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We expect the structure and functioning of marine ecosystems to change over this

century in response to changes in key ocean variables associated with a changing

climate. Organisms with generation times from years to decades have the capacity to

adapt to changing environmental conditions over a few generations by selecting from

existing genotypes/phenotypes, but it is unlikely that evolution through mutation will

be a major factor for organisms with generation times of years to decades. However,

phytoplankton and other microbes, with generation times of days or less, experience

hundreds of generations each year, allowing the possibility for favorable mutations

(i.e., those that produce organisms with fitness maxima nearer to the environmental

conditions at that time) to dominate existing genotypes and survive in a changing climate.

Several laboratories have grown phytoplankton cultures for hundreds to thousands of

generations and demonstrated that they have changed genetic makeup. In particular

Schlüter et al. (2014) grew replicates derived from a single cell of Emiliania huxleyi,

a coccolithophorid with broad geographical and thermal range, for 3 years (∼1250

generations) at 15◦C, and then for a year at 26.3◦C, near their upper thermal limit. During

the last year the intrinsic growth rate increased more or less linearly, which the authors

attribute to genetic mutation. Here we simulate genetic mutation of a single trait (intrinsic

growth rate), both for the control phase and the warm phase of their study. We consider

sensitivities to frequency of mutation, changes with temperature in intrinsic growth rate,

and use the experimental setup and results to place constraints on the way mutations

occur. In particular, all numerical experiments with mutation result in a lag time ∼30–140

generations before a significant increase in realized growth rate occurs. This lag after a

favorable mutation results from the number of generations required for a single favorable

mutant cell to reach a significant fraction of the ∼105 cells in the culture. A numerical

experiment that includes a simple plastic response formulation shows that plasticity could

remove this lag and yield results more in agreement with those observed in the laboratory

study.
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INTRODUCTION

The climate has been changing and is expected to continue to
change—and possibly at an increasing rate (Collins et al., 2013;
Rhein et al., 2013) The oceans are intimately involved in both
regulating and responding to that change, andmarine ecosystems
are and will continue to change in response to changes
associated with a changing climate (Hoegh-Guldberg et al., 2014;
Pörtner et al., 2014; Wong et al., 2014). However, coupled
climate-ecosystem models that predict future changes in marine
ecosystems, for the most part use fixed compartment model
structures for ecosystems with minimally-adaptive parameters:
mainly variable C:N ratios and a temperature dependence of
some intrinsic rates such as phytoplankton growth rate (e.g.,
Chust et al., 2014). While we use these models to predict the
future structure and function of marine ecosystems, considerable
skepticism remains (e.g., Planque, 2015).

Increasing temperature is the first order environmental
change affecting marine species. In response, the ranges of most
species are shifting poleward, nearly 2◦ latitude per decade,∼190
km ± 20%(SE) (e.g., Sorte et al., 2010). In particular, Emiliania
huxleyi blooms in polar regions became more frequent and
of greater extent in SeaWiFS satellite imagery (1997-2007)
compared with CZCS imagery (1978-1986) (Winter et al., 2014).
The large variability in rates of poleward shift for different
species means, for example, that the species assemblage (of fishes)
in a fixed region is changing (Simpson et al., 2011). Other
documented changes in response to warming are in phenology:
for example, open ocean and coastal zooplankton reaching their
biomass maximum ∼1 month earlier over 40 years, correlated
with the total number of “degree-days” above 6◦C over the spring
months of March-April-May (Mackas et al., 2007).

There are three other main mechanisms of adaptation
to climate-related, multi-decadal change in the ocean
environment. First, there is evolutionary adaptation within
existing genotypic/phenotypic variability. Guppies removed
from one stream to another for several years exhibit a rate of
evolution in age and size at maturity many orders of magnitude
higher than rates inferred from the geological record (e.g.,
Reznick et al., 1997). Second, there is evolutionary adaptation
throughmutation that changes genotypes. Evolution bymutation
in phytoplankton reared in laboratory conditions over hundreds
to thousands of generations has been documented in several
studies (Collins and Bell, 2004; Collins et al., 2006; Collins,
2011; Lohbeck et al., 2012; Schlüter et al., 2014). The speed of
evolutionary adaptation is expected to be inversely proportional
to generation time: most microbes in the ocean have generation
times of a day or less, so experience thousands of generations in a
decade. Hence, evolutionary adaptation would be expected to be
important for these organisms on decadal and longer timescales.
The third adaptive response is phenotypic plasticity: “...the
capacity of a single genotype to exhibit variable phenotypes in
different environments” (Whitman and Agrawal, 2009). There is
still much uncertainty about the mechanisms, magnitudes, limits,
heretability, and tradeoffs of plasticity, and how to distinguish it
from evolutionary adaptation (e.g., Collins et al., 2014; Reusch,
2014).

The objective of this paper is to develop a model at
the trait level of genetic mutation by the coccolithophorid
Emiliania huxleyi based on observations taken over 4 years
of laboratory culture experiments (Schlüter et al., 2014).
Litchman and Klausmeier (2008) and Litchman et al.
(2012) described a framework for a trait-based approach to
investigate the evolutionary responses of phytoplankton to global
environmental change. In a series of original papers, Norberg has
explored the application of complex adaptive modeling concepts
to examples of evolutionary adaptation to environmental change
within existing phenotypic variability (Norberg et al., 2001, 2012;
Norberg, 2004). Here, as in Norberg (2004), the single trait is
the maximum growth rate of phytoplankton as a function of
the environmental variable temperature. As in the laboratory
experiments, the model simulates the growth of E. huxleyi at
15◦C for 3 years, and then for 1 year after the temperature is
increased to 26.3◦C. The simulations explore first the response
of random mutations that are equally probable across the trait
space (a “flat” probability distribution function—pdf), and then
of infinitesimal or incremental random mutations centered on
the existing mean of the genotype distribution for various widths
of a Gaussian normal pdf of mutation magnitudes. Finally, the
effect of a simple formulation for phenotypic plasticity of the
original genotype grown at 15◦C, then warmed abruptly to
26.3◦C, will be presented.

MODEL DESCRIPTION

The Coccolithophore Emiliania huxleyi
The coccolithophore E. huxleyi is widely distributed over the
global ocean (e.g., Hagino et al., 2011), viable over a temperature
range from 4 to 28◦C (e.g., Watabe and Wilbur, 1966; Fielding,
2013), with maximum growth rates in the temperature range 18–
25◦C (Watabe and Wilbur, 1966; Zhang et al., 2014). In general,
growth rates increase with temperature, with clear differences
between Arctic and Atlantic strains (Daniels et al., 2014; Zhang
et al., 2014). Zhang et al. developed thermal reaction norms
(TRNs) for six E. huxleyi isolates originating from the central
Atlantic near the Azores, Portugal (38◦34′N; monthly SST range
16–22◦C), and five isolates originating from coastal waters near
Bergen, Norway (60◦18’N; monthly SST range 6–16◦C), all kept
at 15◦C in culture. The fitted growth rates for the Bergen isolates
were higher in the range 7–22◦C; they were higher for the Azores
isolates in the range 26–28◦C, with a crossover point near 24◦C.

While isolates of E. huxleyi from various regions around the
globe have a core set of common genes, there is considerable
genetic variability across its global distribution (Hagino et al.,
2011; Read et al., 2013). According to Read et al., “Genome
variability within this species complex seems to underpin its
capacity both to thrive in habitats ranging from the equator to
the subarctic and to form large-scale episodic blooms under a
wide variety of environmental conditions.” Thus, the cultures in
Schlüter et al. (2014), originating from a single cell take from
waters (∼10◦C) near Bergen, Norway, would not necessarily
be expected to grow at the maximum rate observed for the
species at 15◦C, even though they were apparently growing in an
exponential manner.
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Experimental Background
The model is formulated to simulate, as closely as possible, the
experimental protocol followed during the laboratory studies
(Schlüter et al., 2014). The main trait is the growth rate (d−1),
which is a function of a single environmental variable/stressor—
temperature. The cultures were grown at three different pCO2

levels: 400, 1100, and 2200 µatm, but in this model only the
experiments at the “ambient” level, 400 µatm, are simulated.
The maximum growth rate as a function of temperature has
long been considered to be an important predictor of the rate
of primary production, along with incoming irradiance and
nutrient availability (Eppley, 1972; Bissinger et al., 2008). A
recent analysis of observations of growth rate as a function
of temperature specifically for E. huxleyi has been published
(Fielding, 2013): non-zero growth rates have been observed over
the range of temperatures from 2 to 27◦C, with a very sharp
decline at ∼27◦C as also observed by Schlüter et al. (2014). The
most dense range of observations are for standard temperatures
10 and 15◦C, where growth rates from near zero to the maximum
at that temperature have been observed (Figure 2A from Fielding,
2013). Several fits to the 99th quantile of the data (i.e., 1% of
the data points exceeded the fitted function) were carried out.
We adopted the power law fit, which is the best fit according to
the criteria used by Fielding. Figure 1 shows the dependence of
growth rate on temperature for the power law fit (Fielding, 2013).
The red line shows the power law fit that passes through the
growth rate at 15◦C observed by Schlüter et al. (2014) (1.15 d−1,
black diamond), and the vertical dashed red line shows its rapid
drop off near 27◦C. The dashed black line shows the dependence
on temperature of the maximum growth rate observed for E.
huxleyi, according to Fielding (2013).

Model Setup
In the model, genotypes are formulated in equal intervals along
the trait axis, the growth rate µ(T) (d−1), where T is the
temperature. Thus, there are potential genotypes along the trait
axis from µmax = 0 to µmax ≈ 2 d−1 [corresponding to a
temperature ∼27◦C, where the growth rate drops precipitously
to zero (Fielding, 2013; Schlüter et al., 2014, Supplementary
Information)].

The model is a simple exponential growth equation for each
genotype i:

dNi

dt
= µi(T)Ni (1)

where: Ni is the number of cells in genotype i, and µi(T) is the
growth rate of genotype i. At 15◦C the maximum possible growth
rate is µmax = 1.29 d−1 (Figure 1, Fielding, 2013) and, as shown
by the solid diamond in Figure 1, the realized growth rate was
1.15 d−1 (Schlüter et al., 2014).

During the laboratory experiments, 105 cells were transferred
every 5 days from the existing batch cultures into fresh culture
medium to initiate the next batch culture. In the model, the total
number of cells across all genotypesNT (=

∑
iNi) is “normalized”

to 105 every timestep (0.2 d) with the same normalization factor
applied to each genotype. In the standard simulations, random
mutation was allowed once each day: at 15◦C the growth rate was

FIGURE 1 | The black dashed line represents the dependence of

maximum possible growth rate µmax on temperature for the power law

fit (Fielding, 2013). The solid red line represents power law fit through the

observed growth rate of for the genotype at 15◦C (1.15 d−1, solid diamond

�). The red dashed line represents the sharp drop off near 27◦C observed in

culture experiments (Schlüter et al., 2014). Horizontal dotted lines show values

of the growth rate for temperatures 15 and 26.3◦C.

1.15 d−1, so that a mutation occurred slightly more often than
1 per generation. Each mutation produced a single cell (in 105

cells). Mutations were allowed at genotypes with growth rates
less than and equal to 1.15 d−1. Those mutant genotypes with
growth rates less than 1.15 d−1 grew less quickly than the original
genotype—sowere not “fixed.” Because of the normalization each
timestep, those mutants consisted of less than 1 cell, so were set
to zero (i.e., not fixed) when they dropped to 0.1 cells. When
multiple non-zero genotypes exist, the mean realized growth rate
across all non-zero genotypes is given as µmean = (

∑
iNiµi)/NT .

According to Huertas et al. (2011), “Experimental measures
of mutation rates in phytoplankton range from 10−5 to 10−7

mutations per cell per generation.” So the rate of one mutation per
1.15 generations in a culture of 105 cells is at the high end of the
published rates. We carried out sensitivity studies with mutations
occurring both more or less frequently than 1 per day: generally
the simulations at lower rates resulted in a slowing down of
the increase in biomass of favorable mutations but without any
material change in the final results.

The magnitude of each mutation (distance of mutant
genotype along the growth rate trait axis from its parent
genotype) was determined from a random number generator.
Two cases were simulated. First, with a “flat” pdf where the
new genotype was equally probable anywhere from the lowest
to highest allowed growth rate for that temperature, and, second
with a Gaussian normal pdf, where the width of the distribution
across genotypes was changed for different simulations. The
original genotype and genotypes resulting from mutations were
tracked separately. For a flat pdf, onlymutations from the original
genotype were allowed, since the origin was not important. For
the Gaussian pdf, mutations were allowed from the original
genotype or from the mutant genotypes (with a probability
proportional to their relative biomasses). In both cases, only one
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mutation was allowed per day; sensitivity simulations with more
or fewer mutations per day did not materially affect the results.

To illustrate the description above without explanation until
the Results section, Figure 2A shows an initial genotype at the
start of a simulation at 15◦C, and Figure 2B shows a histogram
of the distribution (on a logarithmic axis) of total cell biomass
in each genotype—after 3 years of simulation at 15◦C. The blue
bars represent the relative biomass in all non-zero genotypes;
“extinct” or not “fixed” genotypes were set to 10−7 as explained
above.

This model considers only one trait, the maximum growth
rate at a given temperature. However, two other traits were
considered. First, the mortality rate µmort is considered to follow

FIGURE 2 | For the first set of simulations, at 15◦C, there were 58

genotypes (#0–#57) spaced evenly in 0.02 d−1 intervals along the

growth rate/trait axis µ spanning the range from 0 to 1.16 d−1. (A)

Shows the initial genotype with µ = 1.15 d−1 (the center value of the highest

genotype). (B) Shows (for one particular simulation) the relative biomass

(logarithmic scale) in each genotype after 3 years of mutations, where the

probability of mutation was equal (“flat”) across all genotypes. After 3 years, all

genotypes except #57 (and #55, which would soon become extinct) were

extinct (or not “fixed”) since their simulated concentrations had become less

than 1 cell (horizontal dashed line) in a culture of 105 cells. When low fitness

genotypes reached 1/10 of a cell, they were determined to be extinct and set

to a value of 10−7.

a power law scaling increasing as a function of temperature
(Brown et al., 2004; McCoy and Gillooly, 2008; and, specifically
for phytoplankton, Regaudie-de-Gioux and Duarte, 2013).
However, the observations do not show any sudden drop in
realized growth rate when the cultures were warmed from 15
to 26.3◦C, suggesting that this scaling is inappropriate for short
term changes and more appropriate for asymptotic “steady state”
conditions. Second, cell size is also a function of temperature, but
calculations based on the experimental results suggest that it is a
minor effect. Hence, neither mortality nor cell size are considered
further.

The other important environmental variable in the study of
Schlüter et al. (2014) is pCO2. While only the 400 µatm case is
considered here, it is likely that higher concentrations of CO2

result in a reduction in the height of the “fitness window,” in
analogy with the “thermal window” concept for animals (Pörtner
and Farrell, 2008; Denman et al., 2011).

Simulations
For the first 3 years, five replicates of the coccolithophore
Emiliania huxleyi were grown in culture at 15◦C for each of
three pCO2 levels: 400, 1100, and 2200 µatm. At the end of
3 years, the temperature of the cultures was raised in intervals
of 1◦C d−1 to a final temperature of 26.3◦C at which they
were grown for an additional 1 year. Model simulations of the
laboratory experiments with pCO2 concentration of 400 µatm
were performed as follows:

(1) Simulations at 15◦C. These simulations started with a single
genotype of 105 cells centered on a growth rate of 1.15
d−1, representing the mean observed growth rate of the five
replicate cultures. Random mutation of a single cell occurred
each day with a flat pdf over the growth rate trait between 0
and the maximum (for 15◦C) shown by the solid red curve
in Figure 1 (from Fielding, 2013). Initially there were 58
genotypes, each 0.02 d−1 wide, with growth rates ranging from
0 to 1.16 d−1, the maximum growth rate under the solid red
curve in Figure 1. We assume that this clone/genotype was
growing (during the first 3 years in culture) at its optimal rate,
dependent on its original in situ temperature and location,
and was not capable, under any conditions, of growing at the
maximum rate observed for E. huxleyi from all locations (in
Fielding, 2013).

(2) Simulations at 26.3◦C, flat pdf for mutations. These
simulations also started with a single genotype of 105

cells centered on a growth rate of 1.15 d−1, representing the
mean observed growth rate of the cultures grown at 15◦C for
3 years (over 1500 generations). Now there were 92 possible
genotypes, with maximum growth rates ranging from 0 to
1.84 d−1 (the maximum growth rate under the solid curve in
Figure 1 at 26.3◦C).

(3) Simulations at 26.3◦C, Gaussian normal pdf for mutations. The
setup was the same as in study 2, but now the magnitude of
each random mutation, relative to the center of the parent
genotype, followed a Gaussian normal pdf with a width s, in
units of 0.02 d−1 (i.e., the width of one genotype interval),
which was specified at the start of the simulation.
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(4) Simulations at 26.3◦C, addition of a plastic response. In all
simulations in study 3, for the different values of s, there
was a lag of at least 60 days or generations before µmean, the
mean growth rate of the five “replicate” simulations began
to increase, contrary to the laboratory results where µmean

increased linearly throughout year 4 without any noticeable
lag or offset when the temperature was raised from 15 to
26.3◦C (Schlüter et al., 2014). To remove this lag, a simple, but
plausible, formulation of a plastic response (to be described
later) was implemented.

RESULTS

Simulations at 15◦C
Based on arguments (Orr, 1998, 2005) critical of the concept
that adaptive evolution proceeds according “micromutationism”
or infinitesimal mutations as first postulated by Fisher (1930),
the first set of simulations (for 3 years at 15◦C) allowed for the
random mutations to obey a flat pdf over the growth rate from 0
to 1.16 d−1, the approximate observed growth rateµmean at 15

◦C
(Figure 1). There were 58 equally wide genotypes over this space
(numbered from 0 to 57). Initially they were all zero except for
genotype #57, representing the measured mean growth rate 1.15
d−1, shown as the solid diamond in Figure 1. The initial biomass
of genotype #57 in each simulation is shown as the height of the
pale yellow bar in Figure 2A.

In the simulations at 15◦C, genotype #57 outcompeted all
other mutant genotypes, all of which had lower growth rates (and
hence lower fitness) than genotype #57. [We take the fitness of a
mutant genotype m relative to the parent genotype p to be the
ratio of their realized growth rates: Wmp = µm/µp, and of the
relative fitness of mutant genotype i relative to mutant genotype j
to beWij =µi/µj (Lenski et al., 1991; Schlüter et al., 2014). IfWmp

(Wij) is greater than 1, then genotype m (i) has a higher fitness
than genotype p (j).] Therefore, after 3 years, in all five replicate
simulations the most abundant genotype was #57 (Figure 2B),
with its realized growth rate of 1.15 d−1. The horizontal dashed
line represents 10−5 of the total biomass, i.e., 1 cell. So by the
end of the simulation, almost all genotypes except that with the
highest realized growth rate (i.e., genotype #57) had biomass
less than 1 cell and were effectively extinct. In the particular
simulation shown in Figure 2B (one of 5 replicates) genotype #55
also had barely more than 1 cell, but it was a very recent mutation
and its biomass would have quickly dropped below 1 cell, as can
be seen in Figure 3. Figure 3A shows the magnitude of all the
mutations over the 3 years: they are randomly distributed evenly
over all genotypes between #0 and #57.

Figure 3B shows the time paths of the logarithm of the
biomass of genotypes 20, 55, 56, and 57. Whenever there is a
mutation to genotype # 20 (blue dashed line), it quickly dies out
because its fitness relative to the parent genotype #57 is small,
W20 57 ∼ 0.36. Genotype #55 (green) dies outmore slowly,W55 57

∼ 0.97, and genotype #56 dies out even more slowly, W56 57 ∼

0.98. The solid red line shows the total biomass of genotype #57,
consisting mostly of the original genotype (pale yellow portion in
Figure 2B) plus mutations to that genotype (lower blue portion),
which is also shown by the solid black line in Figure 3B. Note that

FIGURE 3 | For the same simulation as in Figure 2B. (A) Shows the

magnitude of the mutations over the 3 years of the simulation. (B) Shows the

time history of the logarithm of the biomass for the original clone plus

mutations to that same growth rate (red line), the proportion of that biomass

which was from mutations (black line) and the other three mutant genotypes

with the most biomass after 3 years: #20, #55, and #56.

the vertical scale in Figures 2B, 3B is the logarithm of biomass, so
actually only 0.016% of the biomass in genotype #57 consisted
of mutant cells after 3 years (all 5 replicate simulations had a
similar fraction of biomass in genotype #57 ∼0.02%. These cells
have growth rates equal to the original clone, but they may have
other genes that differ from the original clone, as pointed out
by Schlüter et al. (2014). However, the simulations in the next
section started with 105 cells of what is assumed to be the original
genotype #57, which were then warmed instantaneously (in the
model) to a temperature of 26.3◦C.

Simulations at 26.3◦C with a Flat Pdf for
Mutations
In the simulations described here, there are 92 genotypes
(numbered 0 to 91) between a growth rate of 0 d−1 and the
maximum growth rateµmax at 26.3

◦C (solid red line in Figure 1),
with each genotype interval being 0.02 d−1 wide as before. Thus,
the highest genotype #91 is centered at 1.83 d−1 with its upper
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limit being µmax(26.3
◦C) = 1.84 d−1. Similarly, µmax(15

◦C) =
1.15 d−1 occurs at the center of genotype #57.

Five replicate simulations at 26.3◦C with a flat pdf of the
magnitudes of random mutations all quickly ended up with
mutant genotypes with the highest growth rate or relative fitness
eventually dominating the culture. Figure 4 tracks the time
history of the biomass of the four highest genotypes: 88, 89,
90, and 91 for one of the 5 simulations. A mutation to #89
occurred first (on day 31), followed by one to #88 (on day 59),
then one to #91 (on day 72), and lastly one to #90 (on day 219),
with the four jumps afterwards indicating subsequent mutations
to this genotype. These are not the only mutations to these
genotypes then, just the first ones during this simulation. Note
that #88 grew more slowly than #89 (because the fitness of #89
was relatively higher, but #91 outpaced them both, for the same
reason. They all outcompeted the original clone #57 because of
their significantly higher relative fitness. This coexistence of four
mutant clones is an example of clonal interference observed in
asexual populations (e.g., Muller, 1932; Gerrish and Lenski, 1998;
Imhof and Schlötterer, 2001).

Given enough generations, the clone with the highest fitness
will dominate the culture. Reducing the mutations from once
a day (slightly greater than one generation) to every other
day did not affect the end result, only marginally the rate of
getting there. Figure 5 shows time series of the growth rate for
the five replicate simulations, each with a new “seed” for the
random mutations. The timing and nature of the increase in
growth rate also depends on how soon mutations at the higher

FIGURE 4 | Time history of relative biomasses (logarithmic scale) for

different genotypes for one replicate simulation after abrupt warming

from 15 to 26.3◦C. There are now 92 genotypes (#0–#91) spanning the trait

range from 0 to 1.84 d−1, the latter being the maximum growth rate at 26.3◦C

(solid red line, Figure 1). As before a mutation was equally probable to all

genotypes (“flat” pdf). The initial genotype (representative of the culture at

15◦C) was now #57 with a growth rate of 1.15 d−1. The first large magnitude

mutation, to genotype #89 on day 31, rapidly replaced the original genotype

#57 because of its much greater relative fitness 1.56. However, the mutant

genotype #91(magenta line) eventually replaced earlier genotypes #89 (green

line) and #88 (blue line) because it had the highest relative fitness of all mutants.

genotypes occur. Regardless, in each of these simulations, there
is no significant increase in growth rate in the first ∼20 days,
then it rapidly increases eventually to the growth rate of the
highest mutant genotype. This behavior does not follow the linear
increase in µmean from 1.15 d−1 at the start of the year to 1.33
d−1 (with no discernable initial lag) that was observed in the
laboratory (Schlüter et al., 2014). Moreover, the asymptotic mean
growth rate after 1 year in these simulations is much higher
than the eventual observed mean growth rate in the laboratory
experiments (shown by the blue dashed line).

Simulations at 26.3◦C with a Gaussian
Normal Pdf of Random Mutations
In the simulations with a flat pdf for random mutations, the
invariable domination by mutations near the maximum possible
growth rate µmax suggests that in the laboratory experiments
mutations with infinitesimal magnitudes might have been more
likely (as suggested by Fisher, 1930), rather than mutations with
“large” magnitudes being as likely as infinitesimal mutations (as
argued by Orr, 1998, 2005, and others).

In these simulations, the magnitudes of mutations follow a
Gaussian normal random pdf about the parent genotype. The
width of the Gaussian normal pdf of mutation magnitude about
the genotype undergoing a mutation is given by s (measured in
genotype intervals of 0.02 d−1). Hence, for s = 1 the distance
from the center of the parent genotype interval to the outsides
of the two adjacent genotypes is ±1.5s, i.e., the probability of
a mutation occurring in the parent genotype or the adjoining
genotypes is 86.6%. For s = 2 the distance from the center
of the parent genotype interval to the outsides of the two
adjacent genotypes is ±0.75s, i.e., the probability of a mutation
occurring in the parent genotype or the adjoining genotypes is
reduced to 54.7%.

FIGURE 5 | Time series of five replicate simulations at 26.3◦C,

including that in Figure 4, each with a different random seed (with a flat

pdf for random mutations). The vertical axis on the left shows the growth

rate (for each genotype shown on the right). The heavy brown curve shows the

time history of the mean of the five replicate simulations. The heavy blue

dashed line is the fitted line to the measured mean growth rate (of five replicate

cultures) in the experiments (Schlüter et al., 2014).
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Three sets of five replicate simulations were performed, with
s = 1, 2, and 3. For s = 1, the growth rates after 1 year were
well below those observed and these results are not discussed
further. In Figure 6A, for s = 2, we show the distribution of
biomass among genotypes after 1 year on a logarithmic scale for
the replicate with the median mean growth rate. Although there
appear to be about 20 genotypes in play, a linear plot of these
genotypes (Figure 6B) shows that only about 4 or 5 genotypes
account for almost all (at least 99%) of the biomass. We have
therefore allowed only the 10 highest biomass mutant genotypes
to undergo mutations themselves, with a probability inversely
proportional to their relative biomass. Thus, from Figure 6B,
on the next day, a mutation would be most likely be from #63,
next most likely from #61, next most likely from #64 and so
on, with the magnitude of each mutation determined randomly

FIGURE 6 | Results at the end of 1 year for one of five replicate

simulations at 26.3◦C with a Gaussian normal pdf for random

mutations, with a width s = 2 genotype intervals of 0.02 d−1. (A) Shows

the relative biomass (on a logarithmic axis) of mutations in all genotypes after 1

year. The horizontal dotted line represents 1 cell in 105 cells, and the vertical

dashed line is the mean realized growth rate of the distribution. (B) Shows the

same information, but for a linear biomass axis.

from a Gaussian normal pdf with s = 2. Figure 7A shows, for
the same replicate simulation as in Figure 6, the time evolution
of the biomasses of the original clone (#57, red) as well as the
five mutant genotypes with the most biomass after 1 year: 61, 63,
64, 65, and 66, again demonstrating clonal interference, especially
with #63 outcompeting #61, and with the higher fitness genotypes
64, 65, and 66 increasing each at a greater rate. Figure 7B shows
the realized growth rate for the same simulation (heavy solid
line), the mutations each day (jagged light solid line), and ± the
standard deviation of the distribution of the biomasses of the
active genotypes (see Figure 6A), along the trait or genotype axes
(light dashed lines)

In this set of five replicate simulations with s = 2, the
mean growth rate increased from 1.15 to 1.27 d−1 after 1
year. In addition, the growth rate did not begin to increase
until after ∼110 days, roughly 125 generations (Figure 8). In
the laboratory study (Schlüter et al., 2014), the realized growth
rate increased, more or less linearly without discernible lag,
to a value (from their fitted line) of 1.33 d−1 at the end of
1 year. Thus, the increase in realized growth rate in these

FIGURE 7 | (A) Shows, for the same replicate simulation as in Figure 6, the

time history of relative biomasses for the original genotype #57 and for the five

most abundant mutant genotypes (61, 63, 64, 65, and 66) 1 year after abrupt

warming from 15 to 26.3◦C (similar to Figure 4). (B) Shows the time history of

the mutations (light solid jagged line) about the growth rate (heavy solid line).

Light dashed lines show ± one standard deviation of the distribution of

biomass (Figure 6) about the growth rate/trait axis. When there are more

genotypes with significant biomass, the standard deviation will be larger.
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simulations was too small and the initial lag of ∼110 days was
unrealistic.

Another set of five simulations was performed with s = 3.
Figure 9 shows the time path of the mean growth rate for each
of the five replicate simulations (light lines), the overall mean
growth rate (brown solid line) and the fitted linear increase in
growth rate from the experiments (blue dashed line, Schlüter
et al., 2014). After 1 year, the mean growth rate was 1.47
d−1 (range 1.39–1.69 d−1), exceeding that in the laboratory
experiment. These simulations tend to exhibit lags of ∼70–130
days followed by plateaus, especially the simulation with the
highest growth rate after 1 year. In that simulation, after ∼70

FIGURE 8 | Time series of all five replicate simulations at 26.3◦C with a

Gaussian normal pfd (with s = 2) for mutations about the mean growth

rate Note that the realized growth rate did not increase significantly in

any simulation until after ∼110 days. The blue dashed line is as in Figure 5

(note change of scale on the vertical axis).

FIGURE 9 | Time series of the realized growth rates for all five replicate

simulations with s = 3 (light broken lines), the mean growth rate for the

five simulations (solid brown line), and the fitted (dashed blue) line to

the experimental results as in Figures 5, 8 (again note the change of

scale on the vertical axis).

days the growth rate increased steeply to a plateau ∼1.33 d−1

(genotype #66), then at ∼200 days it increased again to a plateau
∼1.55 d−1 (genotype #77) followed by another steep rise starting
at ∼320 days. Figure 10A shows the distribution of genotypes
after 1 year for this simulation: here there were 12 genotypes
with biomasses greater than 1 cell. Figure 10B tracks the time
history of the simulation for genotypes 66, 77, 81, 82, and 85.
The first large magnitude mutation from the parent genotype
#57 to genotype #66 (on day 15) is rare (3s) but possible for a
Gaussian normal pdf with s = 3; the second from #66 to #77 (on
day 149) is also rare but possible. Figure 10B again shows clonal
interference, as mutants with higher relative fitness eventually
out-compete less fit mutants (cf. Figures 8, 9 in Gerrish and
Lenski, 1998).

To summarize the results of this set of simulations, the overall
mean growth rate increased roughly linearly after about 70 days,
but again among the replicate simulations there was a lag of

FIGURE 10 | Results for one of five replicate simulations with s = 3, the

one with the highest growth rate (1.69 d−1) at the end of 1 year. All other

parameters are the same as in Figures 6–8. (A) Shows the relative biomass of

mutations in all genotypes after 1 year. (B) Shows the time history of the

original genotype #57 (solid red line) and five other genotypes (66, 77, 81, 82,

and 85). Mutations with large magnitude to #66 and later to #77 each became

dominant, resulting in plateaus lasting ∼60 days (see Figure 9).
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∼70–130 days before the growth rate(s) start to increase, contrary
to the experimental data (Schlüter et al., 2014).

DISCUSSION

Three-Year Simulations at 15◦C
Initially, the model was set up with 58 genotypes (each 0.02
d−1 wide) spanning the range of possible growth rates at 15◦C
from 0 to ∼1.16 d−1 (Figure 2 and Fielding, 2013). Mutations
were equally probable (a “flat” pdf) to all 58 genotypes (#0 to
#57) under the assumption that the original genotype #57 was
the genotype with the highest possible growth rate and hence
the maximum relative fitness. So only mutations to that same
genotype survived or were “fixed,” while mutations to other
genotypes (#0 to #56), all with lower relative fitness, became
extinct (or failed to be “fixed”), as shown in Figures 2, 3. At the
end of the 3 years, in all five replicate simulations, mutations to
genotype #57 contributed ∼0.02% to the total biomass shown in
that genotype. Although these cells had the same growth rate as
the original clones, they presumably possessed other genes that
apparently did not affect their growth rate at 15◦C.

Time Lag in Growth Rate Response to
Mutations
Simulations at 26.3◦C had 92 possible genotypes, each of width
0.02 d−1, spanning the growth rates between 0 and 1.84 d−1,
the maximum possible growth rate for this clone (the value of
the red line in Figure 1 at 26.3◦C). The initial genotype was still
#57, assumed to be the single genotype existing after 3 years
of growing at 15◦C, ignoring the ∼0.02% of the cells that were
mutants in the simulations but with the same growth rate at
15◦C. All simulations exhibited a time lag after the temperature
shift from 15◦C before there was any significant increase in the
realized growth rate, which was not observed in the laboratory
experiments of Schlüter et al. (2014).

For a flat pdf of randommutations, the genotype created from
the largest magnitude favorable mutation eventually dominated
and replaced the original genotype. Usually, after 1 year the
dominant genotype is #90 or #91 (Figures 4, 5). Figure 5 shows
that there is typically a lag of∼15–30 days (∼17–34 generations)
before the realized growth rate starts to increase significantly.
Then very quickly (over∼20 days) the growth rate climbs rapidly
to that for the highest mutant genotype, where it remains for the
rest of the year unless there is a subsequent mutation to a higher
genotype. This behavior, two plateaus separated by an abrupt
increase from the first to the second, is completely inconsistent
with, and with amuch larger final growth rate than, the final fitted
growth rate from the laboratory experiments.

For the flat pdf, each mutation has a 62% chance of having
a relative fitness less than that of the original clone (57 of 92
possible genotypes). If the rate of mutations were to decrease by
a factor of 10, then the lag time would be 10 times longer, but the
time for a given favorable mutation to increase would be the same
because it is a function of the generation time or growth rate.

It was concluded from these simulations that an initial
lag followed by an abrupt increase in growth rate results
from allowing mutations of the largest magnitude to have

the same probability as mutations of the smallest magnitude.
If small magnitude mutations were to have a much higher
probability than large magnitude mutations, then possibly the
transition to higher grow rates after increasing the temperature
to 26.3◦C would be more gradual and continuous. To allow for
mutations of very small magnitude, in subsequent simulations
the magnitude of each mutation along the trait axis was chosen
randomly from a Gaussian normal pdf, N(µmax, s) in statistical
notation, centered on the growth rate of the parent genotype,
with a width along the trait axis scaled by the standard deviation
s (in genotype intervals).

The first set of five simulations shown here, with s = 2
genotypes wide, generated a much too small increase in mean
growth rate µmean, reaching only 1.27 d−1 compared with
the fitted value of 1.33 d−1 from the laboratory experiments.
Again, the simulations show a long lag of ∼110 days before
any significant increase occurred (Figure 8). A second set of
five simulations with s = 3 was then performed (Figure 9). A
larger number of genotypes were generated from mutations,
with many of them still viable (1 cell or more) at the end of
1 year (Figure 10). The mean growth rate of the five replicate
simulations increased more or less linearly for the latter two
thirds of the year, with a slope roughly double that observed.
But there still remained a lag of ∼70 days before the mean
growth rate started to increase. Overall, for a larger s, i.e.,
larger magnitude mutations, the lag time was shorter. For s
= 1, 2, and 3, the lag time was respectively ∼150, ∼120, and
∼70 days. Clearly, adaptive evolution by genetic mutations,
modeled in the manner described here, cannot alone explain the
laboratory results (Schlüter et al., 2014) because all simulations
were characterized by initial lags upon warming to 26.3◦C.

A “Plastic” Response to Abrupt
Temperature Change?
A possible explanation for the immediate continuous increase
in observed growth rate after increasing the temperature from
15 to 26.3◦C is that it was a “plastic” response of the cells
to their changing environment. The idea of plasticity “buying
time” for genetic adaptation to take place is central to the
concept of “plastic rescue” avoiding extinction (e.g., Lande, 2009;
Chevin et al., 2010; Kopp and Matuszewski, 2014). There are
many definitions of plasticity: Whitman and Agrawal (2009)
list 11, but perhaps their simplest is “Phenotypic plasticity”
is “the capacity of a single genotype to exhibit variable
phenotypes in different environments ....” According to Reusch
(2014), reviewing evidence of plasticity in marine animals and
plants: “Phenotypic plasticity broadly defines the adjustment of
phenotypic values of genotypes depending on the environment,
without genetic changes.”

Most studies of plasticity compare different phenotypes of
the same genotype in different environments. More relevant in
our case would be studies that consider the temporal change in
phenotypic properties of a given genotype in response to a change
(continuous or abrupt) in its environment, but such studies
are rare. And different species generally have different plastic
responses to the same change in environment (different “reaction
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norms,” (e.g., Pigliucci, 2005; Whitman and Agrawal, 2009;
Reusch, 2014). There is no clear information on how plasticity
might be modeled in this case, especially what ultimately limits
the rate and magnitude of plastic response. Currently, both the
energetic costs and limits of plasticity are research questions of
considerable interest (e.g., DeWitt et al., 1998; Pigliucci, 2005).

Given that the generation time of E. huxleyi in the laboratory
experiments was less than 1 day, a plastic response would
have to be “transgenerational” or heritable, for which there is
mounting evidence in animals (Munday, 2014; Walsh et al.,
2014), in clonal plants (e.g., Latzel and Klimešová, 2010), and
in phytoplankton (Schaum et al., 2013; Schaum and Collins,
2014). For asexual reproduction the hypothesized mechanism
is “epigenetic inheritance” whereby an environmental change
causes genes to be expressed, which continue to be expressed in
succeeding generations if the environmental change continues
(Latzel and Klimešová, 2010; Schaum et al., 2013; Schaum
and Collins, 2014; van Oppen et al., 2015). In the laboratory
experiments of Schlüter et al. (2014), it is assumed that the change
in temperature from 15 to 26.3◦C caused the expression of an
existing gene in essentially all cells in the culture in the first
and succeeding generations which mediated a slow increase in
growth rate, without the lag that would result from the favorable
mutation of a single cell dividing sufficiently often to start to
compete with the original population.

Here we assume that the plasticity is heritable, and model it as
a first order restoring function without lag:

dµi(t)

dt
= (µmax(i) − µi(t))/T (2)

where µi(t) is the realized growth rate and µmax(i) is the
maximum growth rate, both for the initial genotype i, according
to the power law fit (Fielding, 2013) through the original growth
rate at 15◦C (solid red line in Figure 1). T (or τ ) is the “e-folding”
time for the response. The assumed mechanism is that because
of energy costs the plastic response of a given genotype i cannot
exceed its µmax(i) value for 15◦C, even though it is now at a
higher temperature. The rate at which µi(t) approaches µmax(i)
decreases as it gets closer, the logic being that the larger the plastic
response, the more energy that is required.

The solution to the ordinary differential Equation (2) is
standard:

µi(t) = (µi(0)− µmax(i))e
−t/T

+ µmax(i) (3)

This function has the form shown Figure 11, where the dashed
curve shows the full function to its asymptote. The solid curve
has a T value set to 281 d, so that the initial slope of Equation
(3) at small t is equal to the slope of the linear fit to the
observations over 1 year (Figure 1A in Schlüter et al., 2014).
For the initial genotype, µmax = 1.29 d−1, so that the observed
(fitted) growth rate after 1 year of 1.33 d−1 could not be
reached by means of plasticity alone. In fact for the value
chosen for T, the plastic response at the end of 1 year would
result in a mean growth rate of only 1.25 d−1 (solid curve,
Figure 11).

FIGURE 11 | The proposed plastic response over time of genotype #57

to the temperature change from 15 to 26.3◦C. The asymptote is µmax for

15◦C (shown in the dashed curve). The initial slope in the solid curve (used in

the simulations) is set to match the slope of the line fitted to the 1 year of

measured growth rates from the laboratory experiments in Schlüter et al.

(2014).

Three sets of five replicate simulations were then performed at
26.3◦C with s = 2, 2.5, and 3, but with a plastic response of the
original genotype. Now the growth rate of the initial genotype
(initially µi(0) = 1.15 d−1) increased with time according to
Equation (3). As its growth rate increased, the biomass of the
original genotype was added to any in the appropriate growth rate
interval that had accumulated from mutations. Due to the plastic
response, the original genotype had moved from #57 to #62 on
the growth rate axis after 1 year. Figure 12A shows the results of
1 replicate simulation with s= 2.5; in all five replicate simulations
with s = 2.5, the original genotype represented most of the
biomass in that interval. Figure 12B shows the time evolution
of the five other genotypes with the most biomass after 1 year:
clonal interference between genotypes 63, 64, and 66. Genotype
#66, because it had the highest relative fitness, outcompeted
genotypes 63, and 64, even though they had mutated earlier.
Figure 13A shows the time history of the growth rates for all
five replicate simulations, the ensemble mean growth rate (solid
brown line), and the (dashed blue) line fitted to the laboratory
results. The plastic response eliminated the initial lag in the
increase of the growth rate, consistent with the observations.
The ensemble growth rate after 1 year was 1.34 d−1 (slightly
greater than that of the observations, 1.33 d−1). In Figure 13B,
simulated random measurement error has been added to the
simulated overall mean growth rate, for comparison with the
observations (Figure 1A in Schlüter et al., 2014). Thus, the plastic
response, as formulated, removed the lag in response present
in all previous simulations, giving time for mutations to new
genotypes eventually to dominate the culture toward the end of
the year. In addition to the maximum growth rate, the only other
trait reported on by Schlüter et al. (2014) was cell diameter. The
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FIGURE 12 | Results for one simulation (with s = 2.5) that includes the

plastic response (Figure 11). In (A), the vertical dotted line shows the

growth rate of the original genotype and the position on the x-axis of the light

yellow bar shows where the growth rate of the initial genotype (#57) has

reached (genotype #62) with the growth rates shown on the upper x-axis. (B)

Shows the time series of the relative biomass of the different genotypes: the

original genotype (#57, solid red line), and the five most abundant genotypes

at the end of 1 year (63, 64, 66, 67, and 70). Genotype #66 has become the

dominant genotype (highest peak in A) due to its higher fitness relative to #57,

although eventually the mutant genotype #70 would replace #66.

cell diameter was significantly smaller (∼10%) at 26.3◦C, but only
for the cultures grown at the “ambient” level of pCO2: 400 µatm.

Effects of Multiple Stressors
Schlüter et al. (2014) maintained cultures of Emiliania huxleyi,
all originating from the same single cell, at three different pCO2

levels for 4 years, increasing the temperature from 15 to 26.3◦C
at the end of the third year. Although the growth rate at 15◦C
decreased with increasing pCO2, the growth rate increase over
the last year (at 26.3◦C) was greater at successive higher pCO2

levels, such that the growth rates at the end of the experiment
were closer together than during the first 3 years, suggesting that
at the higher temperature, the cells were affected less by CO2

concentration. Without some information about energy costs
of adaptation, it is not clear how to model either the effects

FIGURE 13 | Similar to Figure 10, (A) shows the time series of all five

replicate simulations (s = 2.5) with the plastic response implemented as in

Figure 11 (light curves), the mean realized growth rate for the five replicate

simulations (solid brown curve), and (as in Figures 5, 8, 10) the (dashed blue)

line fitted to the experimental results (Schlüter et al., 2014). (B) shows (blue)

points along the mean (brown) curve with simulated random “measurement

errors,” and the fit to the experimental results (solid blue line), for comparison

with Figure 1A in Schlüter et al. (2014).

of mutation (or of plasticity) in response to two simultaneous
stressors.

CONCLUSIONS

Modeling even the adaptive response to abrupt change in a single
environmental variable in an asexual phytoplankton population
of a single trait led to unexpected results. If this model is a
valid representation of the experimental results of Schlüter et al.
(2014), then several conclusions pertain:

(1) The largely linear increase over 1 year in measured growth
rate without an initial lag after an abrupt increase in
temperature cannot be explained on the basis of genetic
mutation alone. The caveat (mentioned by Schlüter et al.,
2014) is that there were cells in the culture at 15◦C after 3
years, which were mutants with the same growth rate 1.15
d−1 but with some different genes that would possibly allow
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them to respond differently to the increase in temperature
to 26.3◦C. In the model simulations at 15◦C, after 3 years
these cells comprised only∼0.02% of the culture, suggesting
that some lag would still occur after the switch to a warmer
temperature.

(2) Mutation may occur frequently, i.e., close to every
generation, but not all mutations are favorable, i.e., have a
higher relative greater fitness than the original culture, and
all mutations with a relative fitness less than the original
culture are not “fixed” and hence become extinct.

(3) Future models of plasticity and effects of multiple stressors
require some knowledge and formulation of “costs vs.
benefits” in order to determine rates and ultimate limits in
plastic response (e.g., Sokolova, 2013).
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