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Zooplankton are the intermediate trophic level between phytoplankton and fish, and are

an important component of carbon and nutrient cycles, accounting for a large proportion

of the energy transfer to pelagic fishes and the deep ocean. Given zooplankton’s

importance, models need to adequately represent zooplankton dynamics. A major

obstacle, though, is the lack of model assessment. Here we try and stimulate the

assessment of zooplankton in models by filling three gaps. The first is that many

zooplankton observationalists are unfamiliar with the biogeochemical, ecosystem,

size-based and individual-based models that have zooplankton functional groups, so

we describe their primary uses and how each typically represents zooplankton. The

second gap is that manymodelers are unaware of the zooplankton data that are available,

and are unaccustomed to the different zooplankton sampling systems, so we describe

the main sampling platforms and discuss their strengths and weaknesses for model

assessment. Filling these gaps in our understanding of models and observations provides

the necessary context to address the last gap—a blueprint for model assessment of

zooplankton. We detail two ways that zooplankton biomass/abundance observations

can be used to assess models: data wrangling that transforms observations to be more

similar to model output; and observation models that transform model outputs to be

more like observations. We hope that this review will encourage greater assessment of

zooplankton in models and ultimately improve the representation of their dynamics.

Keywords: plankton net, bioacoustics, optical plankton counter, Continuous Plankton Recorder, size-spectra,
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THE IMPORTANCE OF ZOOPLANKTON

All marine phyla are part of the zooplankton—either
permanently as holoplankton (e.g., copepods or arrow worms)
or temporarily as meroplankton (e.g., crab or fish larvae). In
this review we define zooplankton as all organisms drifting
in the water whose locomotive abilities are insufficient to
progress against ocean currents (Lenz, 2000). Their sizes range
from flagellates (about 20 µm) to siphonophores up to 30m
long. Zooplankton are the intermediate trophic level between
phytoplankton and fish and are an important component of
carbon and nutrient cycles in the ocean. They account for a
large proportion of the energy transfer to fish on continental
shelves (Marquis et al., 2011), temperate reefs (Kingsford and
MacDiarmid, 1988; Champion et al., 2015), seagrass meadows
(Edgar and Shaw, 1995), and coral reefs (Hamner et al., 1988;
Frisch et al., 2014). Zooplankton are also key in the transfer of
energy between benthic and pelagic domains (Lassalle et al.,
2013). Zooplankton are responsible for transferring energy to
deep water through the sinking of fecal pellets and moribund
carcases (Stemmann et al., 2000; Henschke et al., 2013, 2016) or
through diel vertical migration (Ariza et al., 2015) and can play
an important role in deoxygenating the upper ocean (Bianchi
et al., 2013). In a review of 41 Ecopath models, (Libralato et al.,
2006) found that zooplankton (including Euphausiids) had high
“keystoneness” (i.e., the largest structuring role in food webs
relative to its biomass) in 68% of the ecosystems studied (from
tropical to polar regions, and reefs to gyres), including 100%
of the eight upwelling systems. Accounting for variations in
the dynamics of zooplankton is thus essential to understanding
energy flow in marine systems (Mitra et al., 2014), particularly to
fisheries (Friedland et al., 2012).

Given the critical role zooplankton plays in the marine
environment, models need to capture adequately the dynamics
of zooplankton. Models are extremely sensitive to zooplankton
parameterization (Edwards and Yool, 2000; Mitra, 2009)
and undoubtedly poor parameterization has hindered model
performance (Carlotti and Poggiale, 2010). However, significant
progress in modeling zooplankton has been made in recent
research and reviews focused on improving zooplankton
parameterization (Tian, 2006; Mitra et al., 2014) and in
better representing zooplankton functional groups (Le Quere
et al., 2015). What remains a major obstacle is the lack of
model assessment. Based on an examination of 153 published
biogeochemical models, Arhonditsis and Brett (2004) found that
95% of them compared output with phytoplankton data, but
<20% compared model output with zooplankton data. And in
the relatively rare instances where zooplankton were assessed in
biogeochemical models, they were more poorly simulated than
almost any other state variable (Arhonditsis and Brett, 2004).

In this manuscript, we focus on how we can best use
observations of zooplankton biomass and abundance for
assessment of zooplankton in models. We define model
assessment as the process whereby model output is compared
with observed data in time and space to evaluate model
performance. We identify and fill three key gaps we perceive as
hampering assessment of zooplankton in models. First, many

zooplankton observationalists are unfamiliar with the models
that typically have zooplankton functional groups, so we describe
the primary research questions addressed by biogeochemical,
ecosystem, size-based and individual-based models, and how
each typically represents zooplankton (Table 1). Second, many
modelers are unaware of the available data on zooplankton
biomass and abundance (Table 2) and are unaccustomed to
the different types of zooplankton sampling systems and
observations they produce (Table 3). We thus describe the
traditional sampling platforms [e.g., nets (Wiebe and Benfield,
2003) and Continuous Plankton Recorders (CPRs; Richardson
et al., 2006)] used for assessing zooplankton in models and
more modern techniques [e.g., Laser Optical Plankton Counters
(Herman, 2004) and bioacoustics (Greene and Wiebe, 1990)]
that present new opportunities for incorporating high-resolution
observations into models. Filling these gaps in our understanding
of models and observations provides the necessary context
to address the last gap—a blueprint for model assessment of
zooplankton. Our last section thus provides a detailed discussion
and case studies of the two most common ways that zooplankton
observations can be used for model assessment: data wrangling
that transforms observations to be more similar to model output
(Kandel et al., 2011); and observation models that transform
model outputs to be more like observations (Dee et al., 2011;
Handegard et al., 2012; Baird et al., 2016).

Our focus in this review is on assessment of zooplankton
state variables (i.e., abundance and biomass pools) and we
do not address better model parameterization (Mitra et al.,
2014) or better representation of zooplankton functional
groups (Le Quere et al., 2005) which have previously been
well-reviewed. Additionally, we do not consider model
initialization, although the approaches we suggest for model
assessment are equally applicable. We also do not consider data
assimilation, although we would highlight that the more modern
observation approaches (e.g., laser optical plankton counters and
bioacoustics) have considerable potential in this regard. This
review will be useful for both zooplankton observationalists who
want to produce useful data products for modelers, and modelers
interested in new and robust ways of assessment of zooplankton
biomass and abundance in their models.

CURRENT ZOOPLANKTON
REPRESENTATION IN MODELS

Biogeochemical Models
The classic structure of a marine biogeochemical model
includes Nutrients, Phytoplankton, Zooplankton, Detritus
(NPZD; Figure 1A). In the simplest NPZD structure, a single
zooplankton compartment represents a broad spectrum of
zooplankton and denotes the highest trophic level, which grazes
on the single phytoplankton class (Wroblewski et al., 1988; Oke
et al., 2013; Robson, 2014). In many biogeochemical models,
if zooplankton are included, it is often as the top closure term
(Steele and Henderson, 1992; Edwards and Yool, 2000), meaning
that the mortality rate in the zooplankton compartment is treated
as both a natural and predatory mortality rate. This releases

Frontiers in Marine Science | www.frontiersin.org 2 March 2017 | Volume 4 | Article 77

http://www.frontiersin.org/Marine_Science
http://www.frontiersin.org
http://www.frontiersin.org/Marine_Science/archive


Everett et al. Challenges for Zooplankton Model Assessment

TABLE 1 | A list of common biogeochemical, ecosystem and size-based models and how they represent zooplankton groups.

Typical uses of the models Typical number of groups and role of

zooplankton

References

BIOGEOCHEMICAL MODELS

TOPAZ2 Global carbon cycle processes and

feedbacks with climate

No zooplankton groups. Specific grazing

rate for each phytoplankton functional type

Dunne et al., 2013

Diat-HadOCC Climate predictions, and investigating the

strengths of biogeochemical feedbacks

1 zooplankton group which mediates

transfer of energy between phytoplankton,

detritus and nutrients

Palmer and Totterdell, 2001;

Collins et al., 2011

PISCES Air-sea fluxes of carbon, global carbon

cycle processes and feedbacks with

climate

2 zooplankton groups (Micro- and Meso-)

which contribute to elemental cycling

through explicitly defined mortality rates,

aggregation, fecal pellet production and

grazing

Dufresne et al., 2013

NPZD Global carbon cycle processes and

feedbacks with climate

1 zooplankton group which mediates

transfer of energy via grazing and mortality

rates

Oschlies, 2001; Watanabe et al.,

2011

HAMOCC Air-sea fluxes of carbon, global carbon

cycle processes and feedbacks with

climate

1 zooplankton group which mediates

transfer of energy via grazing and mortality

rates. Fecal pellet production is implicitly

calculated as a fraction of grazing

Maier Reimer et al., 2005

ECOSYSTEM MODELS

ATLANTIS Ecosystem impacts due to fishing,

management of ecosystems and human

behavior in fisheries systems

Typically, 3-4 zooplankton groups

classified as small, omnivorous,

carnivorous or gelatinous.

Fulton et al., 2005, 2011; Smith

et al., 2011

ERSEM (The Regional Seas

Ecosystem Model)

Impacts of ecosystem processes (e.g.,

ocean acidification) on lower TLs

3 zooplankton groups - microzooplankton,

mesozooplankton and nanoflagellates

Baretta et al., 1995; Blackford

and Gilbert, 2007

Ecopath with Ecosim (EwE) Effects of climate and fishing; Typically, 2-4 zooplankton groups

classified as small, large and predatory or

jellyfish.

Christensen and Pauly, 1992;

Christensen and Walters, 2004;

Christensen et al., 2015

NEMURO-FISH, North Pacific Biogeochemical model coupled with

higher TLs such as saury and herring

3 zooplankton groups: small, large and

predatory zooplankton

Megrey et al., 2007

SEAPODYM (Spatial Ecosystem And

Populations Dynamics Model)

Impacts of fishing on Pacific tuna species 2 zooplankton groups: small and large

zooplankton

Lehodey et al., 2008, 2014

SIZE-SPECTRUM MODELS

APECOSM Impacts of fishing and climate change on

tuna species and open ocean ecosystems

2 groups in an external NPZ model

(PISCES). Food source for higher trophic

levels

Maury, 2010; Dueri et al., 2014;

Lefort et al., 2015; Le Mezo et al.,

2016

OSMOSE Impacts of fishing and climate change on

higher trophic levels in marine ecosystems

2 groups (small, large). Predators of

phytoplankton and food for higher trophic

levels

Shin and Cury, 2004;

Travers-Trolet et al., 2014; Grüss

et al., 2016

Discrete size class Impacts of fishing on marine ecosystems,

and the effect of parameter uncertainty

Background food source for fish species,

but not explicitly resolved

Hall et al., 2006; Pope et al.,

2006; Thorpe et al., 2015

Static size continuum Establishing baseline, unperturbed

abundance of marine ecosystems

No zooplankton groups Jennings et al., 2008b; Jennings

and Collingridge, 2015

Trait-based multi-species Impacts of fishing and climate change on

fish in marine ecosystems

Smaller zooplankton grouped with

phytoplankton into background resource

spectrum for larger size classes, modeled

as a semi-chemostat system. Larger

zooplankton represented as small fish

Blanchard et al., 2014; Scott

et al., 2014

The key references for each model is provided. The list is not intended to be an exhaustive list, but rather provide a starting point for those researchers interested in a particular modeling

approach. For a more detailed list of models we point the reader to Bopp et al. (2013) and Arora et al. (2013).

nutrients held within the zooplankton back into the environment
over time. Given this simple structure, it is arguable whether
“zooplankton” included in some biogeochemical (lower trophic
level) models can be considered to equate even conceptually with
zooplankton in real systems. The “zooplankton” pool in these
models must account for storage of all carbon and nutrients

that has been taken up from phytoplankton and detritus by
grazing but not yet returned to the pool of detritus and available
nutrients through respiration and mortality, i.e., the biomass of
all animals in the system.

In addition, many of the global biogeochemical models do
not include a zooplankton compartment. Instead, the role of
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TABLE 2 | A list of some zooplankton data repositories whose data can be used for model assessment.

Program Region Availability

CPR

SAHFOS North Atlantic Available on request: http://www.sahfos.ac.uk

Scientific Committee on Antarctic Research (SCAR) Southern Ocean Available on request: https://data.aad.gov.au

Integrated Marine Observing System (IMOS) Australia Download from: https://portal.aodn.org.au

NETS

Bermuda-Atlantic Time-Series (BATS) Sargasso Sea Download from: http://bats.bios.edu

California Cooperative Oceanic Fisheries Investigations (CalCOFI) California, U.S.A Download from: http://calcofi.org/data.html

Census of Marine Zooplankton (CMarZ) Global repository Download from: http://www.cmarz.org/

Coastal and Oceanic Plankton Ecology, Production, and Observation

Database (COPEPOD)

Global repository Download from: http://www.st.nmfs.noaa.gov/copepod/ (Tools for

data-analysis also available)

Hawaii Ocean Time-Series (HOTS) Oahu, Hawaii, U.S.A Download from: http://hahana.soest.hawaii.edu/hot/

Integrated Marine Observing System (IMOS) Australia Download from: https://portal.aodn.org.au

Ocean Biogeographic Information System (OBIS) Global Repository Download from: http://beta.iobis.org

Scientific Committee on Antarctic Research (SCAR) Southern Ocean Download from: https://data.aad.gov.au

Western Channel Observatory (L4) W. English Channel Download from: http://www.bodc.ac.uk/

MARine Ecosystem DATa (MAREDAT) Global Repository Download from: http://www.pangaea.de/search?&q=maredat

BIOACOUSTICS

IMOS Australia Download from: https://portal.aodn.org.au

National Centers for Environmental Information (NCEI) Global Download from: https://www.ngdc.noaa.gov

Southern Ocean Network of Acoustics (SONA) Southern Ocean Download from: https://sona.aq

Please note there will be overlap in the data contained within some of these repositories.

TABLE 3 | An overview of the resolution, data type and strengths and weaknesses of the four main observation platforms described in this manuscript.

Net sampling Continuous Plankton

Recorder

Optical plankton

counters

Bioacoustics

Type of plankton data Taxonomic, abundance, biomass,

size

Taxonomic, abundance Abundance, size Biomass, functional size

Nature of data Quantitative Semi-quantitative Quantitative Quantitative

Spatial scale* 10s meters to 100s kilometers 10s to 1,000s kilometers 10s meters to 100s

kilometers

Meters to 1,000s kilometers

Temporal scale* Hours to years Days to years Minutes to years Minutes to years

Vertical resolution Depth resolved Near-surface Depth resolved Depth resolved

Vessels Research SOOP/research Research SOOP/research

Cost of collecting Expensive (research vessel) Cheap (unaccompanied on

SOOP)

Expensive (research

vessel)

Expensive (research vessel or

SOOP)

Cost of processing Expensive Expensive Cheap Cheap

Cost of installation Cheap to Expensive Cheap Expensive Expensive

Sample collected and

archived

Yes Yes No No

Main strengths Quantitative local measure of

zooplankton

Community composition over

large time and space scales

Rapid measurement of

particle size

Automatic identification of taxa

High spatial resolution

Some limitations Small zooplankton extruded Zooplankton damaged

Abundance underestimated

No identification.

Particles could be

detritus or inorganic

Not identified to species Under

samples some groups

Application in model

assessment

Assessment of zooplankton

biomass in BGC and ecosystem

models. Good information on

functional groups

Assessment of zooplankton

biomass in BGC & ecosystem

models, but only after

standardization. Good

information on functional groups

Assessment of

zooplankton size

structure in size-based

models. Currently limited

information on functional

groups

Assessment of zooplankton

biomass in BGC and ecosystem

models. Currently limited

information on functional groups

*Typical scales over which observations are made and analyzed. Not the resolution of the instrument.
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zooplankton is represented as an all-encompassing mortality
rate for phytoplankton (Christian et al., 2010; Dunne et al.,
2013; Holzer and Primeau, 2013; Matear and Lenton, 2014).
Instead of explicitly modeling the interaction between primary
and secondary consumers, these models include a parameter
that captures the consumption of phytoplankton. These kinds
of scaling parameters are rarely determined experimentally but
rather they are tuned during model development and assessment
to produce realistic model outputs for the region and parameter
set (e.g., Holzer and Primeau, 2013).

Biological complexity can be increased within this simple
NPZD structure to represent the lower trophic levels of marine
ecosystems with various elemental cycles or to include multi-
zooplankton compartments separated into different functional
and/or size groups (Fennel and Neumann, 2004). The use of
multiple phytoplankton functional groups based on physiology
(Follows et al., 2007), taxonomy (Chan et al., 2002), or
morphology (Kruk et al., 2010) is common, but the use
of zooplankton functional groups is relatively less common.
There are however some examples that distinguish zooplankton
functional groups on the basis of grazing strategies and basal
metabolism (Zhao et al., 2008) or feeding strategies, size and
palatability to higher trophic levels (Sun et al., 2010). If we are
to increase the complexity of zooplankton in a biogeochemical
model, we not only need improved parameterization (Mitra,
2009), but also quantitative observations with which to help
assess an expanded model that includes multiple zooplankton
functional groups.

Ecosystem Models
Ecosystem models attempt to describe the whole ecological
system, from primary producers to higher trophic levels, often
including human components (Figure 1B). Generally, these
models have complex predator-prey interactions, including
dozens to hundreds of species. Zooplankton however, are
generally only represented by a few classes (e.g., Yool et al.,
2011; Piroddi et al., 2015; Table 2), defined by diet (Pinnegar
et al., 2005), functional type (Le Quere et al., 2005), or size
(Griffiths et al., 2010;Ward et al., 2012; Savina et al., 2013;Watson
et al., 2013; Pedersen et al., 2016), or a combination of these. Of
course, some ecosystem models have many more zooplankton
classes (e.g., Pavés et al., 2013). Despite these exceptions,
research using common ecosystem modeling approaches—
ECOPATH with ECOSIM (Christensen and Walters, 2004),
ATLANTIS (Fulton et al., 2005), ERSEM (Baretta et al., 1995),
and SEAPODYM (Lehodey et al., 2008)—tend to focus on
fish and fisheries (Griffiths et al., 2010) and are hindered
by uncertainties in the prey and predator relationships of
zooplankton (Mitra and Flynn, 2006). Of course, models (of any
kind) do not need to represent every detail of the environment
to be useful or address a specific question (Fulton et al.,
2003), however we do know that zooplankton is essential
to understanding the transfer of energy to fish and fisheries
(Friedland et al., 2012; Lassalle et al., 2013), and therefore care
needs to be taken in the representation of this link between
the lower and upper tropic levels (Rose et al., 2010; Shin et al.,
2010).

The simplification of zooplankton groups in ecosystem
models, while not always ideal, enables operationalization
of the model, however understanding the effects of climate
variability and change on the target species or fisheries (for
example), can only be understood if the trophic pathways
leading to them are well-defined. A common problem with
how zooplankton are represented in both ecosystem and
biogeochemical models is the false assumption that the same
zooplankton assemblage is present throughout the whole
domain, both horizontally and vertically, and the structure of
this assembly does not change over time (Ward et al., 2014).
These models lump multiple zooplankton functional groups
together and use an “average” set of parameter estimates.
Zooplankton assemblages change markedly in character from
eutrophic systems, dominated by the classic short food chains
and larger species, to oligotrophic systems, dominated by longer
food chains and smaller species. They differ vertically, with
predatory and larger species below the euphotic zone and
are further complicated due to the complexity of zooplankton
behavior and life-cycle strategies such as molting and diapause.
These changes, which fundamentally affect nutrient cycles
and fisheries production, are often poorly represented in
models.

Size-Based Models
The size-based approach to marine ecosystem modeling
(Figure 1C) has developed as an alternative to more traditional
taxonomy-based frameworks by simplifying the community
structure through classifying individuals based on size as opposed
to species identity (Figure 1C; Sheldon and Parsons, 1967;
Sheldon et al., 1972; Andersen and Beyer, 2015; Andersen et al.,
2016). Developed over the past 50 years, this approach is based on
empirical observations that individual and community processes
such as growth, respiration, and predator-prey relationships and
trophic position all scale with body size (Peters, 1983; Jennings
et al., 2001; Brown et al., 2004; Andersen et al., 2016). Size-
based modeling has two main approaches: (1) static size spectra
models (Trebilco et al., 2013) and (2) dynamic size spectra
models (Blanchard et al., 2017). Similar to the trophic food web
structuring of Lindeman (1942), discrete size spectrum models
(or macroecological models) aggregate individual organisms into
discrete trophic levels based on size (Jennings and Mackinson,
2003; Jennings et al., 2008a). In comparison, dynamic size
spectrum models add the element of time, and scale individual
size-based growth and mortality rates to the population and
community level (Benoit and Rochet, 2004; Blanchard et al., 2009;
Hartvig et al., 2011; Jacobsen et al., 2013; Maury and Poggiale,
2013; Dueri et al., 2014; Guiet et al., 2016).

How zooplankton are treated in size-based models depends
on the primary focus. Most of these models focus on higher
trophic levels and simply lump microzooplankton together with
phytoplankton into a background food source for fish and
macrozooplankton as “small fish”—i.e., using equations and
parameters for metabolism and feeding for fish that are the size
of zooplankton (Heneghan et al., 2016). This simplification eases
computational costs, but has recently been called into question
because lower trophic levels are critical to improving predictions
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FIGURE 1 | Representation of typical models featuring zooplankton: (A) Biogeochemical (NPZD or LTL) models, (B) Ecosystem models (HTL) and (C)

Size-spectra models. Although not shown, all these models have temporal and spatial components. Individual-Based Models are not included in this schematic

because they have many different forms which cover (A–C). For more information on IBMs see Section Individual Based Models and references therein.

of biomass and production at higher tropic levels in these models
(Jennings and Collingridge, 2015).

Those models that have focused on zooplankton dynamics
and food web structure explicitly resolve size-based zooplankton
dynamics (Zhou and Huntley, 1997; Zhou, 2006; Baird and
Suthers, 2007, 2010; Zhou et al., 2010), but do not explicitly
include fish. To date, there have been few attempts to link these
size-based zooplankton models to dynamic size spectrummodels
that have focused on higher trophic levels (but see OSMOSE; Shin
and Cury, 2004). With increasing emphasis on understanding
ecosystem impacts of climate variability and change, comes
the need to better model bottom-up processes and thus the
representation of zooplankton.

Individual Based Models
Individual based models (IBM) simulate individual animals, or
groups of individuals as “superorganisms” that are treated as
individuals. This allows a sophisticated representation of the
behavior and/or physiology of each animal. For instance, IBMs
can be structured so that they simulate the movements of
animals in response to local light conditions (Batchelder et al.,
2002), predator/prey encounters (Gerritsen and Strickler, 1977),
or other environmental cues (Batchelder et al., 2002). In the
planktonic environment, the main advantage of using an IBM
is to account for rare individuals, circumstances or behaviors
that contribute strongly to determining the overall population
structure or variability; these are difficult to include in a state-
variable approach (Werner et al., 2001). Rice et al. (1993), for

example, show how variability in larval growth and survival rates
can mean that the characteristics of a population of zooplankton
can be quite different from the mean characteristics of the
individuals within that population.

By simulating individual organisms, IBMs replicate the
stochastic variability in the nutritional status, life-cycle stage,
or behavior that exists within a population and that may
have emergent implications for the overall properties of that
population. These include modeling the variability in the survival
of larval fish (Letcher et al., 1996), investigating implications
of nutrition and reproductive status for food web dynamics of
Daphnia (Perhar et al., 2016), the role of individual variability
in physiological traits in sustaining zooplankton populations
(Bi and Liu, 2017), and examining the effect of early/late
diapause termination, food availability and initial stock size of
the copepod Calanus finmarchicus in the Norwegian Sea (Hjøllo
et al., 2012). This may come at a cost of increased model
complexity and computational costs. In addition, IBMs require
significantly more information on the modeled species if the
model is to be rigorously parameterised and evaluated. As a
result, IBMs are often applied to well-studied species such as
the krill Euphausia pacifica (Dorman et al., 2015a,b) and the
copepod C. finmarchicus (Skaret et al., 2014; Opdal and Vikebø,
2016). IBMs are also coupled to hydrodynamic, ecosystem or
biogeochemical models (Skaret et al., 2014; Dorman et al., 2015a;
Opdal and Vikebø, 2016; Parada et al., 2016), thus allowing two-
way nesting within larger-scale modeling environments. Werner
et al. (2001) reviewed the use of IBMs in marine modeling, while
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Breckling et al. (2006) provide a more general discussion of the
use of IBMs in ecological theory.

ZOOPLANKTON SAMPLING SYSTEMS
FOR MODEL ASSESSMENT

Before we discuss approaches to integrate zooplankton
observations and models, we will briefly describe the major
zooplankton sampling systems used for collecting zooplankton
observations (Table 3), the different types of data each produces,
and the characteristic temporal and spatial sampling scale,
which includes the sampling extent, interval, and grain size
(resolution).

There is no single best way to sample zooplankton.
In the treatise by Wiebe and Benfield (2003), essential
reading for observationalists and modelers, they describe 164
different zooplankton sampling systems, ranging from nets to
optical sensors. This staggering variety of systems, each with
distinct sampling characteristics, has evolved to answer specific
zooplankton research questions, not for ease of uptake into
models. Here we discuss four major types of zooplankton
sampling systems that have been used in model assessment: nets;
the CPR; size-based systems (e.g., OPC/LOPC and ZooScan); and
bioacoustics (see Table 3).

Net Sampling
The use of nets is the oldest and most common method of
sampling zooplankton. The recent history of zooplankton net
sampling dates back to Thompson in 1828 (Wiebe and Benfield,
2003), but there are recorded observations prior to this (e.g.,
Sir Joseph Banks on the Endeavor in 1770; Baird et al., 2011).
There are many different net configurations in use, but the key
attributes that influence model assessment are the monitoring
design, sampling characteristics, and the information derived
from samples.

Sampling Characteristics
The large spatial and temporal extents of net sampling programs
make their data well-suited for model assessment. Nets are
used to collect zooplankton over a broad range of temporal
extents—from hours to decades—and horizontal and vertical
sampling grain sizes—from 10s of meters to 100s of kilometers
(Table 3). The scale of a particular data set is usually dependent
upon the aim of the survey. Process cruises tend to be one-
off and are usually less useful for model assessment, unless the
research cruise was specifically designed to answer a question
that the model is addressing. Typically, data collected from long-
term monitoring programs are more useful. Most monitoring
programs involve point sampling, sampling weekly or monthly
over many years. There are also many larger-scale surveys, often
linked with fisheries assessments, that are collected seasonally or
annually (e.g., CalCOFI: Edwards et al., 2010; or SARDI: Ward
and Staunton-Smith, 2002).

There are four main characteristics to consider when using
zooplankton data for model evaluation: type of tow, depth (and
vertical resolution) of sampling, time of day, and mesh size. In
terms of type of tow, nets can be dragged vertically, obliquely or
more or less horizontally at specific depths (depth-stratified by

an opening-closing net). All three types of net tows are good for
sampling mesozooplankton (0.2–20 mm), although oblique and
depth-stratified tows are better for capturing macrozooplankton
(2–20 cm), as the net often has a larger mouth area and is towed
faster, providing less opportunity for zooplankton to escape.
Conversely, faster tow-speeds can result in increased extrusion
of smaller individuals. Net avoidance of macrozooplankton such
as Antarctic Krill can be minimized with the use of strobe-
lights (Wiebe et al., 2004) which are thought to either “dazzle”
the plankton, or attract them. Nets are typically towed in the
mixed layer (top 50–100 m) or from near the seafloor to the
surface. Nets that sample in the mixed layer during the day
typically underestimate zooplankton abundance and biomass
because larger zooplankton often vertically migrate out of the
mixed layer during the day; thus, higher biomass is typically
found during the night.

Mesh size is probably the most important net characteristic
and varies depending on the size of the target group of
zooplankton and the ecosystem of interest. Macrozooplankton
are usually sampled with a larger mesh size—500 µm, for
example, is commonly used for fish larvae. Historically, many
researchers have used 330 µm mesh for mesozooplankton
(Moriarty and O’Brien, 2013), but a finer mesh of 200 µm is
now almost universally used in temperate and polar systems
to better sample smaller zooplankton (Sameoto et al., 2000).
However, fine mesh nets (100 µm) more quantitatively capture
the smaller part of the mesozooplankton and some of the
larger microzooplankton (e.g., juvenile stages of small copepods).
Fine mesh nets are most commonly used in tropical areas
where the zooplankton are generally smaller. Although coarse
mesh nets extrude smaller zooplankton and thus underestimate
abundance and biomass (Box 1), they still capture large
organisms reasonably well (Sameoto et al., 2000).

Information Derived from Net Samples
For model assessment, probably the simplest and most
useful information derived from net samples is zooplankton
biomass. Biomass is measured in several different ways: settled
volume, displacement volume, wet weight, dry weight, or
occasionally carbon (Postel et al., 2000). Each is measured
on different scales, and can be converted from one to
another using standard conversions (Box 1). Occasionally,
samples are poured through meshes of several different
sizes and then weighed, providing biomass in different size
categories (Huo et al., 2012; Banaru et al., 2014). Other
information available from net samples is typically some idea
of the zooplankton community present. This can vary from
a coarse identification of the community (e.g., copepods,
chaetognaths, jellyfish) to species-level identification. Taxonomic
identification allows for use in IBM, or the subsequent
aggregation of data into functional groups that might be
represented in ecosystem models (e.g., mesozooplankton,
herbivores, calcifiers).

The Continuous Plankton Recorder
The CPR has been used for the past 85 years to sample over large
regions of the North Atlantic Ocean, and has spawned surveys
in the North Pacific Ocean, Southern Ocean, around Australia,
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BOX 1 | DATA WRANGLING: CONVERTING ZOOPLANKTON BIOMASS BETWEEN DIFFERENT UNITS.

Model assessment using zooplankton biomass is not as straightforward as it might seem because observationalists use a range of different measures, from volumetric

to elemental measures, of zooplankton biomass. Table B1 briefly outlines the different units used to measure zooplankton biomass; for detailed information on the

various methods see Postel et al. (2000). These different measures of zooplankton biomass all have their different strengths and weaknesses. We have ordered the

rows of Table B1 by the robustness of the different methods and the ease in which they can be used in modeling, ranging from the most imprecise (Settled Volume)

to the most robust (Carbon Mass).

Most models usually use a currency of Nitrogen (or sometimes Carbon) biomass, which is rarely measured. Table B2 provides a series of equations to convert

different biomass to Carbon Mass. Once estimates are in Carbon Mass, they can be converted to Nitrogen Mass by using the C:N ratio of zooplankton, which typically

varies from 4:1 to 6:1, but is commonly 5:1 (Postel et al., 2000).

TABLE B1 | Glossary of zooplankton biomass terms, and their strengths/weaknesses.

Methods Description Strengths/Weaknesses

Settled Volume (SV) Sample poured into graduated cylinder, carefully mixed,

and left to settle for 24 h. Volume of zooplankton then

read

Imprecise method because of interstitial space between

zooplankton of different shapes

Displacement Volume (DV) Samples poured into graduated cylinder with known

water volume. Increase in volume indicates zooplankton

volume

Overcomes problem of interstitial gaps with SV

Wet Mass (WM; also Fresh or Live Mass) Mass of zooplankton after elimination of excess and

interstitial water

Excess water difficult to remove

Dry Mass, Dry Weight (DM) Mass of zooplankton after drying in an oven Most common method. Provides good information on

zooplankton biomass. Problematic in areas with high

sediment and includes detritus

Ash-Free Dry Mass (AFDM) DM minus mass of all inorganic material (ash) within

sample after drying at a high temperature (to remove

organics)

More robust than DM as sediment is removed. Includes

detritus

Carbon Mass (CM) Mass of C within zooplankton. C is preferred, as N

mainly restricted to protein and P to lipids. Based on

measuring liberated product such as CO2

Good index of zooplankton biomass but includes detritus

TABLE B2 | Equations to convert different biomass methods to carbon mass, Rearranged from Postel et al. (2000).

Conversion Equation References

SV to DM log10(DM) = 1.15 ∗ log10(SV) − 2.292 Postel, 1990

DV to CM log10(CM) = (log10(DV) + 1.434)/0.820 Wiebe, 1988

WM to CM log10(CM) = (log10(WM) + 1.537)/0.852 Wiebe, 1988

DM to CM log10(CM) = (log10(DM) + 0.499)/0.991 Wiebe, 1988

AFDM to CM log10(CM) = (log10(AFDM) − 0.410)/0.963 Bode et al., 1998

and in southern Africa. Unlike nets, there is only one main CPR
design that has remained relatively unchanged over the years
(Reid et al., 2003). Key attributes of the CPR that influence model
assessment are monitoring design, its sampling characteristics,
and the information derived from the samples (Richardson et al.,
2006).

Sampling Characteristics
The large spatial and temporal extents characteristic of CPR
surveysmake the data well-suited formodel assessment. The CPR
collects zooplankton over greater time and space scales than net
sampling—from days to decades and from 10s of kilometers to
1,000s of kilometers (Table 3). The temporal grain size (duration
of a transect segment) is 15–30 min and the sampling interval
between transects is typically a month or longer. The horizontal
resolution (length of a transect segment) is 10–20 km. The CPR is
not used for short-term process studies, but is deployed routinely

by commercial vessels plying common shipping routes, making it
ideal for studying trends over time (Richardson et al., 2006).

The CPR is towed near-surface (∼7 m), but the draft of the
large towing vessels probably mixes water down to 15m. The
aperture of the CPR is small (1.27 × 1.27 cm) and prevents
large macrozooplankton such as jellyfish (scyphomedusae) from
entering, although small and juvenile euphausiids are sampled
(Hunt and Hosie, 2003). Fragile organisms, such as gelatinous
plankton, are poorly sampled by the CPR because they are
damaged when they come in contact with the silk mesh. For
more detailed information about CPR sampling characteristics,
see Richardson et al. (2006).

It is well-known that the CPR provides semi-quantitative
rather than truly quantitative estimates of zooplankton
abundance (Clark et al., 2001; John et al., 2001; Batten et al.,
2003; Richardson et al., 2004, 2006), underestimating absolute
numbers of zooplankton, but relative changes through time and
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over space are robust (see Section Simple Observation Models:
Simulated Sampling from a Model). Small zooplankton are likely
to be under-sampled because of extrusion through the relatively
large mesh size of silk used in the CPR (270µm) compared with
standard nets (Sameoto et al., 2000). Large zooplankton are likely
to be under-sampled by the CPR because of active avoidance
(Clark et al., 2001; Hunt and Hosie, 2003; Richardson et al.,
2004).

Notwithstanding the semi-quantitative nature of CPR
sampling, it captures a roughly consistent fraction of the in situ
abundance of each taxon and thus reflects the major patterns
observed in the plankton (Batten et al., 2003). Seasonal cycles
estimated from CPR data for relatively abundant taxa are
repeatable each year (Edwards and Richardson, 2004) and show
good agreement with other samplers such as WP-2 nets (Clark
et al., 2001; John et al., 2001) and the Longhurst Hardy Plankton
Recorder (Richardson et al., 2004). Inter-annual changes in
plankton abundance are also captured relatively well by the CPR
(Clark et al., 2001; John et al., 2001; Melle et al., 2014) because the
time-series has remained internally consistent, with few changes
in the design of the CPR or in counting procedures.

Information Derived from CPR Samples
Data from the CPR are zooplankton abundance, with no direct
estimate of biomass. Data are normally expressed in numbers
per sample. Although each sample represents ∼3 m3 of filtered
seawater, abundance estimates are seldom converted to per m3

estimates in practice because of their semi-quantitative nature.
As with net samples, a strength of CPR data is that taxonomic

information is available. Typically, the copepods are well-
resolved to species and the other groups to higher taxonomic
levels (see Table 5 in (Richardson et al., 2006) for the taxa
counted). This means that the data may be aggregated into
functional groups that equate to those in models (e.g., Lewis
et al., 2006). The CPR also retains phytoplankton (although not
quantitatively) because of the leno silk weave of the mesh (see
Richardson et al., 2006 for details). Phytoplankton are counted
to the lowest possible level using light microscopy and these
data can be aggregated into phytoplankton functional groups that
equate to those in models, such as diatoms and dinoflagellates,
and used for model assessment alongside zooplankton data (e.g.,
Lewis et al., 2006).

Optical Plankton Counters
Themost common instruments for measuring in-situ size spectra
are the Optical Plankton Counter (Herman, 1988) and Laser
Optical Plankton Counter (Herman, 2004). These instruments
use either light emitting diodes-LEDs (LED-OPC) or lasers
(LOPC) to measure the optical density and cross-sectional area
of each particle as it passes through the sampling tunnel, and
thereby estimate surface area (Sprules and Munawar, 1986;
Suthers et al., 2006; Basedow et al., 2010). Hereafter we generalize,
and refer collectively to both instruments as an OPC.

Sampling Characteristics
The large temporal and/or spatial extents and high temporal
and spatial resolutions characteristic of OPC deployments make

the data well-suited for model assessment. The OPC collects
information of the size-spectra of zooplankton over a broad
range of temporal and spatial extents—fromminutes to years and
from 10s of meters to 100s of kilometers (Table 3). Due to the
continuous electronic data collection of OPCs, there is no typical
grain size (length of sample segment), and it depends largely on
the purpose of the study and deployment method. OPCs can
be deployed vertically (Vandromme et al., 2014; Marcolin et al.,
2015; Wallis et al., 2016), mounted on a towed undulating vehicle
to obtain high-resolution estimates of size spectra through space
and time (Zhou et al., 2009; Everett et al., 2011; Basedow et al.,
2014), mounted on a net frame (Herman and Harvey, 2006;
Checkley et al., 2008; Marcolin et al., 2013), integrated with
autonomous floats (Checkley et al., 2008), or mounted in the
laboratory for the processing of net-samples (Moore and Suthers,
2006). OPCs are capable of sampling through the water column
(up to 660m deep) and if mounted on a towed body, over
regional scales (100s km). OPCs are only deployable on research
vessels for a range of reasons including: they need a trained
technician to monitor them, require power via the tow-cable (or
regular changing of data-logger batteries) and cannot be towed at
the full speed of most commercial vessels. Therefore, unlike the
CPR, they are not suited to ships of opportunity.

Taxonomic information is not directly available from OPCs,
but they are often partnered with net samples, either by
mounting within the net mouth (Herman, 2004) or as part
of a broader sampling program whereby net and OPC
samples are taken in close proximity to provide species-specific
information, particularly for mono-cultures (e.g., overwintering
C. finmarchicus; Gaardsted et al., 2011 or swarms of Thalia
democratica; Everett et al., 2011). As for all sampling techniques,
gear avoidance and sampling volume can be a problem when
zooplankton abundance is low (Basedow et al., 2013), due to
the small aperture of the OPC (20–49 cm2) however these can
be partially resolved by towing at a higher speed or for longer
periods. Size-based data are also available from other instruments
such as the in-situ Video Plankton Recorder (Davis et al., 2004)
or the lab-based ZooScan (Vandromme et al., 2014 requires
net samples). Inter-comparisons of size spectra between LOPC
and ZooScan (Schultes and Lopes, 2009; Vandromme et al.,
2014; Marcolin et al., 2015) or LOPC and VPR (Basedow et al.,
2013) have shown mixed results. The biggest differences between
ZooScan and the LOPC are thought to be due to the sampling
of sediment in the small size-classes by the LOPC in coastal
areas (Schultes and Lopes, 2009), although techniques have been
developed to account for this (Jackson and Checkley, 2011) and
can result in improved correlations between LOPC and ZooScan
(Marcolin et al., 2015).

Information Derived from OPC
The key strength of OPCs is their ability to quantify abundance,
size and biovolume of plankton simultaneously over a large size
range (0.1–35mm for LOPC; Herman, 2004). In particular, OPCs
are ideal for comparison with size-based models as they share
the common currency of size and abundance. One common way
to represent the size-distribution of plankton in the ocean is
the normalized biomass size spectrum (NBSS; Silvert and Platt,
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1978). The NBSS is a histogram-style size-distribution, in which
the biovolume (or biomass) in a size class is normalized by the
width of the size-class, such that the normalized distribution
is independent of the width of size-classes (Platt and Denman,
1977). Using size-spectra theory, it is possible to extract trophic
level and growth and mortality rates from in-situ OPC data
(Edvardsen et al., 2002; Zhou, 2006; Basedow et al., 2014).

Other Optical Instruments
While OPCs are the most common in-situ optical instruments,
the field is developing rapidly and there are a range of
other systems which deserve to be mentioned. In particular,
camera and imaging systems such as ZooScan (Laboratory only;
Grosjean et al., 2004), FlowCam (Laboratory only; Sieracki et al.,
1998), Zooplankton Visualization system (ZOOVIS; Trevorrow
et al., 2005), Video Plankton Recorder (VPR; Davis et al.,
2005), Lightframe On-sight Keyspecies Investigation (LOKI;
Schmid et al., 2016), and the In Situ Ichthyoplankton Imaging
System (ISIIS; Cowen and Guigand, 2008) have become more
widespread. Additionally, increased effort has been invested
in the identification of zooplankton from images (Zooniverse,
www.planktonportal.org). The highly depth-resolved individual
images from these systems provide detailed information on both
taxonomy and individual features (e.g., proportion of females
carrying egg sacs) which will be beneficial to model assessment
of IBM’s. Moreover, developing artificial intelligence techniques
(Layered neural networks, random forest algorithm and
evolutionary algorithms) have permitted impressive advances in
the automated detection of such features (Bi et al., 2015) and will
add significant value to these optical systems.

Bioacoustics
Sampling Characteristics
Bioacoustic data can provide estimates of zooplankton and fish
distribution, behavior and abundance using soundwaves and
knowledge of the target strength of individual taxa (Foote and
Stanton, 2000; Simmonds and MacLennan, 2005). Bioacoustic
systems operate over fine to large scales, and are able to
measure horizontal and vertical scales simultaneously (Table 3).
Bioacoustic data for zooplankton can be obtained from single,
multiple and broad band frequencies using ship-based systems
or fixed platforms such as moorings (Godø et al., 2014). For
mesozooplankton (∼0.2–20mm) high frequencies are used from
100 KHz to 10 MHz in moored or profiling devices to resolve
the size classes and types of organisms (Holliday et al., 2009).
Acoustical backscatter from zooplankton are collected by the
acoustic receiver and analyzed to estimate biomass or relative
change in biomass of dominant scattering groups (Holliday
and Pieper, 1995; Lavery et al., 2007; Kloser et al., 2009; Godø
et al., 2014; Irigoien et al., 2014; Lehodey et al., 2014). The
spatial resolution can be increased by moving the acoustic sensor,
by using multiple spatially distributed sensors, or by tracking
organisms within the acoustic beam (Godø et al., 2014). The
temporal resolution of the backscatter can be improved by
increasing the ping rates to resolve an individual’s distribution
and behavior patterns (Holliday et al., 2009; Godø et al., 2014).

Bioacoustic techniques offer a number of advantages over
traditional net or CPR sampling because they provide high-
resolution data at both spatial (horizontal and vertical) and
temporal scales depending on the deployment platform. High-
frequency, broadband systems enhance the sampling resolution
to millimeter scale so that smaller targets, such as copepods,
can be quantified (Holliday et al., 2009; Godø et al., 2014).
Where patches of plankton and fish are small (Benoit-Bird et al.,
2013), plankton nets and the CPR do not provide an accurate
picture of the spatial distribution of the organisms that they
capture as the sampling volumes are far larger than the patches
(Godø et al., 2014). In addition, bioacoustics can provide better
biomass estimates when combined with other methods such as
nets (Kaartvedt et al., 2012) as there are minimal gear avoidance
problems.

Information Derived from Bioacoustics
Raw data from bioacoustics platforms is backscatter intensity
over a single multiple or broad band of frequencies. A skilled
analyst, using in isolation or a combination of scattering models,
nets or optical sampling, is able to convert backscatter intensity to
estimates of either biomass, abundance or (with more difficulty)
broad taxa or potentially size groups (Holliday et al., 2009)
depending on the region being considered. The high spatial
and temporal resolution of these data are ideal for integration
with modeling techniques. In the case of zooplankton, a major
complicating factor in the use of multi-frequency bio-acoustic
techniques is the diversity of this community, where a wide
range of organisms of different sizes, shapes, orientations, and
material properties occur together in the water column (Holliday
and Pieper, 1995; Lavery et al., 2007). All these characteristics,
along with their behavior, influence the way in which they scatter
sound. To estimate their individual acoustic reflectance or target
strength (TS), a series of zooplankton sound scattering models
have been developed (Table 1 from Lavery et al., 2007) to account
for that diversity.

ZOOPLANKTON DATA IN MODEL
ASSESSMENT

The performance of the zooplankton component of numerical
models is rarely assessed against field observations because,
unlike other parameters such as temperature or chlorophyll a
biomass, observations of zooplankton do not generally resemble
the resolution of the modeled zooplankton variables (temporally
or spatially), are in a very different format (species abundance
rather than mass of nitrogen), or are inaccessible (e.g., hidden
in gray literature/personal collections). Because zooplankton
observations are collected using a range of platforms that
measure different parameters such as abundance (e.g., CPR,
nets, bioacoustics), size (e.g., LOPC) or biomass (e.g., nets),
model assessment requires uncertain and generally species-
and location-dependent conversion factors (Arhonditsis and
Brett, 2004) to approximate the zooplankton biomass in models
(Postel et al., 2000). This makes it difficult to compare modeled
zooplankton information with observed data. To address this
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challenge, we turn our focus to a discussion of the two
primary ways to link zooplankton in models with zooplankton
observations: (1) data wrangling that transforms observational
data to be directly comparable with model outputs; and (2)
observation models that transform model output to be more
comparable with observational data.

Data Wrangling: Transforming
Observational Data to Be More Like Model
Outputs
Data wrangling is the process of iterative data exploration and
transformation from one format to another to make them
more useful (Kandel et al., 2011). We use the term here to
describe the series of steps that transforms observational data
into a form that is more comparable with model output. Data
wrangling transforms observed data into model-ready datasets.
Data wrangling takes many forms, but two of the most important
are conversion of observed biomass into appropriate values to
compare with model estimates (see Box 1 for details), and
collating biomass estimates collected using nets with different
mesh sizes or different sampling devices (see Box 2 for details).

One example of data wrangling is finding the optimal way to
interpolate scattered observations onto a regular model grid at a
fixed point in time (Buitenhuis et al., 2013; Moriarty and O’Brien,
2013). A more complex example is the conversion of observed
zooplankton abundance (or biovolume) to nitrogen (or carbon)
biomass, which is how many models represent zooplankton
biomass (Box 1). This approach requires assumptions about the
size distribution and stoichiometry of zooplankton in the sample.
Given these assumptions, modelers are able to use these data, but
need to understand the basis of the assumptions that are made,
and the magnitude of the error inherent in the conversion.

Often gridded data products—think of the global chlorophyll
a products—are the most readily used for model assessment of
phytoplankton. Similarly, the wrangling of 153,163 zooplankton
biomass values, from a variety of locations, formats and collection
methods, into a freely-available gridded global database of
consistent biomass units was an amazing effort (COPEPOD;
http://www.st.nmfs.noaa.gov/copepod/; Moriarty and O’Brien,
2013). Unlike chlorophyll a however whose global satellite maps
are updated daily, the time-consuming nature of zooplankton
collection means there isn’t a truly global database (see gaps
in Figure 2) which is updated on time-scales relevant to many
modeling studies. These data are extremely useful however, to
constrain model estimates by providing biomass limits against
which to assess our models. There are many statistical tools
available to assist with the practical side of data-wrangling (e.g.,
“tidyr” or “dplyr” in R), but the most important aspect is dialogue
between modelers and observationalists.

Observation Models: Transforming Model
Output So It Is More Like Observational
Data
Where zooplankton observations are incorporated into models,
there is often a mismatch between the observations (often
infrequent point measurements) and the high spatial and

temporal resolution of models. Observation models are one
technique that can help address these mismatches, allowing
model assessment at a range of scales. We define an observation
model as a model that takes the output of a simulation
and transforms it to a form that closely resembles the
observations with which it is being compared. This approach
of generating observations from models is used in numerical
weather prediction (Dee et al., 2011), acoustic observations of
mid-trophic levels (Handegard et al., 2012), and remotely-sensed
ocean color observations (Baird et al., 2016).

The observation model needs to be based on sufficient process
understanding, so that it applies well over a broad range of
environments and the error in the output of the observation
model is due primarily to the simulation model estimate (i.e.,
zooplankton biomass) and not the accuracy of the parameters
or equations within the observation model itself. Essentially, the
rationale of an observation model is to allow comparison of
observed and modeled data, by removing inconsistencies in the
structure or scale of these data. Here we review some of the steps
and challenges to developing zooplankton observation models,
for improved interpretation of the observations and assessment
of numerical models. Below we discuss the range of observation
models, from simple to more complex.

Simple Observation Models: Simulated Sampling

from a Model
The simplest approach to developing an observation model
is to undertake simulated sampling within a model, and
compare these sampled data to zooplankton observations. For
example, zooplankton biomass estimates can be extracted from
a simulation corresponding to the time, location, and depth of
the samples collected by nets, CPR, OPC, or bioacoustics. While
not directly comparing their model to observations, Wiebe and
Holland (1968) were likely the first to simulate net tows within a
computer simulation when they determined the effect of net size
and patchiness on sampling error.

An example using the CPR highlights the approach of
simulated sampling from a model. Lewis et al. (2006) compared
the abundance of zooplankton as measured by the CPR with
plankton output from an ecosystem model of the Northeast
Atlantic Ocean. Simulated “tows” were performed by extracting
biomass data of omnivorous mesozooplankton from the model
at the time (day and nearest hour), location (longitude and
latitude), and depth (7 m) of corresponding samples collected by
the CPR (Figure 3). Because the CPR provides semi-quantitative
abundance estimates, and not biomass (Richardson et al.,
2006), both the samples and corresponding model output were
standardized to a mean of zero and a unit standard deviation
to produce a dimensionless z-score (Cheadle et al., 2003). This
allowed a direct semi-quantitative evaluation of spatio-temporal
model performance of omnivorous mesozooplankton. This
evaluation highlighted that themodel had the ability to reproduce
the main seasonal features such as the spring and autumn
blooms, and plankton succession observed in the CPR data and
showed good correlation between magnitudes of these features
with respect to standard deviations from a long-term mean. The
model assessment also highlighted differences in the timing of
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BOX 2 | DATA WRANGLING: CONVERTING ZOOPLANKTON BIOMASS BETWEEN DIFFERENT MESH SIZES AND USING PROXY ESTIMATES

Different mesh sizes: Different mesh sizes of nets provide very different biomass values, with higher zooplankton biomass estimates from finer mesh nets. To

convert biomass data collected with different mesh sizes to an equivalent mesh size, common conversions can be applied (Table B3; Moriarty and O’Brien, 2013),

although it must be acknowledged that the best conversion is dependent upon the zooplankton assemblage present. Fortunately, different net systems produce

similar estimates of zooplankton when operated with similar mesh sizes (Skjoldal et al., 2013).

TABLE B3 | Equivalent mesh size conversions (modified from Moriarty and O’Brien, 2013).

Conversion Equation References

333 µm to 200 µm mesh log10(CM200) = 1.4461 ∗ log10(CM333) O’Brien, 2005

505 µm to 330 µm mesh log10(CM333) = 1.2107 ∗ log10(CM505) O’Brien, 2005

Proxy estimates—Abundance: Sometimes zooplankton abundance and not biomass is measured. It is difficult to convert abundance to biomass because you

do not know the size of individuals and thus their mass. In this situation, we recommend using abundance data for relative patterns—for example seasonal cycles,

spatial variation, or inter-annual variation. Lewis et al. (2006) assessed their ecosystem model by normalizing both the model biomass and the observed abundance

data and comparing the normalized patterns spatially and temporally.

Proxy estimates—Biovolume: Size-based methods of measuring zooplankton (LOPC/OPC/VPR/ZooScan) can provide estimates of zooplankton biomass.

These instruments measure organism size (2-D area) and this can be converted to organism volume. Biovolume can then be converted to biomass by summing

organism volume across all individuals and assuming zooplankton has the same density of seawater. Zooplankton biomass from the VPR and ZooScan has the

advantage that detritus and sediment can be removed. An advantage of these size-based methods are that they can be used to estimate biomass in size classes.

They could also be used to partition observed zooplankton total biomass into size classes (i.e., using the size spectra to estimate the % of biomass in different size

classes and applying this to measured biomass).

FIGURE 2 | The mean marine zooplankton biomass (mg C m−3) for mesozooplankton (0–200m depth) is shown illustrating the distribution of records

from the most comprehensive database available. The data shown here are freely available from “COPEPOD: The Global Plankton Database”

(http://www.st.nmfs.noaa.gov/copepod/).

patterns in phytoplankton seasonality (e.g., spring diatom bloom
in the model is too early), allowing the reparametrizing of the
model (Lewis et al., 2006).

More Complex Observation Models: Add-On Models

That Convert Output to Observations
With improving technologies and computing power comes
the opportunity to embrace increasingly complex observation
models. Here we borrow many examples from state-of-the-art
applications in other fields of model assessment that have not yet
been fully applied to zooplankton. These are ideally suited for the
assessment of zooplanktonmodels due to the inherent disconnect

between the spatial and temporal resolution and model currency
of observations and models.

Historically, in phytoplankton model assessment, satellite-
derived chlorophyll a is compared with modeled phytoplankton
(Oschlies and Schartau, 2005; Lacroix et al., 2007; Gregg, 2008;
Brewin et al., 2010; Kidston et al., 2011, 2013), but inaccuracies
in both the satellite observation (e.g., measurement error due
to CDOM in the water) and conversion of model units (e.g.,
conversion of nitrogen biomass to chlorophyll a) introduce errors
into the model assessment. To limit these inaccuracies, Baird
et al. (2016) used an optical observation model, nested within
a biogeochemical model, to assess water-leaving irradiance from
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FIGURE 3 | Sampling the model—(A) Simulated “tows” within the model were performed by extracting biomass data of omnivorous mesozooplankton from the

exact time (day and nearest hour), location (longitude and latitude), and depth (7 m) of corresponding samples collected by the CPR. (B) The data are then

standardized due to the different units, and the difference between normalized z -scores for both simulation and observation between January 1988 and December

1989 with a 3-day running mean (solid line) is shown. Black is model data, red is CPR data; dots are individual model tow points, crosses are individual CPR tow

points (redrawn from Lewis et al., 2006).

FIGURE 4 | A bioacoustic observation model would apply the same

scattering models to both the backscatter measurements from the

ocean and the ecosystem model. Regardless of environment (ocean or

model), we can use the same principle of the scattering models to produce

echograms which can be directly compared.

the model, against satellite-derived water-leaving irradiance.
The water-leaving irradiances, from the observation model and
the satellite, can be directly compared against each other to
assess the model. Alternatively, the water-leaving irradiance
measures from both the observation model and the satellite,
can be converted to chlorophyll a using one of the satellite
algorithms in order to allow a comparison which may be more
informative for those used to thinking about chlorophyll a.
In either case, both the units of assessment, and the method
used to derive them, are the same. Thus, the mismatch
between simulated and observed remote-sensing reflectance
provides an excellent metric for model assessment of the
coupled biogeochemical model (Baird et al., 2016; Jones et al.,
2016).

This approach—of building an observation model that
enables the model to produce information more comparable to
observations—has not yet been applied to zooplankton but would
be a valuable way forward. For zooplankton model assessment,
building observation models for size-spectra models would be
fairly straightforward given that observational techniques (OPC,
ZooScan and VPR) measure the size and abundance of the
zooplankton community—metrics easily extracted from size-
spectra models. It is also made easier because size spectra
are typically represented as Normalized Biomass Size Spectra
(NBSS; Section Optical Plankton Counters), where size classes
are normalized by the width of the size-class, making the shape
of the spectrum independent of the size-classes chosen (Platt and
Denman, 1977). The NBSS can thus be generated from both the
observations and models, even if they each have different size-
resolutions. In addition to comparing state-variables, the size-
based approach developed by Zhou (2006), Zhou et al. (2010)
provides an intuitive framework for estimating time-averaged
rates (e.g., growth, mortality) for zooplankton from observed
NBSS, which could then be tested within dynamic size spectrum
models that include zooplankton (Heneghan et al., 2016) or
compared to observed rates in the field (Zhou et al., 2010).

Another potential area for development of an observation
model is in bioacoustics. Traditional outputs from zooplankton
bioacoustic observations are the distribution, behavior, biomass
and abundance of trophic levels, size categories, or species of
interest derived from scattering models (Lavery et al., 2007;
Holliday et al., 2009; Kloser et al., 2009; Godø et al., 2014).
These scattering model measures can then be used to assess
ecosystem models (Luo and Brandt, 1993; Holliday et al., 2009;
Kloser et al., 2009). This requires the aggregation of focal
taxa from the ecosystem model output and conversion to a
common currency. This need to transform both observation
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and model outputs to a common format introduces error and
inconsistencies into each. An alternative approach is to create
a bioacoustic observation model which uses scattering models
to estimate the backscatter intensity of zooplankton within the
ecosystemmodel and compare this to bioacoustic observations in
the ocean (Figure 4; Handegard et al., 2012). The main challenge
for the observation model is to simulate the observed backscatter
at a particular frequency and depth within the model. In this case,
we are not directly modeling sound within the ecosystem model,
so this observation model does not provide feedback (external
forcings or changes in state variables) to the ecosystem model.
It is simply about avoiding inconsistencies in the comparison
of modeled and observed data, and enabling the comparison of
“like with like.” Building such an acoustic observation model
would simulate acoustic observations, producing an echogram
(Figure 4). Thus, for all model points in time and space,
the observation model could produce an echogram based on
the zooplankton functional groups predicted by the ecosystem
model. As with all model-observation comparisons, care must be
taken to consider the temporal and spatial resolution measured
or modeled. In the case of bioacoustics, the measurements will
often be at a higher spatial resolution (meters; Table 3), but lower
temporal resolution (minutes; Table 3) than the model. High-
resolution bioacoustic measurements of abundance and biomass
can be downscaled to match the resolution of ecosystem models.
Clean acoustic observations will need to be readily available
for comparison with the simulated outputs of the observation
model, which could be achieved with the use of a multi-frequency
acoustic mooring, which delivers acoustic data resolved vertically
and temporally at a single site (Urmy et al., 2012).

CONCLUDING REMARKS

In this review, we summarize many of the fundamentals of
zooplankton modeling for observationalists and zooplankton
observations for modelers. As highlighted by Flynn (2005), we
believe that there needs to be greater discussion and collaboration

between modelers and observationalists. Only through dialogue
will we be able to perform the data wrangling and develop

the observation models that are needed so our observations
and model outputs align. In particular, observation models have
not been applied in the assessment of zooplankton in models
and are likely to be a powerful approach, as they have been
in other disciplines. These observation models range from the
simple (sampling the model) to the more complex (bioacoustics)
and can even result in the underlying model being changed to
output data that is directly comparable to the observations (e.g.,
water leaving irradiance and chlorophyll a). The development
and use of complex observing models can be time consuming,
but many of the techniques described above are already being
implemented (Handegard et al., 2012; Baird et al., 2016). The
adoption of these ideas for use in zooplankton research would
be a major step forward, allowing zooplankton observations to be
more readily used in model assessment as real-time data becomes
a possibility with optical and acoustic systems. Here we have
provided a few ideas. We hope that this review will increase the
dialogue between modelers and observationalists, and provide
the impetus for greater model assessment of zooplankton
output through data wrangling and state-of-the-art observation
models.
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