viruses-to-bacteria
abundance ratio (an indicator of the strength of viruses–bacteria
interactions)], and the concentrations and compositions of
dissolved free amino acids (DFAAs) and dissolved combined
amino acids (DCAAs). Dissolved amino acids represent one
of the largest identifiable pools of DOM and can serve as
important carbon and nitrogen sources for bacteria (Bronk,
2002), providing a useful model for elucidating the strength
and nature of DOM-bacteria coupling. Several previous studies
have investigated dissolved amino acid concentrations and their
composition in Arctic waters (Cota et al., 1996; Davis and Benner,
2005; Shen et al., 2012), although it remains unclear how these
parameters relate to the occurrence of phytoplankton blooms.

MATERIALS AND METHODS

Data Collection and Seawater Sampling
Time series sampling was conducted during September 10–26,
2013, on board the R/V “Mirai” (MR13–06 cruise) at a station
located on the Chukchi Sea Shelf, in the western Arctic
Ocean (72.75◦N, 168.25◦W; bottom depth, 56m; Figure 1).
Surface wind speed was continuously measured throughout
the observation period, and hydrographic data, including
temperature, salinity, transmittance, and chlorophyll a (Chl. a)
concentration were collected mainly at 6 h intervals, as described
elsewhere (Nishino et al., 2015). Seawater samples for the
determination of bacterial production, and those for the
determination of bacterial and viral abundances were collected
at 24 h (10–13 September), 12 h (14–16 September), and 6 h
intervals (17–26 September), whereas samples for determining
DFAA andDCAA concentrations were collected at 24 h intervals.
Surface (0m) seawater samples were collected using a clean
bucket, whereas subsurface seawater samples were collected from
eight layers (from 5m to the depth 10m above the seafloor)
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FIGURE 1 | Location of the fixed-point observation (FPO) station (red cross) on the Chukchi Sea Shelf, western Arctic Ocean (Stn. 41; 72.75◦N,

168.25◦W; bottom depth, 56m). Gray contours are isobaths (2-Min Gridded Global Relief Data; ETOPO2v2). Sea ice concentrations on 16 September 2013 are

also shown (NCEP Climate Forecast System Version 2; CFSv2).

using acid-washed Niskin bottles (Niskin-X, General Oceanics)
attached to a conductivity-temperature-depth (CTD) carousel.

Subsamples for the determination of heterotrophic bacterial
production and bacterial and viral abundances were transferred
to 1 L acid-washed polycarbonate bottles (Nalgene). To
determine DFAA and DCAA concentrations, seawater was
passed through a pre-combusted (450◦C, 5 h) glass fiber
filter (GF/F, Whatman) mounted on a filter cartridge (PP-47,
Advantec) attached to a Niskin bottle, and the filtrate was
collected in a 100mL glass bottle. The bottles containing the
seawater samples were transferred to the laboratory on the ship
for further processing. Sampling and processing were carried out
carefully, and gloves were worn to minimize contamination.

Bacterial Production, and Bacterial and
Viral Abundance
Bacterial production was estimated from the incorporation rate
of 3H-leucine (NET1166, Perkin Elmer; specific activity, 161 Ci
mmol−1) (Kirchman, 2001). A 1.5 mL sample of seawater was
transferred to a sterile 2mL vial, and 10µL 3H-leucine was added
(final concentration, 10 nmol L−1). The sample was incubated for
2 h in the dark at ambient temperature (±0.5◦C). Incubation was
stopped by adding 80 µL trichloroacetic acid (TCA, Wako). The
fixed sample was centrifuged (5417R, Eppendolf) at 14,000 rpm
for 10 min, and the pellet was washed with 10% TCA, followed
by 80% ethanol (Wako), and dried overnight. In the laboratory
on land, a 1 mL scintillation cocktail (Ultima Gold, Perkin
Elmer) was added to the sample and radio-assayed using a liquid
scintillation counter, correcting for quenching (TRI-CARB 3110
TR, Perkin Elmer). The leucine incorporation rate was converted
into bacterial production using a theoretical conversion factor
of 1.55 kg C mol−1 (Simon and Azam, 1989), which has

been used in previous studies conducted in the western Arctic
Ocean (Kirchman et al., 2009a,b). Triplicate and one TCA-killed
control were prepared for each sample. The mean coefficient of
variation for triplicates was 5.7% (± standard deviation, ±3.7;
n= 427).

The bacterial and viral abundances were determined using
flow cytometry following Yang et al. (2010) with slight
modifications. Briefly, 2mL subsamples were transferred to
2mL cryovials (Nalgene) and fixed by adding 100 µL 0.02
µm filtered 20% glutaraldehyde (Wako; final concentration,
1%). The fixed sample was kept in a refrigerator for 15 min,
frozen in liquid nitrogen, and then stored in a deep freezer
(−80◦C) until analysis. In the laboratory on land, samples
were thawed, diluted 10-fold with Tris–EDTA buffer (10mmol
L−1 Tris–HCl, 1mmol L−1 EDTA, pH 8.0, Nippon Gene),
and then stained with 10 µL SYBR Green l (Invitrogen; final
concentration, 10−4 of commercial stock) in the dark for 10
min. The stained sample was amended with 1.0 µm reference-
size beads (Molecular Probes) and injected into a flow cytometer
(FACS Verse, Becton Dickinson). To determine viral abundance,
samples were diluted 100-fold with TE-buffer before staining.
For both bacterial and viral abundance counting, event rates
were kept below 300 events s−1. Data were analyzed using
BD FACSuite software (Becton Dickinson). Bacteria with high
nucleic acid content were distinguished based on the intensity of
green fluorescence (FL1) (Gasol and del Giorgio, 2000). Bacterial
biomass was estimated by multiplying the bacterial abundance
by the cell quota of 12 fg C cell−1 (Fukuda et al., 1998). Bacterial
growth rate was estimated by dividing the bacterial production
by the biomass. Viral abundance data for the period of 17–18
September were missing because of a failure during sample
analysis.
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Amino Acid Concentration and
Composition
In the on-ship laboratory, 15mL samples of seawater were
transferred to 20mL glass ampoules and stored at −20◦C until
analysis. In the laboratory on land, each sample was thawed
and divided into two aliquots to determine dissolved total
hydrolysable amino acid (DTAA) andDFAA. For DTAA, samples
were hydrolyzed using the vapor-phase method according to
Tsugita et al. (1987) with slight modifications. Briefly, 200 µL
samples of seawater were transferred to 1 mL glass tubes and
dried completely in a vacuum oven. The dried sample was
placed in a hydrolysis chamber (JASCO) and exposed to the
fumes of a hydrochloric acid–trifluoroacetic acid mixture at
158◦C for 30min. The hydrolyzed samples were neutralized
and diluted using 1mL Milli-Q water (Millipore). Seawater
samples for determining DFAA and DTAA were injected
into an ultra-high-performance liquid chromatography system
equipped with a reverse-phase column (Acquity UPLC BEH
C18, Waters; particle size, 1.7 µm; column size, 2.1 × 100mm)
and fluorescence detector (X-LC 3120FP, JASCO; excitation
and emission wavelengths, 345 and 455 nm, respectively)
after derivatization with o-phthalaldehyde (OPA; Lindroth and
Mopper, 1979). The identified amino acids were aspartic
acid (Asp), glutamic acid (Glu), histidine (His), serine (Ser),
arginine (Arg), glycine (Gly), threonine (Thr), beta-alanine
(β-Ala), alanine (Ala), tyrosine (Tyr), γ-aminobutyric acid
(GABA), methionine (Met), valine (Val), phenylalanine (Phe),
isoleucine (Ile), and leucine (Leu). For the DTAA analysis,
asparagine (Asn) and glutamine (Gln) were quantified as
Asp and Glu, respectively, because of deamination during
hydrolysis. Data were analyzed using ChromNAV software
(JASCO). DCAA was calculated by subtracting DFAA from
DTAA. Principal component analysis (PCA) was performed
to analyze the composition of DFAA and DCAA. Prior to
performing the PCA analysis, the mole% of each amino
acid was standardized by subtracting the mean and dividing
by the standard deviation (Kaiser and Benner, 2009). Non-
metric multidimensional scaling (NMDS) was also used to
examine the amino acid compositional variability (Quinn and
Keough, 2002). The differences in the amino acid compositions
between layers (upper vs. deeper) and periods (prebloom vs.
bloom) were analyzed using analysis of similarities (ANOSIM,
Quinn and Keough, 2002). The degradation index (DI)
for DCAA was calculated using the formula and constants
presented in Table 1 of Dauwe et al. (1999). Statistical
calculations were conducted using the R software package
(R Core Team, 2016).

Meteorological, Hydrographical, and Other
Biochemical Parameters
Meteorological, hydrographical, and other biochemical data
were provided by the Japan Agency for Marine-Earth Sciences
and Technology (JAMSTEC), and are available from their
online database (http://www.godac.jamstec.go.jp/darwin/cruise/
mirai/mr13-06_leg1/e). Surface wind speed was measured using
an anemometer (KE-500, Koshin Denki) installed on the ship

foremast (height, 24m above sea surface).Water temperature was
measured using a CTD sensor (SBE9plus, Sea-Bird Electronics).
Transmittance was determined using a transmission meter
(C-Star, WET Labs), and Chl. a concentration was determined
fluorometrically (Welschmeyer, 1994).

RESULTS

Overview of Physical and Biogeochemical
Features
We first provide a brief overview of the major physical and
biogeochemical features of the FPO station, which are described
in greater detail in Nishino et al. (2015) and Kawaguchi et al.
(2015). Throughout the FPO period, the water column was a
two-layered system characterized by the presence of a strong
pycnocline (σθ = 25.5–25.9) at a depth of 15–30m (Kawaguchi
et al., 2015) and low and high nutrient concentrations in the

FIGURE 2 | (A) Temporal variation in surface wind speed. Vertical and

temporal variation in (B) water temperature, (C) chlorophyll a (Chl. a)

concentration, and (D) transmittance. Gray contour lines indicate potential

density (σθ). The contour graphs were created using Ocean Data View

software (Schlitzer, 2016).
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upper (defined as the layer with σθ < 25.5) and deeper layers
(defined as the layer with σθ>25.9), respectively; total inorganic
nitrogen was depleted in the upper layer throughout the period
(<0.15 µmol L−1) (Nishino et al., 2015). Seawater temperatures
in the upper layer tended to decrease with time (from 3.2 to
1.5◦C), whereas no similar trend was evident in the deeper
layer (Figure 2B). A cold wind event on 14–15 September and
subsequent stronger winds (>13m s−1) during 19–22 September
(Figure 2A) resulted in enhanced mixing around the pycnocline
based on local turbulent activity detected using a microstructure
profiler (Kawaguchi et al., 2015). This enhanced mixing
coincided with increased upward nutrient fluxes, enhanced
primary production, and an increase in phytoplankton biomass
(Nishino et al., 2015). Chl. a concentrations were on average
1.7-fold higher during the period after 19 September relative to
the preceding period (Figure 2C). Data from time-series (mainly
at 24 h intervals) CTD surveys conducted in the surrounding
region (30 × 30 km) of the FPO station and from stream
trajectories measured using free-drifting buoys indicated that
it was unlikely that the increase in Chl. a at the FPO station
was attributable to the lateral advection of a different water
mass from the surrounding region (Nishino et al., 2015). Rather,
the results were interpreted as an indication that wind-induced
physical disturbances (mixing) led to enhanced nutrient supply
to the upper layer, which alleviated the nutrient limitation of
phytoplankton and resulted in the occurrence of the bloom
(Nishino et al., 2015). Based on these results, we hereafter divide
the FPO period into the prebloom (10–18 September) and bloom
periods (19–26 September). Strong winds were accompanied by
enhanced currents in the deeper layer and turbulent mixing
near the seafloor (Kawaguchi et al., 2015; Nishino et al., 2015).
Transmittance data indicated that the benthic nepheloid layer
(low transmittance layer; Thorpe, 2005) existed throughout the
FPO period, with the most persistent nepheloid layer being
observed between 17 and 22 September (Figure 2D), indicating
that sediments were resuspended due to turbulence near the
seafloor during the strong wind events.

Temporal Variability in Microbial Variables
and Dissolved Amino Acid Concentrations
in the Upper Layer
Both bacterial abundance and production displayed a generally
similar temporal pattern in the upper layer (Figures 3A,B),
and were higher during the bloom than the prebloom period
(Table 1). On average, bacterial abundance was 42% higher
during the bloom than during the prebloom. The corresponding
value for bacterial production was 29% (Table 1). Both bacterial
abundance and production were positively correlated with Chl.
a concentration [Pearson’s r: 0.88 and 0.77 for abundance
and production, respectively (p < 0.001); Figures 4A,B],
whereas they were negatively correlated with water temperature
[Pearson’s r: −0.82 and −0.58 for abundance and production,
respectively (p < 0.001)].

Bacterial growth rate displayed a complex temporal pattern
in the upper layer (Figure 3C). The mean growth rate differed
only slightly (10%) between periods (Table 1). In contrast,

FIGURE 3 | Vertical and temporal variation in (A) bacterial abundance, (B)

bacterial production, (C) growth rate, (D) percentage of high-nucleic-acid

bacteria (%HNA), and (E) viruses-to-bacteria ratio (VBR). Gray contour lines

indicate potential density (σθ). The contour graphs were created using Ocean

Data View software (Schlitzer, 2016).

%HNA tended to increase with time from 10 to 20 September
(Figure 3D). The mean %HNA during the bloom (63%) was
significantly higher than the corresponding value (55%) during
the prebloom (Table 1). Viral abundance displayed no clear
temporal pattern, with the extent of variability being less
pronounced than that of bacterial abundance (data not shown).
On average, the viruses-to-bacteria abundance ratio (VBR)
during the bloom (8.3) was lower than that during the prebloom
(12) (Figure 3E; Table 1).
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TABLE 1 | Mean values of hydrographical, microbial, and dissolved amino

acid parameters determined in the upper layer during prebloom and

bloom periods.

Prebloom Bloom

Mean ± SD n Mean ± SD n p

Temperature (◦C) 2.8 ± 0.3 71 1.9 ± 0.3 98 <0.001

Chlorophyll a (µg L−1) 0.44 ± 0.10 71 0.75 ± 0.11 98 <0.001

Bacterial abundance

(×108 cells L−1)

4.24 ± 0.40 71 6.01 ± 0.26 98 <0.001

Bacterial production

(µg C L−1 d−1)

0.56 ± 0.06 71 0.71 ± 0.09 98 <0.001

Bacterial growth rate

(d−1)

0.11 ± 0.01 71 0.10 ± 0.01 98 <0.001

%High-nucleic-acid

bacteria (%)

54.9 ± 4.0 71 62.5 ± 3.00 98 <0.001

Viruses-to-bacteria

ratio

12.0 ± 1.8 52 8.3 ± 1.1 98 <0.001

Dissolved combined

amino acid (nmol L−1)

232 ± 29.3 30 255 ± 23.4 19 <0.01

Dissolved free amino

acid (nmol L−1)

13.4 ± 4.6 34 11.3 ± 4.3 23 0.06

Degradation index −1.1 ± 0.1 30 −1.1 ± 0.2 19 0.935

SD, standard deviation; n, number of samples; p, significance of t-test of the null

hypothesis that the mean value did not differ between the two periods.

DCAA concentrations varied over a limited range
(183–307 nmol L−1) (Figure 5A). The mean DCAA
concentration during the bloom (255 ± 23 nmol L−1) was
significantly higher than that during the prebloom (232 ±

29 nmol L−1) (Table 1), although the difference was small. DFAA
concentration displayed no clear temporal pattern (Figure 5B),
and remained low (<25 nmol L−1), except for a sample collected
in the surface layer on 18 September. There was no significant
difference in DFAA concentration between the prebloom
(13.4 ± 4.6 nmol L−1) and bloom periods (11.3 ± 4.3 nmol L−1)
(Table 1).

Temporal Variability in Microbial Variables
and Dissolved Amino Acid Concentrations
in the Deeper Layer
Bacterial abundance and production in the deeper layer were
generally lower than those in the upper layer (Figures 3A,B). A
notable feature was high bacterial abundance and production
near the seafloor, with marked peaks observed between
September 18 and 21 (Figures 3A,B). These peaks broadly
coincided with strong winds (Figure 2A) and the occurrence
of the benthic nepheloid layer (Figure 2D). Both bacterial
abundance and production increased with increasing surface
wind speed (Figures 6A,B) and decreasing transmittance
(Figures 6C,D). Bacterial growth rate and %HNA tended to
be high during the earlier FPO period, and then generally
decreased with time (Figures 3C,D). VBR (Figure 3E)
and DCAA and DFAA concentrations (Figures 5A,B)
displayed no systematic temporal patterns in the deeper
layer.

FIGURE 4 | Relationships in the upper layer between (A) chlorophyll a

(Chl. a) concentration and bacterial production and (B) Chl. a concentration

and bacterial abundance. Solid lines represent the Model II regression line

(Sokal and Rohlf, 1995). The corresponding regression equations with r2

(coefficient of determination), and p (significance) are also given.

Compositional Variability of Dissolved
Amino Acids
Neither the NMDS ordination nor the scaling plot of the first
two components (PC1 and PC2) of the PCA for DCAA revealed
clear systematic patterns in the compositional variability between
the layers (upper vs. deeper layers) and the periods (prebloom
vs. bloom) (data not shown). The mean percentage contributions
of individual amino acids are tabulated in Table 2. Among the
most abundant amino acids in DCAA were Gly (26.5%) and Ala
(16.0%), followed by Asp (9.2%) and Ser (8.8%) (Table 2). In the
upper layer, DI values did not differ significantly between the
prebloom (−1.1± 0.1) and bloomperiods (−1.1± 0.2) (Table 1).
The mean DI in the upper layer (−1.1 ± 0.1) was close to the
corresponding value in the deeper layer (−1.2± 0.2).

The DFAA compositional variability was more pronounced
than that of DCAA. The PC1-PC2 plot and the NMDS ordination
revealed a systematic difference in the amino acid composition
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FIGURE 5 | Vertical and temporal variation in the concentration of (A)

dissolved combined amino acid (DCAA) and (B) dissolved free amino acid

(DFAA). Gray contour lines indicate potential density (σθ). The contour graphs

were created using Ocean Data View software (Schlitzer, 2016).

between the upper and deeper layers (Supplementary Figures
1A,B). ANOSIM indicated a significant difference in the DFAA
composition between the two layers (R = 0.72, p < 0.01). DFAA
in the upper layer were enriched with β-Ala, Glu, Ala, and
Arg compared to those in the deeper layer, whereas they were
depleted in Leu, Val, and Phe, and Ile (Supplementary Figure
1A; Table 2). ANOSIM also indicated a significant difference in
DFAA composition between the two periods in the upper layer
(R = 0.30, p < 0.01). The percent contribution of Ala during
the bloom period was significantly higher than that during the
prebloom period, whereas the reverse was true for Glu and Arg
(Table 2).

DISCUSSION

Close Coupling between Primary and
Bacterial Production during the Fall Bloom
Our data indicated close coupling between bacterial and
primary production during the fall bloom at the FPO station.
Bacterial abundance and production increased with increasing
Chl. a concentration, despite a concomitant decrease in
seawater temperature, providing strong evidence against the low-
temperature suppression hypothesis (Hypothesis 2). Comparison
of the depth-integrated (0–20 m) bacterial production with
primary production, which was estimated by the 13C method
with on-deck incubation of samples for 24 h (Nishino et al.,
2015), supported this argument. The BP:PP ratio during the
bloom was 0.14 ± 0.03, which did not differ significantly
(p> 0.05) from that during the prebloom (0.14± 0.03) (Figure 7;
Table 3). The mean ratio during the entire investigation (0.14)
was comparable to the corresponding ratio typically found in

lower-latitude oceans including subarctic and equatorial regions
(0.1; Kirchman et al., 2009b), but it was higher than the median
BP:PP ratio (0.04) derived from compilation of the data collected
during four cruises conducted in basin and shelf regions of the
western Arctic Ocean (∼100 stations and depth profiles were
examined; Kirchman et al., 2009b). This tighter relationship
between primary and bacterial production at the FPO station
than that reported by Kirchman et al. (2009b) might be related to
the time of year for both studies [September in the present study
vs. mostly May and July for the data compiled by Kirchman et al.
(2009b)], and to the difference in the scale of data coverage [a fall
bloom at a fixed station in the present study vs. a larger range
of dates and regions in Kirchman et al. (2009b)]. Importantly,
high and constant BP:PP ratios throughout the FPO period
suggest that there was a closely coupled, large flow of carbon
from primary producers to bacteria during the fall bloom on
the Chukchi Sea Shelf (Hypothesis 1). The mean BP:PP ratio,
0.14, implies that bacterial carbon demand accounted for a
high percentage (>50%) of primary production throughout the
study period, assuming that the bacterial growth efficiency was
about 0.2 (del Giorgio and Cole, 2000). However, further studies
are needed for rigorous quantification of the bacterially driven
carbon fluxes, in particular regarding the validity of the growth
efficiency and the leucine-to-carbon conversion factor. The latter
may vary depending on season in cold waters (Rivkin et al., 1996),
and could be lower than the 1.55 kg Cmol−1 conversion factor in
some oligotrophic oceans (Alonso-Sáez et al., 2007).

Our data on DFAA and DCAA concentrations provided
further evidence indicating that bacteria coped effectively with
enhanced DOM supply during the bloom. Despite the fact that
blooms generally promote DFAA production (Hammer and
Kattner, 1986), DFAA concentrations during the FPO period
remained at remarkably low levels (on average 13.4 ± 4.6 nmol
L−1 and 11.3 ± 4.3 nmol L−1 during the prebloom and bloom
periods, respectively). Considering the high contribution of β-Ala
(36–40% in the upper layer), which is a non-protein amino acid
generally considered a degradation product not readily available
for bacterial consumption (Keil et al., 2000), the levels of labile
DFAA serving as bacterial substrates might be even lower. In
fact, the DFAA concentrations recorded in the present study are
among the lowest reported to date in surface waters of the Arctic
(the lowest DFAA concentrations previously seen in the Arctic
Ocean are in the order of 20 nmol L−1, as summarized inTable 4)
and lower-latitude oceanic environments (typical range, 10–1000
nmol L−1, as summarized by Sarmento et al., 2013). The low
DFAA concentrations imply that bacteria were highly efficient in
DFAA uptake during the fall bloom on the Chukchi Sea Shelf,
despite the low water temperatures. This is in agreement with
Yager and Deming (1999), who reported that oligotrophic Arctic
bacteria have highly efficient substrate uptake.

DFAA compositions differed between the upper and deeper
layers and varied over time in the upper layer, which is considered
to be due to the fact that the release and assimilation of
DFAA are compound-specific (Sarmento et al., 2013). Sarmento
et al. (2013) found that Micromonas pusilla (Prasinophyceae), a
picoeukaryotic alga abundantly found in Arctic waters (Lovejoy
et al., 2007), excreted large quantities of Ala. Our data showing a
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FIGURE 6 | Relationships between (A) surface wind speed and bacterial production, (B) surface wind speed and bacterial abundance, (C) transmittance and

bacterial production, and (D) transmittance and bacterial abundance. Data on transmittance and bacterial production and abundance were collected at the water

layer 10m above the seafloor. Solid lines represent the Modell II regression line (Sokal and Rohlf, 1995). The corresponding regression equations with r2 (coefficient of

determination), and p (significance) are also given.

high %Ala during the bloom period might be a consequence of
the high release of Ala byM. pusilla or other algal species making
up the bloom. In contrast with DFAA, DCAA compositions
varied little with depth and over time. The DCAA composition
at the FPO station was characterized by a high mol% of Gly, Ala,
and Asp, which is similar to the DTAA composition observed
on the Chukchi Sea Shelf and western Canada Basin during
the spring and summer of 2002 (Davis and Benner, 2005). The
mean DI (Dauwe et al., 1999) calculated for the DCAA at the
FPO station was −1.1. This value is similar to the DI previously
reported for DCAA collected in the Chukchi Sea (−1.2 to−0.89;
Davis and Benner, 2005), but much lower than that determined
for DCAA freshly produced from plankton (0.46–1.5; Dauwe
et al., 1999; Davis and Benner, 2005). These results indicate
that the DCAA at the FPO station was in the advanced
degradation state, and primarily composed of less-degradable
components, independent of time and depth. Given that fresh
DCAA can be abundantly released during blooms via excretion
by phytoplankton and other processes associated with viral lysis
and grazing (Nagata, 2000; Bronk, 2002), our results indicate
that DCAA production and bacterial consumption were closely

coupled. We propose that the release of fresh, labile DCAA
during the bloom was closely balanced by rapid hydrolysis and
assimilation of labile DCAA by bacteria, with the concentration
and molecular compositions of bulk DCAA pool remaining
constant. Future studies are required to test the validity of this
model and to explore the physiological and molecular bases of
DOM-bacteria coupling during blooms (Buchan et al., 2014).

Role of Bottom-Up and Top-Down Factors
Affecting Bacterial Abundance and
Production during the Bloom
The bacterial growth rate in the upper layer differed little
between the prebloom and bloom periods. At first glance,
this contradicts the theory that bacterial activity was enhanced
by DOM supply during the bloom. However, note that the
growth rate, as determined from bacterial production and
biomass, represents a bulk property of a bacterial community
that can be composed of diverse subpopulations with different
activity states, ranging from dormant to highly active cells
(del Giorgio and Gasol, 2008). Thus, the bulk growth rate
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TABLE 2 | Mole% of individual amino acids.

Type DCAA DFAA

Upper layer Deeper layer

Prebloom Bloom

Asp 9.2 ± 0.7 4.0 ± 0.9 4.2 ± 1.4 4.7 ± 1.8

Glu 7.5 ± 0.8 11.4 ± 2.1 7.6 ± 2.0 2.0 ± 3.0

Ser 8.8 ± 1.3 5.1 ± 3.1 4.8 ± 5.1 5.3 ± 4.9

Gly 26.5 ± 2.0 15.5 ± 2.4 15.6 ± 3.7 23.1 ± 8.7

Ala 16.0 ± 1.1 10.6 ± 1.8 13.4 ± 3.9 10.0 ± 3.0

Tyr 1.3 ± 0.4 2.2 ± 0.6 3.2 ± 0.8 3.2 ± 0.7

Ile 0.2 ± 0.2 0.7 ± 0.9 0.2 ± 0.5 6.1 ± 5.9

His 3.0 ± 0.6 1.2 ± 0.5 1.1 ± 0.6 2.0 ± 1.7

Arg 3.4 ± 0.6 3.6 ± 0.9 1.8 ± 0.4 1.4 ± 0.8

Thr 7.5 ± 0.8 1.8 ± 0.7 2.1 ± 1.0 2.5 ± 1.1

β-Ala 7.2 ± 1.4 36.3 ± 8.0 40.4 ± 10.6 13.5 ± 7.5

GABA 1.2 ± 0.3 1.2 ± 0.4 1.4 ± 0.4 2.0 ± 0.7

Met 1.0 ± 0.4 0.5 ± 0.4 0.5 ± 0.3 0.3 ± 1.4

Val 1.9 ± 0.2 2.0 ± 1.2 1.0 ± 0.4 3.8 ± 1.9

Phe 2.7 ± 1.0 2.2 ± 0.9 2.0 ± 1.7 15.9 ± 10.8

Leu 2.6 ± 0.5 1.7 ± 1.1 0.6 ± 0.4 4.2 ± 3.0

n 97 34 23 55

For dissolved combined amino acids (DCAA), the mean values for all samples are

presented because there were no systematic changes in composition between sampling

periods (prebloom vs. bloom) and layers (upper vs. deeper). For dissolved free amino

acids (DFAA), the data for each period are given for the upper layer to indicate the change

in composition. The mole% values of three amino acids (Glu, glutamic acid; Arg, arginine;

Ala, alanine) are underlined to indicate that the difference in mole% of these amino acids

between the two periods was significant (p < 0.05, t-test). For the deeper layer, the mean

values for the entire period are presented because there were no systematic changes in

composition between the periods. Aspartic acid (Asp), histidine (His), serine (Ser), glycine

(Gly), threonine (Thr), beta-alanine (β-Ala), tyrosine (Tyr), γ -aminobutyric acid (GABA),

methionine (Met), valine (Val), phenylalanine (Phe), isoleucine (Ile), and leucine (Leu). Errors

are standard deviations. n is the number of samples analyzed.

might be insufficiently sensitive to reflect the response of
active subpopulations to enhanced DOM supply during the
bloom. Additionally, the variability in the leucine-to-carbon
conversion factor over time (Rivkin et al., 1996), which was
not considered in our study, might also introduce errors into
the estimates of bacterial growth rates. Another physiological
indicator of the bacterial community is %HNA, which generally
increases with an increase in organic matter supply in marine
environments, although other factors may also affect it (del
Giorgio and Gasol, 2008). Cuevas et al. (2011) reported that
the addition of a labile organic substrate (glucose) to pelagic
seawater samples collected in Arctic waters resulted in increased
%HNA. Our data showing that %HNA was significantly higher
during the bloom than before the bloom indicates the response
of bacterial subpopulations to enhanced DOM supply during
the bloom (bottom-up control). Viral lysis and grazing (top-
down control) can also affect bacterial abundance and production
(Anderson and Rivkin, 2001; Yager et al., 2001). VBR in
the upper layer was significantly lower during the bloom
relative to the prebloom period, suggesting that the viral lytic
pressure was alleviated during the bloom. Although there were
no data on bacterivorous grazers at the FPO station, the

FIGURE 7 | Temporal variation in (A) depth-integrated (0–20m) bacterial

production (open circles), primary production (filled bars), and (B) bacterial

production:primary production ratio (BP:PP ratio). Solid and dashed lines

indicate mean (0.14) and 95% confidence intervals (±0.02), respectively.

Primary production data are from Nishino et al. (2015) and are also available

from the JAMSTEC online database (see text for details). Daily bacterial

production was calculated from the time-integration of multiple data obtained

in a specific time interval.

TABLE 3 | Comparison of depth-integrated (0–20m) primary (PP) and

bacterial production (BP) during prebloom and bloom periods.

Prebloom Bloom p Whole period

Primary production

(mg C m−2 d−1)a
82 ± 15

(n = 5)

113 ± 20

(n = 3)

<0.05 93 ± 22

(n = 8)

Bacterial production

(mg C m−2 d−1)b
11 ± 0.9

(n = 9)

14 ± 1.7

(n = 6)

<0.001 12 ± 2.2

(n = 15)

BP:PP ratio 0.14 ± 0.03

(n = 5)

0.14 ± 0.03

(n = 3)

>0.05 0.14 ± 0.03

(n = 8)

n, number of samples; p, significance of t-test of the null hypothesis that the mean value

did not differ between the two periods.
a Primary production data are from Nishino et al. (2015) and are also available from the

JAMSTEC online database (see text for details). Primary production was determined using

the 13C method as described by Hama et al. (1983) with on-deck incubation of water

samples for 24 h.
b The incubation period for the determination of bacterial production was 2 h. Daily

depth-integrated bacterial production was calculated from the time-integration of the data

obtained for a relevant time interval.

elevation of bacterial abundance during the bloom might partly
reflect low grazing pressure in cold waters (Rose and Caron,
2007).

Bacterial Response to Wind-Induced
Sediment Resuspension in the Deeper
Layer
Despite persistently cold (−1.5 to −0.4◦C) seawater
temperatures, bacterial abundance, production, and %HNA
varied significantly in the deeper layer. Of particular interest
is the high bacterial abundance and production in the layer
near the seafloor during the strong wind events, concomitant
with decreasing transmittance. These results indicate that
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TABLE 4 | Concentrations of dissolved combined amino acid (DCAA), dissolved free amino acid (DFAA), and dissolved total amino acid (DTAA) in the

Arctic Ocean.

Location DTAA or DCAA (nmol L−1) DFAA (nmol L−1) References

Greenland Sea ND 60–100 Kattner and Becker, 1991

500 (<100m)a, 280 (>100m)a ND Hubberten et al., 1995

Laptev Sea 320–520 (<200m)a, 250–270 (>200m)a ND Dittmar et al., 2001

Central Arctic ND 21–714 Rich et al., 1997

Kara Sea ND 18–48 Meon and Amon, 2004

Chukchi Sea ND 29–1473 Cota et al., 1996

150–462a ND Shen et al., 2012

236 ± 32b,c 9.8 ± 4.7c This study

Chukchi/Beaufort Seas 229–378 (<200m)a, 112–135 (>200m)a ND Davis and Benner, 2005

DTAA is the sum of DCAA and DFAA. ND, not determined.
aDTAA.
bDCAA.
cMean values determined in the upper and deeper layers.

wind-induced sediment resuspension led to an increase in
bacterial abundance and production in the water column
because bacteria and organic matter associated with sediments,
as well as those contained in sedimentary interstitial waters,
or both, are introduced to the water column. The physical
processes responsible for the wind-induced resuspension during
the FPO have been discussed by Kawaguchi et al. (2015), who
suggested that wind-induced barotropic current (uniform
flow throughout the water column), as evidenced by the
rapid movement (4 km d−1) of bottom water, led to enhanced
turbulence above the seafloor. Their results are consistent with
previous findings that, in the Chukchi Sea Shelf, wind stress
can induce barotropic current, with a response time of no
more than a few days (Winsor and Chapman, 2004), and that,
in general, the barotropic current can produce strong vertical
shear in the bottom boundary layer (Thorpe, 2005). Our data
are among the first to provide the field evidence on closely
coupled response of bacterial production to wind-induced
sediment resuspension on the Arctic shelf. Generally, the sites
and rates of organic matter remineralization and nutrient
cycles are significantly affected by sediment resuspension in
shallow regions (Wainright, 1987; Wainright and Hopkinson,
1997), although the extent and nature of the biogeochemical
effects depend on the environmental setting (Arnosti and
Holmer, 2003). Thus, our finding has important implications
for enhancing models of the biogeochemical consequences
of the extension of the ice-free period and more frequent
exposure of the sea surface to strong wind events on Arctic
shelves.

CONCLUSIONS

Our data collected during the FPO indicated that bacterial
production was closely coupled with primary production during
a wind-induced fall bloom on the Chukchi Sea Shelf, and that
wind-driven resuspension of sediments resulted in enhanced
bacterial abundance and production near the seafloor. These
results provide novel insights into the pending question

concerning the response of the microbial loop to the increased
organic matter supply in perennially cold polar waters (Pomeroy
and Deibel, 1986; Kirchman et al., 2009b). Our results also have
broad implications for emerging discussion on future changes
in ecosystem and biogeochemical cycles in the Arctic Ocean.
The Chukchi Sea Shelf is characterized by its strong interactions
with surrounding basins (Carmack and Wassmann, 2006; Bates
et al., 2011). The prominent features of these interactions include
the ventilation of the upper halocline of the Arctic Ocean
(Woodgate et al., 2005) and the lateral transport of organic
matter produced in the productive shelf to the oligotrophic
Canada Basin (Davis and Benner, 2007; Uchimiya et al., 2013;
Watanabe et al., 2014; Yamada et al., 2015). The impacts of
fall wind events, which are predicted to increase with the
extension of the ice-free period (Ardyna et al., 2014), on bacterial
processes and organic matter dynamics on the Chukchi Sea
Shelf could have extensive influences on the biogeochemical
cycles and ecosystem dynamics in broader regions of the Arctic
Ocean.
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