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Given the rapid rise of environmental DNA (eDNA) surveys in ecology and environmental

science, it is important to be able to compare the results of these surveys to traditional

methods of measuring biodiversity. Here we compare samples from a traditional method

(a manual tow-net) to companion eDNA samples sequenced at three different genetic

loci. We find only partial taxonomic overlap among the resulting datasets, with each

reflecting a portion of the larger suite of taxa present in the sampled nearshore marine

environment. In the larger context of eDNA sequencing surveys, our results suggest

that primer amplification bias drives much of the taxonomic bias in eDNA detection,

and that the baseline probability of detecting any given taxon with a broad-spectrum

primer set is likely to be low. Whether catching fish with different nets or using different

PCR primer sets, multiple data types can provide complementary views of a common

ecosystem. However, it remains difficult to cross-validate eDNA sequencing techniques

in the field, either for presence/absence or for abundance, particularly for primer sets that

target very wide taxonomic ranges. Finally, our results highlight the breadth of diversity

in a single habitat, and although eDNA does capture a richer sample of the community

than traditional methods of sampling, a large number of eDNA primer sets focusing on

different subsets of the biota would be necessary to survey any ecological community in

a reasonably comprehensive way.

Keywords: metagenomics, metabarcoding, environmental monitoring, molecular ecology, marine, estuarine

INTRODUCTION

Environmental DNA (eDNA)—genetic traces of organisms taken from a sample of water, soil,
or other medium—is increasingly useful for ecological surveys, particularly where traditional
sampling is difficult or expensive (Foote et al., 2012; Kelly et al., 2014b). While qPCR techniques
have focused on single species detections to good effect (Mahon et al., 2013; Eichmiller et al.,
2014), high-throughput sequencing using generalized PCR primers offers the promise of a more
holistic view of an ecosystem, revealing hundreds or thousands of taxa present and potentially
their abundance via cheap and relatively easy-to-collect environmental samples (e.g., Leray and
Knowlton, 2015). Nevertheless, questions remain about sequence-based eDNA surveys, even as the
technique becomesmore common in the field. One key question is how to compare eDNA results to
those of traditional (e.g., manually counted) ecological surveys, given that the two sets of methods
can reveal quite different views of an ecological community (Baker et al., 2016).
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A seemingly straightforward way of assessing the performance
of the DNA surveys is to compare sequencing results to a known
community (Kelly et al., 2014a; Evans et al., 2016) or to compare
eDNA results to those from a traditional sampling technique
(Lacoursière-Roussel et al., 2015; de Vargas et al., 2015; Port
et al., 2016). These studies have tended to show a correlation
between results obtained through traditional sampling methods
and those using environmental DNA (but see Adams et al., 2013),
although the relationship between traditionally collected results
(e.g., manual counts or biomass) and relative eDNA sequence
abundance clearly varies by taxon and with environmental
context.

Results from eDNA need to be comparable to—and integrated
with—information from other, more traditional sampling
methods, and therefore we must be able to understand them in
the context of results from methods that have been the basis of
ecology and environmental science up to this point. However,
developing such an intuitive and integrative understanding is
challenging, especially because in many cases we should expect
different methods of environmental sampling to yield different
results. Like any survey method, eDNA detects only a portion of
the biodiversity present in the sampled location. In the marine
realm, sampling tools and techniques such as settlement plates,
various nets, and aerial surveys reveal quite different sets of taxa,
producing a variety of ecological patterns that are not easily
compared. Similarly, eDNA surveys may detect distinct suites of
species that are not easily comparable to results obtained through
manual or visual surveys (Shelton et al., 2016).

As with traditional survey tools, eDNA studies should
be explicit about the ways in which methodological choices
determine the communities observed. One means of doing so is
to survey multiple genetic markers (“loci”) simultaneously. Just
as the results from any single genetic marker may differ from
those of manual or visual sampling techniques, so too may the
results differ among genetic markers (Cowart et al., 2015). Using
multiple markers allows the researcher to assess the degree to
which the detected ecological communities vary as a result of
the primer set used, and where the taxa amplified by multiple
markers do overlap, offers a chance to cross-validate detections
of particular taxa of interest. To the extent that different survey
techniques reveal non-overlapping portions of a fauna (and
hence are not useful for cross-validation), they nevertheless may
be used in combination to reveal a broader suite of taxa than
would otherwise be possible.

Here, we present eDNA data from 3 genetic markers—16S,
18S, and COI—for water samples collected alongside a traditional
tow-net survey of epifauna in nearshore eelgrass (Zosteramarina)
habitat in Puget Sound, Washington, USA. Taken together, our
four data sources (three genes and one set of manually counted
animal species) detected at least 366 taxonomic Families in
28 Phyla across 8 Kingdoms of Eukaryotes, including many
conspicuous species commonly associated with this habitat. We
compare the Families detected with different genetic loci to
those collected in the manual tow-net. These comparisons then
motivate a simulation of species detections with multiple eDNA
loci as well as a discussion of the divergent and complementary
views of an ecosystem that different collection methods afford.

METHODS

Environmental Setting and Field
Collections
We sampled 4 sites in nearshore eelgrass (Z. marina) habitats
adjacent to watersheds along a gradient of urbanization in Puget
Sound, Washington, USA, as part of a larger project focused on
the effects of such urbanization (Kelly et al., 2016; Samhouri et
al., in revision). Previous work identified imperviousness (i.e.,
surface areas that reduce infiltration and increase runoff; Schueler
et al., 2009) as a variable that effectively reflected differences in
upland watersheds associated with urbanization (Samhouri et al.,
in revision), and the urbanization gradient was also associated
with changes in the eDNA community detected with 16S eDNA
(Kelly et al., 2016). Here we focus on a subset of sites that reflect
a range of impervious surface cover in upland watersheds (7–
42%) to maximize the likely diversity of taxa captured, but our
present purpose is to evaluate the results of different ecological
sampling methods on a common pool of species rather than to
reflect ecological trends along an urbanization gradient. Further
site details and coordinates are given in Table S1.

As detailed in Samhouri et al. (in revision) and Kelly et al.
(2016), we collected epibenthic macroinvertebrates along a 100m
length of coastline at each of the study sites (n = 3 transects
per site, 4 sites). Collections occurred in July 2014 using a
benthic sled (1 × 1m opening, 1 mm mesh), towed over
parallel, 10m transects approximately 50m apart (−0.5m tidal
elevation). Invertebrates were separated from the tow net in
the field and preserved for quantification. Manual counts of
invertebrates yielded 49 unique taxa—of which 36 were identified
to Family level—including primarily malacostracan crustaceans,
gastropods, and fish (Figure S2; Table S2).

We simultaneously collected 1-L water samples for eDNA
analysis at each transect, immediately below the water surface
using a ca. 3.3m pole to hold the sampling bottle, with the goal
of reducing human contamination. We kept these samples on
ice until they could be processed in the lab (within hours of
collection). We filtered the total volume of the samples (1 L)
onto cellulose acetate filters (47mm diameter; 0.45 um pore
size) under vacuum pressure, and preserved the filter at room
temperature in Longmire’s buffer following (Renshaw et al.,
2015). Deionized water (1-L) served as a negative control for
filtering. We extracted total DNA from the filters using the
phenol:chloroform:isoamyl alcohol protocol in Renshaw et al.
(2015), resuspended the eluate in 200 uL water, and used 1
uL of diluted DNA extract (1:100) as template for PCR. See
Supplemental Methods for additional sampling details.

eDNA Amplification and Sequencing
We used three primer sets for eDNA amplicon analysis, each
targeting a different gene region, with the goal of detecting
large numbers of taxa present in the sampled environment,
which we could compare against the manual tow-net surveys
of macroscopic animals. The primer sets amplified two
mitochondrial loci [16S, ca. 116 bp, (Kelly et al., 2016; O’Donnell
et al., 2016; Shelton et al., 2016), targeting metazoans exclusively;
COI, ca. 315 bp, (Leray et al., 2013), targeting eukaryotes], and
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one nuclear ribosomal gene [18S, ca. 385 bp, (Stoeck et al.,
2010), targeting eukaryotes]. We note that not all primers are
expected to amplify all taxa, just as not all nets are expected
to catch all fish; our purpose here is to compare the results
of commonly used survey tools, rather than to ensure survey
methods are likely to result in taxonomic overlap. We generated
amplicons using a two-step PCR procedure, described in
O’Donnell et al. (2016), to avoid the taxon-specific amplification
bias that results from the use of differentially indexed PCR
primers (commonly used to include multiple samples onto the
same high-throughput sequencing run to minimize costs). The
specific PCR protocol for each locus is included in Supplemental
Methods.

We generated three (COI, 18S) or four (16S) PCR replicates
for each of 18 water samples (3 samples per site, 6 sites) in
order to assess variance due to amplification. We simultaneously
sequenced four positive [Tilapia; Oreochromis niloticus, or
Ostrich (Struthio camelus) tissue; selected because these taxa
do not occur in the Puget Sound region and therefore could
not be present in the field samples] and three negative
controls (de-ionized water) with identical replication. Following
library preparation according tomanufacturers’ protocols (KAPA
Biosystems, Wilmington, MA, USA; NEXTflex DNA barcodes,
BIOO Scientific, Austin, TX, USA), sequencing was carried out
on an Illumina Nextseq (150 bp, paired-end; 16S) or MiSeq (250
bp, paired-end; 18S and COI) platform.

Sequence Processing, Bioinformatics, and
Annotation
We processed the resulting sequence reads with a custom
Unix-based script (O’Donnell, 2015), which calls third-party
programs Swarm, Cutadapt, and PEAR (Martin, 2011; Zhang
et al., 2014; Mahé et al., 2015) to move from raw sequence
data to a quality-controlled dataset of counts of sequences
from operational taxonomic units (OTUs). We controlled for
contamination in three ways. First, we dropped samples that
had highly dissimilar PCR replicates (Bray-Curtis dissimilarities
> 0.8). To address putative contamination, we used a site-
occupancy model to estimate the probability of OTU occurrence
(Royle and Link, 2006), using multiple PCR replicates of
each environmental sample as independent draws from a
common binomial distribution. We eliminated from the dataset
any OTU with <80% estimated probability of occurrence.
Finally, we minimized the effect of potential cross-contamination
among samples as follows: (1) we calculated the maximum
proportional representation of each OTU across all control
samples, considering these to be estimates of the proportional
contribution of contamination to each OTU recovered from the
field samples. (2) We then subtracted this proportion from the
respective OTU in the field samples. Overall contamination was
low; for example, 94–99.9% of positive control reads annotated
to Oreochromis or Struthio. The result was a high-confidence
dataset in which sample replicates and site replicates clustered
together tightly in ordinal space following principal component
analysis (Figure S1). Sequences are available as NCBI accession
No. SAMN06173488.

We assigned a taxonomic name to each OTU sequence using
blastn (Camacho et al., 2009) on a local version of the full NCBI
nucleotide database (current as of July 2016), recovering up
to 50 hits per query sequence and reconciling conflicts among
equally good matches using the last common ancestor approach
implemented in MEGAN (Huson et al., 2011).

For clarity, in the following we refer to the results for
community composition from the three loci and the single
manual counts as four “datasets.”

Community Composition and Diversity
We rarefied read counts of Family-level detections from each
PCR replicate to allow for comparison across water samples
and across datasets. For the three eDNA loci we generated
1000 rarefaction draws of each sample (ca. 3 × 104 reads each,
reflecting the smallest sample size of the field samples) using
the vegan package for R (Oksanen et al., 2015). We carried out
subsequent analyses on a single, illustrative rarefaction draw;
these did not vary substantially among the rarefaction replicates
(the standard deviation of the number families among rarefaction
replicates at each locus was 0.7, 1, and 2.5% of the mean number
of families for 18s, COI, and 16s, respectively). To generate the
Family-level accumulation curve, we sampled from a pool of all
1000 rarefaction replicates, to ensure adequate representation of
the sampling error due to rarefaction. To assess variance among
PCR replicates, among samples, and among sites with the eDNA
data we used un-rarefied data.

We assessed the degree of taxonomic overlap among datasets
by counting taxonomic Families occurring within and across
datasets (Table S2). First, for each dataset, we asked whether
a Family was detected at any of the sampled geographic
sites in Puget Sound, and reported the number of Families
detected in common across each of the 4 datasets. We then
compared the value of adding geographic sites for each dataset
individually (and for combinations of datasets) by constructing
an accumulation curve of unique taxonomic Families. To do so,
we took 1000 random ecological communities from the pool of
1000 rarefaction draws for each eDNA locus at each geographic
site, and reported the accumulation of unique Families as the
number of sites increased. These accumulation curves reflect the
marginal benefit (in terms of additional Families detected) of
sampling one additional geographic location with one or more
collection methods or loci.

Different sampling methods capture different subsets of
biodiversity, and each has taxonomic selectivity. To illustrate
the biases of each of our methods, we mapped Family-level
detections in each of our datasets onto a taxonomic tree. The
taxonomic classification was determined using the NCBI Entrez
Taxonomy Database (http://www.ncbi.nlm.nih.gov/taxonomy)
and the phylogenetic tree was constructed using phyloT (phyloT:
Phylogenetic Tree Generator, 2016). We then visualized the tree
using the Interactive Tree of Life (Letunic and Bork, 2007, 2016)
and overlaid data on locus-specific detections. The tree can be
viewed at http://itol.embl.de/tree/1716783125293921474501988.
We additionally plotted the proportion of annotated OTUs by
Kingdom and by dataset (Figure S2).
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Assessing Consistency among eDNA
Markers
We assessed taxonomic consistency for each pair of genetic
markers in twoways, both using nonparametric correlation. First,
for Families detected in both of a pair of loci, we asked whether
the number of OTUs in each Family (N = number of Families
with detections in a pair of loci) was correlated across loci.
Because the number of OTUs per taxonomic Family may vary
between gene fragments as a result of locus-specific differences
in lineage divergence rates (i.e., OTUs per taxonomic Family),
read lengths, mutation rates, and differences in taxonomy within
different organismal groups, we also assessed the number of
sequence reads at each locus that were assigned to any given
taxonomic rank. We then tested whether read-counts-per-taxon
(e.g., Family, Order, Class, or Phylum) were correlated for each
pair of genetic markers.

Partitioning Variance
We calculated the variance in OTU communities among
PCR replicates (for the three eDNA loci), among samples
within geographic sites, and among sites for each of our
datasets with a PERMANOVA test on Jaccard distances among
presence/absence versions of our non-normalized data. These
variances are useful for parameterizing models that relate
sequenced communities to biomass in the field (Shelton et al.,
2016), as well as for developing eDNA sampling designs with
adequate statistical power to test hypotheses of interest. To
further examine the source of variance among technical (PCR)
replicates, we also calculated Bray-Curtis dissimilarity among
technical replicates for deciles of OTU abundance at each locus.

Occupancy Modeling
Species (or “site”) occupancy modeling provides an accessible
framework for interpreting taxon detections in eDNA studies
(Lahoz-Monfort et al., 2015; see also Ficetola et al., 2015; more
broadly, seeMiller et al., 2011; Royle and Link, 2006), andwe used
this method in a simple simulation to assess the value of using
multiple eDNA loci for biodiversity surveys. Explicitly assessing
the eDNA detection probabilities is especially important in
contexts such as invasive (Jerde et al., 2011; Lodge et al., 2012)
and endangered (Thomsen et al., 2012) species detection, where
policy decisions might hinge on eDNA results.

Occupancy modeling is typically considered in a single taxon
context. For example, in qPCR assays the probability of detection
is strictly a function of the concentration of target DNA in a
sample. By contrast, for sequencing studies occupancy models
need to be extended to a multi-taxon community and therefore
“detection” of a given taxon depends upon a series of analytical
steps (from amplification to annotation) as well as on relative
abundance of a sequence. Nevertheless, occupancy modeling can
be applied to communities and is an appropriate framework
for interpreting eDNA results from sequencing studies. An
important component of interpreting the community observed
from eDNA studies is then understanding how using multiple
loci can affect the assessment of a given community. We
performed simulations to compare the use of different loci singly
or together in concert to characterize a community from eDNA.

We note that this occupancy modeling is a special case of the
more general framework elaborated in Shelton et al. (2016),
which uses a Bayesian hierarchical model to estimate community
structure from eDNA reads. However, for ease of computation
our simulation below uses a version of binomial occupancy
modeling.

Our simulation supposed 100 species were present in a
sampled environment. We let the probability of detecting each
of those 100 species vary among species and among each of
5 genetic loci (labeled loci A–E), drawing the values of true-
positive detection rates (p11, i) for each locus i at random from
five different beta distributions (p11 stands for the probability
of a species being detected—1, as opposed to 0, which would
signify non-detection or absence—given that it is present). These
distributions broadly reflect the trends we observed in our
empirical data, but do not precisely correspond to any real
locus. Locus A amplified ∼70% of the species present with
a probability >0.01, but did so with a median p11_A = 0.1
(i.e., half of the species were detected <10% of the time, even
when they are present). Locus B amplified a greater portion
of the 100 species present (all have p11_B > 0.01), but with
nearly the same median p11_B = 0.11. Locus C was similar
to Locus B, but with a higher median p11_C = 0.19. Locus D
amplified a few species very well, and most very poorly; Locus
E amplified the species present much more poorly, with the
median p11_E = 0.002 (distribution parameters given in Figure 4

caption). Thus, each simulated locus reflected characteristics of
eDNA loci in practice ranging from very general but erratic
loci in A and B to a highly specific and targeted locus in
D. For each locus, we treated the frequency of false-positive
detections (p10, following Royle and Link, 2006) as negligible
given the quality-control of sequencing results that we and other
researchers employ. Under such a scenario, any detection of
a taxon at any locus is evidence of that taxon’s presence in
the field. Consequently, the number of species detected by any
combination of loci was the sum of unique species detected by
any locus.

We simulated a single biological replicate (for example, a
single bottle of water to be analyzed for eDNA) as a single
draw from a binomial distribution, with the probability of each
species being detected by each locus given by the values of p11_A,
p11_B, p11_C, p11_D, and p11_E, respectively. Multiple biological
replicates represented additional independent binomial draws
given those same detection probabilities. We then compared
the number of taxa detected by increasing numbers of loci and
numbers of replicates.

RESULTS

Community Composition and Diversity
Our surveys revealed hundreds of taxa present across the sampled
geographic sites in Puget Sound, representing many of the most
common and characteristic animals from the nearshore habitats
of the region. These included barnacles (Balanidae), mussels
(Mytilidae), and snails (Littorinidae) of the upper intertidal
zone, Cancer and kelp crabs (Cancridae, Epialtidae) of the lower
intertidal zone, fishes (Embiotocidae, Cottidae, Syngnathidae,
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Salmonidae) and seals (Phocidae), subtidal clams (Hiatellidae,
Veneridae), and many other iconic groups. In total, our samples
featured 366 taxonomic Families, with each dataset providing a
different subset of these taxa (Table S2).

Our tow-net surveys recovered 45 distinct animal taxa, of
which 32 could be identified to Family level. eDNA surveys with
PCR primers targeting three gene regions—16S, COI, and 18S—
resulted in sequences detecting a total of 1.8× 104 unique OTUs,
of which a total of 1.3 × 104 could be classified by matching
known sequences in GenBank (Table 1).

Of those that could be annotated, the eDNA samples
represented a total 366 unique taxonomic Families across
the Eukarya, including representatives from 33 Phyla from 9
Kingdoms (Table S2). The identities of taxa detected varied
dramatically across genes, and between genetic vs. manual
methods of sampling (Figure 1). No Family was detected in all
four datasets, while four Families were detected by three data
types, and 72 were detected by two data types. Hence, many of
the Families detected were unique to a given data type (i.e., 290
Families detected only by a single data type), underscoring the
differences in suites of taxa sampled by the different methods.

TABLE 1 | OTUs and annotations by genetic locus, and manual

annotations for comparison.

16s COI 18s Manual Total

Total OTUs 865 2059 15,218 – 18,142

Annotated OTUs 391 425 13,008 – 13,824

OTUs annotated to family 257 319 10,905 – 11,481

Unique families 54 99 261 32 366

FIGURE 1 | Taxonomic Families detected by each method of collecting

ecological data (3 genetic markers and manual tow-net). Numbers at

the intersections of each method reflect the number of Families detected in

common. Numbers in the figure represent annotations from a single

rarefaction draw; these numbers change only trivially across 1000 rarefaction

draws from the raw datasets.

Each dataset showed a distinct phylogenetic selectivity,
consistent with the idea that primer-site mismatches are likely
to be driving the observed patterns (Figure 2). In particular, the
manual tow-net surveys and our 16S primers detected metazoans
exclusively (by design), while the 18S and COI primers also
amplified dinoflagellates, diatoms, green plants, and a variety of
other eukaryotic lineages.

Because each data type reveals a nearly non-overlapping set
of taxa, the accumulation curves reflect the idea that adding
data types dramatically increases taxonomic coverage (Figure 3).
These curves demonstrate, in part, the taxonomic limitations of
the data types. The manual tow-net survey focused exclusively
on macroscopic epiphytic animals living on eelgrass. The 16S
primer set targeted animal taxa exclusively, although it recovered
animals with a broader set of ecologies—for example, benthic
infauna and intertidal species—than did the manual counts,
and its accumulation curve is consequently shifted upward.
COI and 18S detected a wide range of animals, but also
sampled from across the rest of the eukaryotic tree of life,
and the accumulation curves for those two loci accordingly
reflect this phylogenetic breadth. The rates of taxonomic
accumulation accordingly vary significantly across datasets, but
are strictly correlated with asymptotic values, suggesting that
each might be useful for comparing biodiversity across systems
or habitats.

Assessing Consistency among eDNA
Markers
Where a taxon was detected by more than one eDNA marker,
we asked whether the different eDNAmarkers yielded consistent
estimates of diversity within the taxon. The only pair of markers
that yielded consistent results among the taxa shared was COI-
18S. Families detected by both 18S and COI had correlated
numbers of OTUs (Spearman’s rho = 0.37, p = 0.004; N =

61; data log-transformed), while 18S-16S (N = 5) and COI-
16S (N = 7) co-detected Families had uncorrelated numbers of
OTUs.

Between-marker correlations in read-counts-per-taxon
mirrored the OTUs-per-Family results, with the 18S and COI
primer sets reflecting correlated numbers of reads for the Phyla,
Classes, and Families detected at both loci (rho = 0.74, 0.56, and
0.39, respectively; p< 0.01 for each comparison; log-transformed
read-counts; OTUs-per-Order were nonsignificantly correlated).
16S read counts were uncorrelated with 18S or COI read counts
for shared taxa at any rank.

Apportioning Variance in eDNA Sampling
Apportioning the variance of a given sampling method’s results
is critical to interpreting those results, to understanding the
processes that might generate the observed data, and to
comparing results across data types. Given the exponential nature
of PCR reactions and the possibility of stochastic amplification
of any given taxon with a given primer set, it is particularly
important to assess the variability among PCR replicates in eDNA
surveys.

We used a permutation-based analysis of variance
(PERMANOVA) to apportion the variance in Jaccard distances
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FIGURE 2 | Taxonomic tree representing all Families detected across the three eDNA loci (16S, 18S, and COI) and by manual tow-net. Filled symbols

indicate detection; empty symbols indicate non-detection. The tree illustrates the taxonomic selectivity of each sampling method, and does not contain all taxa (i.e.,

detected and undetected) from the relevant clades. Colors follow the convention in Figure 1.

among our geographic sites (N = 4), among our biological
samples within sites (3/geographic site) and among PCR
replicates within each of those biological samples (3 or 4
PCRs/sample). Variance among sampling sites and among water
samples (within sites) was significantly different for each of the
eDNA loci (Table 2), although among-PCR-replicate variance
was as high as among-site variance in the case of 18S.

Variance among PCR replicates appears largely due to
stochastic amplification and sequencing among rare OTUs.
For example, the most common 10% of 16s OTUs had a
mean among-replicate Bray-Curtis dissimilarity of 0.025 (SD =

0.022), while the least common 10% had a mean Bray-Curtis
dissimilarity of 0.741 (SD = 0.026). We observed the same trend
at each locus, with dissimilarity increasing in a saturating curve
as OTUs became more rare (Figure S3).

Occupancy Modeling with Multiple Data
Sources
Our empirical results provide reasonable starting values for a
straightforward simulation of the number of taxa one might
expect to recover with a given number of biological replicates and
a given number of genetic loci. Two pertinent observations arise
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FIGURE 3 | Accumulation curves for each of three molecular datasets,

and for the manual dataset. Also shown are the curves for a combination of

the three molecular datasets and from a combination of all data (molecular +

manual). Molecular datasets are pools of 1000 rarefaction draws (of ca. 3 ×

104 reads) from full datasets. The variance shown in each accumulation curve

represents differences among 1000 random samples drawn from the available

pool of data for each of 1–4 geographic sites. Rates of accumulation differ

significantly for each of the six logarithmic trendlines shown.

TABLE 2 | Variance in Jaccard distances among PCR replicates (within

samples), among samples (within sites), and among sites.

16s COI 18s Manual

Among sites 0.376 0.419 0.358 0.583

Among water samples within sites 0.468 0.256 0.282 0.417

Among PCR replicates (residual variance) 0.155 0.325 0.360 –

Bold indicates significance at p = 0.05; italic indicates residual variance.

from our empirical data: first, the probability of detecting (p11)
any given taxon with any given primer set is likely to be low for
broad-spectrum primers used in eDNA/metabarcoding studies.
Second, Figures 1, 2 show that these detection probabilities vary
widely by primer set and by taxon, such that some primer-by-
taxon combinations have high values of p11, while many other
such combinations have p11 at or near zero (indicating that the
primer set does not amplify the taxon of interest in the sampled
environmental context at the read depth tested). We use these
observations to parameterize our simulation, acknowledging that
these are only starting values for exploration.

For a hypothetical community of 100 species, we simulated
eDNA detections for each of five hypothetical genetic loci
(see Section Methods). Each locus had a different probability
of detecting each of the species present (i.e., p11 varied for
each locus-by-species pairing, as in the real world; see Section
Methods and Supplemental Methods for further model details).
To assess the accumulation of species detections with multiple

loci—and to examine the effect of replicate sampling on
these species detections—we generated 1000 simulated eDNA
communities for 1–5 loci carried out using 1–5 replicates
(Figure 4).

The simulation results suggest several practical conclusions
for real-world eDNA surveys. First, increasing the number of loci
used is likely to increase taxonomic coverage more effectively
than increasing the number of biological replicates sequenced
with a given locus. For example, using 2 loci rather than one
approximately doubles the expected taxonomic coverage in a
single replicate (median 29 species detected vs. 15; Figure 4A);
the effect of using 2 replicates with a single locus depends strongly
on the distribution of species detection rates for that locus, but
generally results in a more modest increase in coverage (68%
increase, Locus C; zero increase, Locus D. Figure 4B). Second,
given idiosyncratic amplification of some species by some loci,
using more replicates with a given locus does not guarantee more
taxonomic coverage, as shown by the accumulation curve for
locus D in the right-hand panel. This result is a function of the
essentially binary distribution of p11 across species for locus D
(see inset histogram of p11 values in Figure 4B): locus D detects
a few species with nearly 100% efficiency, and otherwise very
poorly, representing a locus with highly taxon-specific binding.
Consequently, more replication does not result in more species
detected. Finally, the simulation makes clear that even using 5
loci and 5 replicates—more than any current ecological eDNA
study has done to our knowledge—leaves some number of species
undetected. Even our most comprehensive simulated sampling
detected only about 90% of species present.

DISCUSSION

The attraction of eDNA sequencing for ecological surveys is the
ability to detect hundreds of eukaryotic organisms from a water
sample, but the interpretation of eDNA data relative to the results
of established ecological sampling methods is a nascent endeavor
(Shelton et al., 2016). Here, we have compared surveys of a
nearshore marine environment using multiple eDNA markers
and a traditional manual sampling technique. We find that each
survey method reflects a distinct subset of organisms from the
surrounding environment. As a result, sampling with multiple
eDNAmarkers or surveymethods is likely to yield a far richer and
more holistic view of the ecosystem sampled, but the resulting
datasets may have little taxonomic overlap, which can make it
challenging to cross-validate datasets or combine information
to make community-wide inferences. Below, we discuss the
implications of multi-locus (or multi-method) sampling as it is
relevant to core questions of ecological assessment, including
community composition and diversity, likelihood of detection,
and variance among samples.

Community Composition, Diversity, and
Differences among eDNA Markers
Ecology and related disciplines depend upon techniques to
sample and describe communities, ecosystems, and their
properties. For example, larval settlement plates may capture
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FIGURE 4 | Occupancy detection simulations for each of 5 hypothetical eDNA loci. The probability of detection (p11) varied for each combination of 100

hypothetical species and the 5 loci, with values of p11 drawn from beta distributions as follows: p11_A∼Beta (1, 5); p11_B∼Beta (1.5, 10); p11_C∼Beta (1.5, 5);

p11_A∼Beta (0.01, 0.04); p11_A∼Beta (0.2, 10). (A) Accumulation of species detections by number of loci and by number of replicate samples. (B) Accumulation of

species detections by locus and by number of replicate samples, where each replicate is an independent draw from the binomial distribution given probability of

detection p11_i,j (where i is locus A–E and j is species 1–100). Inset histograms illustrate the distribution of p11 values for each locus across the 100 species, with

frequency on the y-axis and the x-axis bounded by 0 and 1. For each panel, variance shown reflects the different numbers of species detected in each of 1000

simulations. R code for simulations is provided in Supplementary Material.

barnacle larvae and bryozoans, but tell us nothing about the
sea lions swimming nearby. Often this selectivity is quite
intentional—perhaps we care about bryozoans, and not about sea
lions—but where unintentional, such selectivity may provide a
misleading picture of the community in ways that often remain
unexplored.

The organisms we detected depended strongly upon the
survey method (e.g., eDNA vs. manual counts) or the PCR
primers used (e.g., 16S vs. 18S eDNA sampling), and each
detection method had strong taxonomic selectivity. Most
relevant to eDNA studies, our data suggest that different primer
sets reveal different draws from a common pool of species
represented in the sampled bottle of water. Given the taxonomic
selectivity apparent among eDNA markers, our results indicate
that differences in detections are most likely driven primarily
by interactions between primer and template DNA rather than
variation in environmental factors leading to abundance in
eDNA, such as organismal DNA shedding rates. If differences in
DNA shedding drive detection differences, we would expect the
same taxa (those with high shedding rates) to be detected across
different loci and to have correlated numbers of OTUs per locus;
neither prediction is borne out in our data.

The different community-level views revealed by manual and
eDNA sampling underscore the importance of complementary
sampling methods for ecology, given that any one set of samples
yields a necessarily selective view of the world; 10 different
sampling methods can yield 10 different results even with small
numbers of target taxa (Valentini et al., 2015). One advantage of
using multiple data types is the ability to see far deeper into an
ecosystem than would otherwise be possible, each providing a
newwindow into a complex living world. Such breadth comes at a

cost, however, because of the nearly non-overlapping suite of taxa
these different datasets encompass, a small handful of datasets
from the same ecosystem may not provide an opportunity
for cross-validation. Neither do our present datasets give us
mutually-informative estimates of abundance such as would be
necessary for combining the different data types to yield a single
view of the ecosystem (Shelton et al., 2016). A large number
of independent surveys—perhaps using many PCR primers that
differed only by one or a few base pairs—might serve both
purposes, and in silico testing before field use might provide a
starting point for estimating the extent of taxonomic overlap
among such primer sets. Whatever the technique used, we view
multi-method and multi-locus eDNA surveys as a significant
advance over single-method ecological data, and perhaps as a
first step toward being able to animate the responses of whole
ecological communities to external phenomena.

Occupancy Modeling
We used the comparison between different survey methods to
derive estimates of eDNA detection probabilities for animal
taxa. Our results suggest that detection rates for particular taxa
are likely to be low (p11 < 0.25) when using broad-spectrum
(“universal”) PCR primers. For example, 6 of 32 (0.19) taxa
caught in the net were also detected with 16S, and 5 of 32 (0.166)
detected with COI. One implication is studies targeting a small
number of known taxa—for example, invasive or endangered
species—are more likely to have success with qPCR assays than
with large-scale eDNA sequencing. Consistent with this idea, the
most high-profile uses of eDNA to date have targeted particular
taxa using qPCR (Thomsen et al., 2012; Mahon et al., 2013;
Eichmiller et al., 2014; Laramie et al., 2015).
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Our empirical datasets reflect the taxonomic selectivity of the
different sampling methods and of the different eDNA primer
sets. For example, the manual tow-net samples contained only
macroscopic animal taxa, while animals are only one of at least
eight Kingdoms detected by the 18S primer set. Hence, for a
given sequencing depth, the 18S primer set is likely to detect
only a small percentage of the traditionally sampled set of focal
taxa (and hence p11_18S will necessarily be low for any given
species). Because the 16S primer set is more narrowly targeted
at metazoans, it is likely to reflect a higher proportion of any
focal set of animals (i.e., p11_16S will be higher than p11_18S for any
given animal species). We note that a previous eDNA sequencing
study (Port et al., 2016) used a primer set targeting a much
smaller suite of species (vertebrates alone), and consequently
detected a high proportion of target taxa known to be present
(0.917).

These detection estimates give us a starting point for
developing an intuition for eDNA sequencing survey results.
Namely, that primer-by-species p11 is likely to scale inversely
as a function of the number of taxa amplified by the eDNA
primer set, given a constant depth of sequencing (i.e., effort).
More narrowly targeted primer sets—such as those targeting
only a particular Family, Class, or Order, or in the extreme,
qPCR primers targeting a single species—are likely to have
much greater detection probabilities. It remains more difficult to
estimate the probability of false-positive detections (p10), because
nearly always there is no complete record of biological diversity
in the sampled natural communities against which to compare
eDNA results. Nevertheless, for well-characterized faunas, these
rates seem likely to bemuch lower than p11 for any given group of
interest, and moreover, common quality-control techniques (e.g.,
Ficetola et al., 2014) likely reduce p10 to near zero.

Multiple detections of the same taxon with different primer
sets—or different sampling techniques—represent independent
detections of that taxon. As a result, multiple data types are useful
for evaluating the probability that a particular taxon is or is not
present. One implication of this straightforward observation is
that multiple eDNA markers can be useful for greatly improving
estimates of the probability that a species is present, or for rapidly
increasing taxonomic coverage. This is particularly useful when
water samples are scarce or expensive; multiple genes provide
an inferential benefit even when drawn from the same sample
of water. Moreover, because our simulation assigned detection
probabilities to each locus independently and with generally low
probabilities, the result is a conservative estimate of the value of
multi-locus data. The value of additional loci would be greater
where loci are more taxon-specific.

We emphasize that the absolute values of detection
probabilities are highly context-specific. For example, greater
sequencing depth is likely to increase the probability of a true
positive detection (p11) for any given species-by-primer set
combination, and the calculation is highly sensitive to the
completeness of the annotation database (e.g., GreenGenes,
SILVA, or as here, the BLAST nucleotide database, which is
not curated in the same way as are true annotation databases).
Nevertheless, the values we estimate here provide a way of
building intuition about reasonable expectations for eDNA

sequencing surveys, and for making selectivity of traditional
survey techniques explicit by putting their detection rates in
context.

The occupancy simulations also underscore a final point about
the use of multiple loci—or indeed, any set of multiple survey
methods, molecular or not—to canvass biological diversity in
an area. Our simulations suggest that some fraction of species
will remain undetected even with intensive molecular surveys.
This result of course depends upon the specified detection
probabilities and species-by-primer interactions, but is a useful
result to highlight the fact that no ecological sampling method
is likely to reveal the whole of a community. We see this
as a particularly relevant lesson as standardized techniques
for biodiversity assessment (e.g., autonomous reef monitoring
structures, ARMS) become more common around the world
(Duffy et al., 2013).

Apportioning Variance in eDNA Sampling
Two salient observations arise from our assessment of variance
in the eDNA datasets, particularly when combined with those
reported for a fourth genetic marker in Port et al. (2016; 12S gene)
in a different sampled environment. First, markers recovering
a very broad suite of eukaryotic taxa (here, COI and 18S) can
result in community-level samples that vary widely among PCR
replicates. Somewhat more narrowly targeted markers (16S and
12S in Port et al., 2016) tend to be more consistent among
technical replicates. This observation—if supported by data from
a larger number of markers—suggests there is a tradeoff between
consistency and taxonomic diversity recovered at any given
sequencing depth.

Such a result is expected if the detectable diversity in a
water sample is far greater than that which is amplified in any
given PCR reaction, due to stochasticity in early PCR cycles.
Primers only bind to a small fraction of the total number of
potential taxonomic targets during the PCR reaction, and the
result is a different sampling of taxa—even among technical
replicates derived from the same field sample–upon sequencing.
We would expect greater stochasticity among rare OTUs than
among common ones as a result of this sampling effect, and
our data and others’ (Zhou et al., 2011) are consistent with
this expectation. Taken together, these observations suggest that
sequencing more PCR replicates is worthwhile for primer sets
with greater taxonomic breadth.

The corollary observation is that higher-variance markers
are likely to have lower detection probabilities (p11) for any
given taxonomic group (again, sequencing depth being held
constant), because of the same stochasticity in the PCR process.
Each amplification reaction is likely to contain the same high-
abundance amplicons (whether from numerically abundant taxa
or taxa with very high primer-template affinity), but to differ
among low-abundance amplicons, given that each PCR reaction
will reflect an arbitrary draw of rare templates from the large
pool of diversity present. Taken together, the possible associations
among variance, taxonomic breadth, and detection probability
suggest that there is a tradeoff between the number of taxa one
can detect with a single eDNA marker and the confidence with
which one can detect those same taxa.
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CONCLUSION

In order to confidently interpret eDNA results in the context
of existing ecological study, it is necessary to compare the
results of this emerging technique with those of more established
methods of ecological sampling. We find that (1) consistent
with previous results, eDNA captures a far broader selection of
taxa than the accompanying manual survey, (2) the ecological
communities detected vary dramatically among eDNA markers
and between survey techniques, and (3) despite detecting a total
of over 300 taxonomic Families across three eDNA markers,
the genetic survey did not come close to detecting most of
the eukaryotic diversity present. For example, only about one-
third of manually-collected Families were present in the eDNA
survey, and the Family-accumulation curve suggests that many
more markers would be necessary to carry out a near-exhaustive
sampling.

These results highlight the value of using multiple methods in
ecological surveys, given that any one sampling method—even
eDNA, which can reveal hundreds of taxa present at a location—
unavoidably reflects only a small fraction of the true biological
diversity present in the environment. Consequently, a single
method or geneticmarkermay reveal ecological trends important
in some (detected) taxa, but these trends may not necessarily
be general across groups. Accordingly, many microbial and
eukaryotic studies grounded in genetics-based observations of
the environment may have reached questionable conclusions to
the extent these conclusions represent a small and non-random
portion of much larger ecological communities. Our results put
eDNA in the company of other ecological survey techniques, in
that these emergingmethods reveal large (but incomplete) swaths
of biodiversity for which traditional surveys provide valuable
context.
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