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Climate Risk Assessment under
Uncertainty: An Application to Main
European Coastal Cities
Luis M. Abadie, Elisa Sainz de Murieta * and Ibon Galarraga

Basque Centre for Climate Change, Leioa, Spain

This paper analyses the risk of extreme coastal events in major European coastal cities

using a stochastic diffusionmodel that is calibrated with the worst case emission scenario

from the Intergovernmental Panel for Climate Change (IPCC), i.e., the representative

concentration pathway (RCP) 8.5. The model incorporates uncertainty in the sea-level

rise (SLR) distribution. Expected mean annual losses are calculated for 19 European

coastal cities, together with two risk measures: the Value at Risk (VaR) and the Expected

Shortfall (ES). Both measures are well-known in financial economics and enable us to

calculate the impact of the worst SLR paths under uncertainty. The results presented

here can serve as valuable inputs for cities in deciding how much risk they are willing

to accept, and consequently how much adaptation they need depending on the risk

aversion of their decision-makers.

Keywords: uncertainty, sea-level rise, coastal flooding, economic losses, risk measures, cities

INTRODUCTION

Sea-level rise (SLR) is a major threat to coastal areas across the world as a much of the world’s
population and socio-economic infrastructures are concentrated precisely in those areas (Revi et al.,
2014). Low elevation coastal zones (LECZ) comprise the strip with elevations lower than 10m above
sea level. Such areas account for only 2% of the world’s land, but they contain 10% of the global
population. About two thirds of mega-cities with populations above 5 million people are located
in low lying coastal areas and the population at risk from 100-year-return-period coastal extreme
events has increased by 95% in the last 40 years (McGranahan et al., 2007). As a result, global
damage associated with coastal flooding is expected to increase, not only due to the global rise in
sea level, but also due to the increase in the number and the value of assets at risk (Wong et al.,
2014). Urban areas can therefore be considered one of the main “hotspots of coastal vulnerability”
(Newton and Weichselgartner, 2014, p. 125).

Being so vulnerable to the impacts of climate change, coastal cities have a major role in
adapting to them. In this effort, one important way to enhance resilience and reduce vulnerability
is to integrate the concept of risk (and therefore risk management) into regional and local
decision-making processes (Newton and Weichselgartner, 2014).

The literature on disaster risk management that assesses the impacts of extreme events is
vast, and can provide relevant information to local policy and decision-makers. However, when
addressing climate change related issues, uncertainty is one of the main difficulties that need to be
dealt with. The traditional framework for estimating flood risk damage is most commonly based on
providing annual average losses obtained in a deterministic way, and of course not accounting for
uncertainty. Innovative decision support tools that can help deal with uncertainty are thus required
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(Watkiss et al., 2015). There are other studies that have taken
uncertainty into account: For example Boettle et al. (2013, 2016)
use Extreme Value Theory (EVT) to assess coastal extremes in
two Danish cities -Copenhagen and Kalundborg.

In this paper we propose two methods for incorporating
uncertainty in the context of adaptation to climate change.
The first consists of defining a stochastic process for estimating
changes in sea level, in this case for the worst case emission
scenario posited by the Intergovernmental Panel on Climate
Change (IPPC), i.e., representative concentration pathway (RCP)
8.5, from 2010 to the end of the century. Uncertainty is
also accounted for by including volatility in the probability
distribution of SLR. We apply this development to data on 19
Europeanmajor coastal cities for which relative SLR distributions
were available (Kopp et al., 2014).

The second method consists of estimating two risk measures,
namely Value-at-Risk (VaR) and Expected Shortfall (ES). Risk
measure approaches have long been used in economics to
effectively account for uncertainty in many variables (such
as prices) by adding stochastic behavior to deterministic
formulations. The VaR and ES are well-established measures in
financial economics (Wilmott, 2000; Hull, 2012). This approach,
used in other fields (Abadie and Chamorro, 2013; Abadie and
Galarraga, 2015), is adapted and applied to the field of climate
change economics in this paper. It is only recently that this
approach has begun to be used in the assessment of climate
risk, though both measures are very suitable in the field of the
economics of adaptation, where they can provide new ways to
deal with so-called tail events, i.e., low-probability, high-impact
events.

Hence, the objectives of this paper are as follows: (i) to apply
a method that enables uncertainty to be accounted for in future
SLR outcomes for each European city under analysis; and (ii)
to estimate the risk of damage for each city under the most
extreme SLR scenario (RCP8.5) for different time periods. This
information can be used for instance, to define acceptable levels
of risk for each city. Awareness of the magnitude and timing of
risk is a key element for defining how much adaptation is needed
and by when it needs to be put into practice.

The main contribution of our study is the calibration of a
stochastic diffusion model with regionalized SLR for each city.
We obtain the expected damage for every year from the baseline
to 2100 as well as two risk measures, namely the VaR and
the ES, with the latter being especially important. We believe
that this study can provide guidance for coastal managers and
policy makers in dealing better with coastal extreme events (“tail
events”; Hinkel et al., 2015).

METHODS

This paper has two main parts: first it calibrates a stochastic
diffusion model using regionalized IPCC data. That calibration
provides a probability distribution of SLR at any time between
the baseline and the end of the period considered (2100). As
the aim of this study is not to measure expected damage but
the impact of the worst 5% of cases, secondly we measure risk

through two methodologies: the first is the value at risk (VaR),
which reveals that only in 5% of cases will a certain level of
damage be exceeded. The VaR therefore shows when the tail of
the worst cases starts, but it does not tell us any more about that
tail. In spite of its widespread use, the VaR does not have the best
properties for assessing risk (see for example, Hull, 2012). This is
why we also use the Expected Shortfall (ES) as a more relevant
risk measure. The ES represents the average damage in the worst
cases (in our study, the worst 5%). Although we consider ES a
much more appropriate risk measure, we also consider the VaR
as it is a standard measure which is widely used in financial
economics.

Future Projections of Sea-Level Rise at
City Level
Global sea-level has risen by more than 20 cm since 1980 (Hardy
and Nuse, 2016) and the rate of SLR during the twentieth century
is estimated to have been 1.7 ± 0.3 mm year−1 (Church and
White, 2006, p. 2). However, recent estimates measured via
satellite altimetry show an acceleration range of 2.6–2.9± 0.4mm
year−1 for the period between 1993 and mid-2014 (Watson et al.,
2015).

Deciding on how much adaptation to climate change is
needed at local scale and when to implement it requires detailed
information on future risks. The latest IPCC projections of
mean global sea-level changes (Church et al., 2013), the so-
called Representative Concentration Pathways (RCPs), do not
provide the level of information required for local and regional
policies. There is clear evidence of global SLR as a result of
climate change (Church et al., 2013) but the relative sea level
varies widely on a local and regional basis (Stammer et al., 2013).
Relative sea level represents the actual relationship between the
ocean surface and the land, and it depends on several factors:
(i) eustatic determinants, i.e., absolute changes in sea level as
a result, for example, of thermal expansion or ice melting
(Lambeck et al., 2010); (ii) static equilibrium effects, defined
as “perturbations in the Earth’s gravitational field and crustal
height associated with the redistribution of mass between the
cryosphere and the ocean” (Kopp et al., 2014: 383); (iii) glacial
isostatic adjustment, which causes the uplift of land in the areas
affected by ice-caps during the last glaciation (Simon et al., 2016);
(iv) vertical land uplift resulting from other local processes such
as tectonism or subsidence due to groundwater depletion or
sediment compaction (Miller et al., 2013; Kopp et al., 2014).

A comprehensive dataset of local sea-level projections was
developed by Kopp et al. (2014) for a worldwide network of tide-
gage sites. The projections in that dataset consider the following
factors that contribute to changes in sea level: (i) three ice-sheet
components; (ii) glacier and ice caps; (iii) surface mass balance;
(iv) oceanographic processes; (v) land water storage; and (vi)
other long-term local non-climatic factors such as glacial isostasy,
tectonics, and sediment compaction.

Another limitation of the IPCC projections is that only likely
probability ranges are given (i.e., 66–100% probability ranges), so
low-probability, high-damage events are left out. Of course, this
makes it very difficult to assess tail events.
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TABLE 1 | Future sea-level rise projections for each city under RCP8.5, measured in cm. Source: Kopp et al. (2014).

City 2030 2050 2100

P5 Median P95 P5 Median P95 P5 Median P95

Amsterdam 4 13 22 10 27 44 31 69 115

Athens −20 −3 14 −29 −1 28 −19 19 67

Barcelona −7 11 28 −5 23 52 27 66 113

Copenhagen 4 11 18 9 22 36 24 57 99

Dublin 0 7 15 1 16 31 10 44 86

Glasgow 7 17 26 15 33 50 41 81 128

Hamburg −11 2 15 −13 8 31 −26 32 95

Helsinki −20 9 38 −30 19 67 −30 59 151

Istanbul −6 12 29 −4 24 53 31 70 117

Izmir −2 10 23 −1 22 45 8 61 120

Lisbon 6 13 21 12 26 42 32 72 119

London 5 13 22 10 27 44 27 67 116

Marseille −7 9 25 −8 20 49 28 60 102

Naples −6 10 26 −7 21 49 30 62 104

Odessa −22 7 37 −33 16 66 −39 53 149

Porto 4 12 20 10 24 39 27 66 112

Rotterdam 6 14 23 12 28 45 35 72 118

St. Petersburg −5 9 23 −1 18 38 0 47 101

Stockholm −25 −4 18 −39 −2 36 −41 17 80

However, for coastal cities Kopp et al. (2014) provide the full
probability distribution for each site, which enables us to focus on
the worst cases and estimate the risk for the major coastal cities
in Europe. We use the 2030, 2050 and 2100 medians and the 95
percentile in 2100 from Kopp et al. (2014) for 19 European cities
(see Table 1) to calibrate a stochastic diffusion model that enables
us to estimate the change in sea-level for each city at any given
point in time up to the year 2100.

Note that the concept of risk used in this paper focuses on
the probability of occurrence of the worst cases, so we are only
considering the most extreme SLR scenario (RCP8.5), which is a
business as usual scenario (Grinsted et al., 2015)1.

A Continuous Stochastic Diffusion Model
for Local Sea-Level Rise
We now apply the Geometric Brownian Motion stochastic
process (GBM) (Wilmott, 2000; Hull, 2012; Abadie and
Chamorro, 2013) to estimate the changes in sea level for each city
k, as defined in Equation (1):

dVk
t = αkVk

t dt + σ kVk
t dW

k
t (1)

where Vk
t represents the SLR of city k at time t, plus an initial

value Vk
0 . This current value grows at rate αk; the term σ k is

the instantaneous volatility, and dWk
t denotes the increment to

a standard Wiener process. The initial value Vk
0 is used to ensure

a better fit of the modeling of the RCP8.5 scenario of each city.
This is only a scale change.

1Similarly, other RCP scenarios could be modeled but are not so interesting from

the point of view of extreme events.

Equation (1) represents a standard Brownianmotionmodel in
which a change in a variable V of city k at time t occurs as a result
of two elements (two addends):

1. A determinist addend in which αk represents the exponential
tendency of the expected value (see Equation 2).

2. A stochastic addend where the volatility σ k determines the
level of uncertainty.

Geometric Brownian motion is a standard stochastic diffusion
model in financial economics and has well-known properties. As
we are applying a stochastic diffusion model to represent SLR
uncertainty, we selected this model for its simplicity, the small
number of parameters that is uses, and its characteristics. One
of its main features is that its value grows exponentially, which
adapts to IPCC scenarios, where the value is expected to behave
in this way. This makes for a better calibration2.

One of the characteristics of this model is that it does not
generate negative values, so Vk

t > 0 at all times. For this reason,

the initial value Vk
0 must be different from zero, otherwise we

would always obtain dVk
t = 0. This limitation can be solved

by using a base level Vk
0 placed below current sea level whose

value is calculated optimally. Thus, the effective SLR at time t Skt
is estimated as the difference between Vk

t and Vk
0 . S

k
t = Vk

t − Vk
0 .

At a time t this distribution process generates a log-normal
distribution where the first moment (mean) is defined by
Equation (2):

E(Vk
t ) = Vk

0e
αkt (2)

2Other, more sophisticated stochastic models such as mean-reverting models do

not show this behavior.
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And the median is defined by Equation (3):

median(Vk
t ) = Vk

0e
((αk−(σ k)

2
)t (3)

The variance is expressed by Equation (4):

Var(Vk
t ) = (Vk

0 )
2
e2α

kt

(

e(σ
k)
2
t − 1

)

(4)

If we now define Xk
t = lnVk

t then Xk
t follows a normal

distribution with the moments defined by Equations (5)–(7):

E(Xk
t ) = Xk

0 +
(

αk −
σ 2
V

2

)

t (5)

Var(Xt) = (σ k)
2
t (6)

ln(Vt) ∼ φ[ln(V0)+ (αk −
(σ k)

2

2
)t, σ 2

V t] (7)

As mentioned, the model is calibrated using the median SLR data
for 2030, 2050, and 2100 and the 95% upper percentile in 2100
presented in Table 1. The results of the calibration process are
shown in Table 2.

These values are calculated as follows: first we obtain the value

of SLR (Vk
0 ) in each city k and αk − (σ k)

2

2 in a way that meets
Equation (8):

median (Vk
t ) = Vk

0e
((αk−(σ k)

2
)t = Vk

0 +median (Skt ) for t

= 23, 43, 93 (8)

TABLE 2 | Estimated values obtained for the different parameters in the

calibration process.

City Parameters

Initial sea level, Vk0 (cm) SLR rate (αk ) Volatility (σk )

Amsterdam 116.2 0.005241 0.013983

Athens 4.9 0.038811 0.069485

Barcelona 43.0 0.010289 0.022599

Copenhagen 64.8 0.006950 0.018676

Dublin 61.7 0.006376 0.021087

Glasgow 130.7 0.005223 0.012640

Hamburg 18.2 0.014321 0.051262

Helsinki 24.7 0.014101 0.046761

Istanbul 32.8 0.012143 0.023730

Izmir 65.7 0.007651 0.024106

Lisbon 47.8 0.009909 0.020866

London 165.3 0.003852 0.012065

Marseille 38.4 0.010685 0.022406

Naples 34.2 0.011363 0.022827

Odessa 21.5 0.015104 0.052212

Porto 46.1 0.009627 0.021678

Rotterdam 87.9 0.006562 0.015936

St. Petersburg 49.8 0.007515 0.027951

Stockholm 6.0 0.038605 0.083213

where the initial year is 2007 and thus t = 23,43,93 correspond to
2030, 2050, and 2100 respectively.

The 95% percentile calibration process is based in the
following lognormal property:

σ k
√
t =

ln(EFKt )

1.645
(9)

where EFKt is the error factor, defined as:

EFKt =
95th percentile (VK

t )

median (VK
t )

(10)

Equations (9) and (10) enable us to calculate the volatility σ k of

each city k. And with the volatility σ k and the value of αk − (σ k)
2

2
calculated previously we can obtain the expected sea-level-rise
growth rate αk for each city.

Using this model, we obtain a probability distribution of SLR
for each city that changes over time. Figure 1 illustrates this
trend in probability for London. Observe that average values shift
toward higher sea levels, but the shape of the distribution also
changes.

Estimating Risk Measures
As previously stated, the use of risk indicators such as the VaR (α)
and ES (α) enables uncertainty to be accounted for by focusing
on tail events. VaR (α) is the value of the loss corresponding
to an SLR in the (α) percentile while ES (α) refers to the mean
expected loss when the VaR is exceed. A full description of
the risk measures can be found in Artzner et al. (1999) and in
the Supplementary Material to this paper. In this case we have
selected the 95% percentile to represent the very low-probability
but high-damage events that are attracting increasing attention
in the literature of climate change economics (Weitzman, 2009,
2013; Nordhaus, 2011). The rationale behind assessing these
events is the huge scale of the potential damage, despite their low
probability of occurrence (Pindyck, 2011).

The GBM stochastic model defined by Equation (1) is now
used to generate a large number of scenarios using Monte Carlo
simulation methods that enable us to calculate the risk of damage
caused by SLR using the VaR (α) and the ES (α).

The first step in this process is to find a discretization
algorithm which is both exact and simple, i.e., with which the
differential equation can be integrated exactly; the result is as
follows:

St = S0e
(α− σ2

2 )t + σ
∫ t
0 dW (11)

Equation (11) is the solution to stochastic differential Equation
(1) (see Kloeden and Platen, 1999).

Now, over a time step 1t we have:

St+1t = St + 1S = Ste
(α− σ2

2 )1t+σ
√

1tε (12)

where 1S denotes the change in S over 1t, and ε stands for
a random sample from a N(0,1) distribution. This calculation
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FIGURE 1 | Probability distribution for scenario RCP 8.5 over time for London.

follows the method presented in Abadie and Chamorro (2013),
where a Monte Carlo method is applied together with stochastic
diffusion models. Equation (12) corresponds to the use of a
numerical method (in this case Monte Carlo) for resolving
(Equation 11).

Note that (Equation 12) does not depend on the size of 1t.
Therefore, 1t need not be small. Indeed, if there is just one
risk value which depends only on the terminal value of the asset
then the latter can be simulated in a great leap using a time
step of length T. However, there is still a minor error that can
arise from using a finite number of random numbers (Abadie
and Chamorro, 2013). The geometric Brownian motion has this
property: formula (12) can be used for 1t = 1 and also for
1t = 20 years. In our case, using Monte Carlos simulations
for 1t = 93 years and applying Equation (12), we obtain the
probability distribution of SLR in 2100 for each city. Equation
(12) is a property of the GBM stochastic model. In other types of
stochastic process each Monte Carlo realization must usually be
carried out step by step for small 1t values.

In this case we use 5,000,000 Monte Carlo simulations for the
RCP8.5 scenario of each city’s sea-level rise. The large number
of simulations enables us to approximate almost exactly the
theoretical distribution of Skt at time t. This can be proven by
finding the median and the 95th percentile of the simulated
values and comparing them with the theoretical values. Using the
95th percentile we have 250,000 simulated values for the most
unfavorable situations, which enables us to obtain highly accurate
values of VaR (95%) and ES (95%). Any value of confidence
level could be used. As stated above, in this case we consider
a confidence level of 95%, which corresponds to the worst 5%

of cases. Table 3 shows our simulated values for 2100 compared
to those estimated by Kopp et al. (2014). Because we focus on
the worst cases, the model is calibrated using the 95th percentile
in 2100 and the median in 2030, 2050, and 2100. Thus, the
simulated values obtained are exactly the same as those obtained
by Kopp et al. (2014) for this percentile and the median, but differ
slightly for the 5th percentile. With our calibration, we now have
a stochastic diffusion model for each city and we can do risk
calculations for any given date. The calibrated stochastic diffusion
model could also be used to calculate real options.

The Economic Damage Function
Once the probability distribution of SLR is obtained, the objective
is now to calculate the economic losses in each city. To that end,
the damage function for each city k at each time t is defined as
follows:

Dk,t = f (Skt , t) (13)

At time t the function presents the following form:

Dk,t = f 1(Skt )+ f 2(t) (14)

where f 1(Skt ) represents the impact of SLR at time t, while f 2(Skt )
shows the socioeconomic impacts in the absence of SLR. The
additive damage specification of Equation (14) is a limitation
that arises from the data available: on the one hand, we have the
exposure of assets and population at risk. This exposure changes
over time due to socioeconomic development. On the other hand,
for each city we have an area at risk of coastal flooding that
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TABLE 3 | Theoretical and simulated values of sea-level rise in 2100 (cm).

City Results of Monte-Carlo simulation Kopp et al. (2014)

(5.000.000 paths)

Median Mean P95 Median P95

Amsterdam 69 70.7 115 69 115

Athens 19 25.0 67 19 67

Barcelona 66 68.6 113 66 113

Copenhagen 57 59.0 99 57 99

Dublin 44 46.2 86 44 86

Glasgow 81 82.6 128 81 128

Hamburg 32 38.5 95 32 95

Helsinki 59 67.9 151 59 151

Istanbul 70 72.7 117 70 117

Izmir 61 64.5 120 61 120

Lisbon 72 74.4 119 72 119

London 67 68.6 116 67 116

Marseille 60 62.3 102 60 102

Naples 62 64.4 104 62 104

Odessa 53 63.1 149 53 149

Porto 66 68.5 112 66 112

Rotterdam 72 73.9 118 72 118

St. Petersburg 47 50.6 101 47 101

Stockholm 17 25.7 80 17 80

will increase due to sea-level rise. We thus assume that damage
consists of the sum of the socioeconomic effect plus the damage
caused by sea-level rise.

The city-specific damage function has three main
components:

(i) The local SLR Skt at time t in each city, estimated using
the stochastic GBM model as described in Section Future
Projections of SLR at City Level

(ii) The damage based on the population and assets at risk
of coastal flooding together with the socio-economic
development of each city in the future from Hallegatte
et al. (2013)3. Note that as a result damage also varies
in a deterministic way following future socio-economic
development.

(iii) The probability of different extreme flood levels in each
city. This information was obtained from our stochastic
model together with the damage function from Hallegatte
et al. (2013), which incorporates results from the DIVA
model (Vafeidis et al., 2008) on the probability of extreme
events. The effect of coastal extreme events is added to the
expected SLR. Consequently, losses can happen even when
flood defenses are sufficient to cope with the (mean) relative
sea-level rise.

In areas where there are coastal defenses, we assume that they fail
to provide any protection once they are overcome, i.e., once sea
level exceeds the height of the defense infrastructure.

3Two possible socio-economic scenarios are developed by Hallegatte et al. (2013):

in the first the population of every city in a country grows at the same rate, and

in the second scenario population growth is limited to 35 million inhabitants. The

data from the second scenario is used here.

TABLE 4 | European cities ranked by annual average losses (AAL) in 2100.

City Annual average losses (million US$)

2030 2050 2070 2100

Istanbul 201 1400 3837 9806

Odessa 116 836 2432 6577

Izmir 132 915 2442 5746

Rotterdam 237 1219 2716 5511

St. Petersburg 106 577 1435 3274

Lisbon 65 354 862 1891

Glasgow 30 218 631 1558

Dublin 48 272 681 1504

Marseille 13 101 318 810

Barcelona 18 124 339 797

Hamburg 68 221 422 775

London 56 190 375 703

Amsterdam 39 137 275 523

Porto 19 87 210 460

Copenhagen 22 81 176 368

Naples 10 52 128 290

Stockholm – 0.6 5 91

Athens – 0.5 3 86

Helsinki 3 8 19 53

Total loss 1181 8842 19,376 42,924

In this way we calibrate a continuous damage function for
each city using discontinuous data. Themain factor that increases
damage is found to be SLR, but both factors obviously contribute
to increases in risk over time.

RESULTS AND DISCUSSION

Stochastically estimated annual average losses for main European
coastal cities are shown in Table 4. Note that overall values
range from US$1.2 billion in 2030 up to US$40.8 billion by
the end of the century. The ranking of cities that can expect
the greatest losses changes depending on the reference year. In
2030 it is led by Rotterdam, followed by Istanbul and Izmir.
No loss is expected for Athens and Stockholm in 2030 because
eustatic SLR is offset by other local processes. In 2050 losses in
Istanbul can be expected to increase 7-fold and the Turkish city
replaces Rotterdam at the head of the ranking. Losses increase
significantly for all cities with respect to 2030, but the top five
cities remain the same throughout the period. By the end of
the century Istanbul remains as the city with the biggest losses,
followed by Odessa, Izmir, and Rotterdam. For the top five cities
damage is expected to increase between 4-fold and more than 7-
fold with respect to 2050. Athens and Stockholm show negative
expected sea-level rises in 2030, but we do not assume any benefit
in this initial behavior. These values are comparable to other
values in the relevant literature.

Using Monte Carlo simulations enables us to go one step
further and obtain the distribution of damage for each city.
For illustrative purposes, Figures 2, 3 present this damage
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FIGURE 2 | Damage distribution in 2100 and uncertainty distributions for the top 4 European cities under RCP8.5. Note that the vertical scale differs

depending on the city.

distribution for the top 8 cities in the ranking in 2100. Observe
that the horizontal axis is different in each figure and the vertical
axis changes for each city.

Having the probability distribution of losses for different years
enables us to measure risk for tail events. When attention is
focused on low-probability but highly negative events through
the estimation of risk measures, the results are dramatically
higher than those in Table 4 (see Figure 4).

The VaR (95%) and ES (95%) estimated for the nineteen
European cities show aggregate values of US$ 4.8 and 8.2 billion
in 2030, respectively. These aggregate losses increase to US$ 92.4
and 114.8 billion in 21004. The top five cities in the ranking
of damage do not change when risk measures arfe considered,
although the 5% of worst cases for losses in 2100 are more than
double the annual average losses. The results of the VaR (95%)
and ES (95%) for each city are shown in Table 5. Further results
are provided in the Supplementary Material.

The top five cities are the same as when the analysis focusses
on annual average values but the order changes. In 2030 Istanbul
is the city most at risk according to ES (95%) –that is, the mean
damage for those worst 5% of cases— followed by Rotterdam and
St. Petersburg. By 2050 the ranking is still led by Istanbul, but
now followed by Odessa, Rotterdam, and Izmir. The Expected
Shortfall in 2050 for the top cities is 4–5 times higher than in

4Of course, this is the case of perfect positive correlation between sea-level rise in

every city. For the sake of simplicity when describing the results, we assume that if

the worst scenario happens in one city it also does so in the rest.

2030. By 2100, ES (95%) is three to 7-fold the figure for 2050.
By the end of the century Izmir has moved up to third place.

A comparison of the damage in the worst 5% [(i.e., ES (95%)]
with the trend in each city’s GDP reveals that in 2030 every
city except Istanbul and London has a projected GDP lower
than US$ 220 billion while ES (95%) remains below US$1.4
billion. London and Istanbul both have higher city GDPs than
the rest, but the latter presents the highest risk: in excess of
US$ 2 billion (Figure 5). By 2070 the relationship between risk
and GDP varies: Istanbul shows the highest city GDP at over
US$1200 billion, but also the highest risk at almost US$16 billion.
London’s GDP doubles to more than US900 billion; risk increases
3-fold but remains below US$900 billion. Risk increases 10-fold
in the case of Odessa, from US$1.2 billion in 2030 to more than
US$11 billion by 2070, while the city’s GDP remains belowUS$72
billion. Following the ranking of cities with highest risk. Izmir.
Rotterdam and St. Petersburg show significant increases in ES
(95%) in relation to city GDP.

Results under Different Probabilities for
RCP8.5
The results presented so far are for RCP8.5 only, i.e., they assume
a 100% probability of occurrence for this scenario. Our reason for
not considering other scenarios is that we are only focusing our
attention on the worst 5% of cases and most of them are found
within the probability distribution of damage in the RCP8.5
scenario. In this case we perform a sensitivity analysis to see
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FIGURE 3 | Damage distribution in 2100 and uncertainty distributions under RCP8.5 for the European cities ranked 4–8 in Table 4. Note that the vertical

scale differs depending on the city.

how the results change if RCP8.5 is allocated a lower-than-
100% probability. Table 6 shows the results for 25% and 50%
probabilities of RCP8.5 in 20505. Reducing the probability of
RCP8.5 lowers the risk for all cities. The top five cities in the
ranking remain the same.

If the same process is followed for 2100 similar results emerge:
the top five in the ranking are the same, but Izmir is now third and
Rotterdam drops to fourth. For Istanbul and Odessa, the risk is
reduced approximately by one third (31% and 34%, respectively)
when the probability of RCP8.5 is 25%. The reduction is lower for
the rest of cases (see Table 7).

CONCLUSIONS

In the light of potential climate damage, the economics of
adaptation are currently receiving great attention, particularly
those studies that can offer reliable estimates that are useful
for decision making. In this paper we estimate economic losses
related to SLR in coastal cities. But we do so while paying special
attention to one highly relevant factor: uncertainty. This factor
needs to be carefully considered when calculating economic
damage but most previous studies fail to properly account for it.

We incorporate three major innovations with respect to
previous studies assessing expected economic losses from coastal
extreme events. The first is the use of local relative SLR
projections for each city which incorporate not only eustatic

5Further results are included in the Supplementary Material.

sea-level but also other processes identified at each site, including
site-specific probability distribution parameters as defined by
Kopp et al. (2014).

The second innovation is that instead of approaching SLR
deterministically we model it stochastically using a stochastic
diffusion model. This modeling approach enables us to account
for uncertainty and provides a diffusion model that can be used
for many other calculations and at any given point in time.

The third innovation is a city-specific assessment of risk,
drawn up by calculating two risk measures: (i) the VAR (95%),
which represents the economic losses corresponding to the 95th
percentile of the distribution of damage; and (ii) the ES (95%),
which gives the average damage of the worst 5% of cases.

We believe this information to be highly relevant for
decision making as it helps provide a much precise, deeper
understanding of the risk faced. We acknowledge that dealing
with many different sources of uncertainty is a challenging task,
so innovative economic decision-support tools such as those
identified by Newton and Weichselgartner (2014) and Watkiss
et al. (2015) among others, are very necessary.

In this paper we have adapted methods for dealing with
uncertainty that are well-known in other fields of economics
(such as financial economics) and have successfully applied them
to climate change adaptation in 19 European coastal cities. These
methods enable us to turn our attention to so-called tail events.
Our results show that despite their low probability of occurrence,
the huge scale of the damage from them in comparison to annual
average ones requires that they be very carefully considered in
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FIGURE 4 | Risk for main European coastal cities ranked by Expected Shortfall (ES) in 2050, under RCP8.5. Damage is measured in millions of US dollars.
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TABLE 5 | Risk for main European coastal cities ranked by Expected Shortfall (ES).

City 2030 2050 2070 2100

VaR(95%) ES(95%) VaR(95%) ES(95%) VaR(95%) ES(95%) VaR(95%) ES(95%)

Istanbul 1101 2071 5716 7748 11,954 15,618 25,895 33,649

Odessa 485 1191 3749 5281 8276 11,124 18,707 24,994

Izmir 436 711 2429 2949 4982 5839 10,300 11,912

Rotterdam 998 1368 3151 3758 5554 6433 9803 11,170

St. Petersburg 525 948 2326 3062 4382 5499 8135 9986

Glasgow 89 258 956 1278 1945 2415 3685 4424

Lisbon 221 322 901 1081 1728 2011 3340 3834

Dublin 191 314 855 1060 1604 1905 2944 3421

Marseille 36 64 331 418 729 868 1524 1773

Barcelona 60 107 367 453 744 880 1488 1729

London 199 261 497 593 807 937 1310 1493

Hamburg 197 244 474 549 774 879 1283 1438

Amsterdam 125 162 329 388 549 632 922 1046

Porto 56 83 227 275 434 509 834 963

Copenhagen 76 110 240 297 427 514 769 913

Stockholm 0.2 0.3 1.5 2.4 12 59 418 692

Naples 31 43 129 156 257 300 517 596

Athens 0.1 0.2 1.1 1.5 10 34 366 564

Helsinki 5 8 25 38 65 89 154 207

Data is shown in millions of US dollars in 2100.

FIGURE 5 | GDP of European cities in 2030 and 2070 vs. ES (95%). under RCP8.5.
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TABLE 6 | Losses in European cities for different probabilities of occurrence of RCP8.5 in 2050.

City 100% Probability 50% Probability 25% Probability

VaR(95%) ES(95%) VaR(95%) ES(95%) VaR(95%) ES(95%)

Istanbul 5716 7748 4230 6321 2639 4838

Odessa 3749 5281 2652 4211 1494 3113

Rotterdam 3151 3758 2652 3318 2072 2828

St. Petersburg 2326 3062 1748 2535 1098 1965

Izmir 2429 2949 2014 2575 1543 2167

Glasgow 956 1278 696 1046 399 790

Lisbon 901 1081 755 951 588 808

Dublin 855 1060 689 912 497 748

London 497 593 418 523 324 445

Hamburg 474 549 412 494 339 433

Barcelona 367 453 298 391 220 323

Marseille 331 418 261 355 182 287

Amsterdam 329 388 280 345 222 297

Copenhagen 240 297 194 256 141 211

Porto 227 275 189 240 145 203

Naples 129 156 108 137 83 116

Helsinki 25 38 15 29 8.9 20

Stockholm 1.5 2.4 1.2 1.9 0.9 1.4

Athens 1.1 1.5 0.9 1.2 0.7 1.0

Cities are ranked by ES (95%) under RCP8.5 (100% probability). Data is shown in millions of US dollars.

TABLE 7 | Losses in European cities for different probabilities of occurrence of RCP8.5 in 2100.

City 100% Probability 50% Probability 25% Probability

VaR(95%) ES(95%) VaR(95%) ES(95%) VaR(95%) ES(95%)

Istanbul 25,895 33,649 20,713 28,329 15,477 23,069

Odessa 18,707 24,994 14,639 20,714 10,614 16,557

Izmir 10,300 11,912 9069 10,767 7710 9547

Rotterdam 9803 11,170 8713 10,188 7473 9113

St. Petersburg 8135 9986 6756 8680 5258 7308

Glasgow 3685 4424 3112 3897 2474 3331

Lisbon 3340 3834 2957 3482 2530 3103

Dublin 2944 3421 2570 3080 2148 2710

Marseille 1524 1773 1333 1596 1121 1407

Barcelona 1488 1729 1303 1557 1097 1374

London 1310 1493 1160 1361 987 1213

Hamburg 1283 1438 1158 1326 1013 1203

Amsterdam 922 1046 823 957 708 859

Porto 834 963 735 871 624 773

Copenhagen 769 913 660 811 540 703

Stockholm 418 692 272 513 143 356

Naples 517 596 456 540 389 480

Athens 366 564 251 433 145 312

Helsinki 154 207 119 171 85 135

Cities are ranked by ES (95%) under RCP8.5 (100% probability). Data is shown in millions of US dollars.
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coastal vulnerability analysis. Local, regional, and national policy-
makers should not settle for traditional approaches but should
seek to introduce risk assessments under uncertainty into their
decision-making processes. This would enable them, for instance,
to define some kind of acceptable level of risk according to the
actual situation of each city and the risk aversion of decision
makers, which would be a key input for effectively implementing
adaptation to climate change. Finally, experience shows that
“disasters are improbable but they do happen,” so policy makers
need to consider them (Newton and Weichselgartner, 2014, p.
131).

Risk is an important variable for policymakers who need
to deal with coastal extreme events in a context of rising sea-
levels and especially for risk-adverse coastal management (Hinkel
et al., 2015). This paper can serve as a guide to help regional,
national, and supranational policymakers in Europe deal with
low-probability, high-risk coastal extreme events. Our approach
reveals not only the damage under the worst 5% of cases but also
the trend in damage according to the RCP 8.5 emission scenario.
In line with the level of risk in each coastal city and the risk
aversion of decision-makers, adaptation measures will need to be
implemented in the near future in order to avoid critical damage.
These decisions should take into account the time needed to
adapt, i.e., investment in adaptation will have to be designed and
planned long enough beforehand to avoid major losses.
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