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Biogeochemical implications of global imbalance between the rates of marine dinitrogen
(N2) fixation and denitrification have spurred us to understand the former process in the
Arabian Sea, which contributes considerably to the global nitrogen budget. Heterotrophic
bacteria have gained recent appreciation for their major role in marine N budget by fixing
a significant amount of N2. Accordingly, we hypothesize a probable role of heterotrophic
diazotrophs from the 15N2 enriched isotope labeling dark incubations that witnessed
rates comparable to the light incubations in the eastern Arabian Sea during spring 2010.
Maximum areal rates (8 mmol N m−2 d−1) were the highest ever observed anywhere in
world oceans. Our results suggest that the eastern Arabian Sea gains ∼92% of its new
nitrogen through N2 fixation. Our results are consistent with the observations made in
the same region in preceding year, i.e., during the spring of 2009.

Keywords: dinitrogen fixation, 15N, 13C, nitrogen budget, carbon uptake rate, nutrients, biogeochemistry, Arabian
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INTRODUCTION

Reactive nitrogen (e.g., NO−

3 ) is an important substrate for marine primary producers because
dinitrogen (N2), though the most abundant gas in the Earth’s atmosphere, is unassimilable by most
photosynthetic organisms (Middelburg and Nieuwenhuize, 2000). However, marine diazotrophic
cyanobacteria (e.g., Trichodesmium) have an enzymatic advantage to convert atmospheric N2 gas
to a bioavailable form of nitrogen (such as NH+

4 ). These diazotrophs are distributed over the
oligotrophic tropical and sub-tropical marine environments, e.g., in the Arabian Sea located in the
northwest Indian Ocean (Capone and Carpenter, 1982; Jickells et al., 2017).

The Arabian Sea is a hotspot for studying N2 fixation. Strong summer monsoonal winds cause
intense upwelling over the western Arabian Sea enhancing primary productivity over the Somali
coast (Prasannakumar et al., 2001). Further, the northern and central Arabian Seas are known
for high productivity during winter, caused by the cooling-driven deep convection (Madhupratap
et al., 1996; Singh and Ramesh, 2015). High biological production in the surface layers and its
subsequent export leads to oxygen depletion in the subsurface layers (Naqvi and Jayakumar, 2000)
that further triggers denitrification process, i.e., the release of N2 and N2O back to the atmosphere
from nitrate (NO−

3 ) reduction. Denitrification in the oxygen minimum zones would deplete only
NO−

3 thereby lowering the nitrogen: phosphorus (N:P) ratio in dissolved nutrient pool (Deutsch
et al., 2007). An imbalance betweenN2 fixation and denitrification rates based onN:P stoichiometry
is an imperative problem in the marine nitrogen budget (Codispoti, 2007). N2 fixation and
denitrification dominate ocean N sources and sinks processes, respectively (Codispoti et al., 2001).
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Global nitrogen loss and gain rates are in imbalance,
indicating either an overestimation of the loss processes or
an underestimation of the gain processes (Codispoti, 2007).
The recent recognition of greater diversity (Zehr et al., 2001,
2003) and wider distribution (Hewson et al., 2007; Mulholland,
2007) of marine diazotrophs than had been appreciated hitherto
(Mahaffey et al., 2005) suggested an underestimation of N2

fixation. Contribution of atmospheric deposition and riverine
nutrients to primary production is minor in the Arabian Sea
(Singh and Ramesh, 2011; Singh et al., 2012) which further
supports the fact that N2 fixation is a major process in this
region. The Arabian Sea witnesses diverse group of diazotrophs,
which may fix N2 at varying rates (Mulholland and Capone,
2009). During spring and autumn seasons, calmer winds,
warmer waters, and shallower mixed layers make the Arabian
Sea oligotrophic, thus creating a niche for Trichodesmium
blooms (Gandhi et al., 2011). The seasonal occurrence of N2

fixation over the Arabian Sea makes it an unique region for
studying nitrogen budget (Naqvi, 1987; Capone et al., 1998).

Trichodesmium is not the only species which fixes N2, as there
are some other fixers such as γ- Proteobacteria, and other small
heterotrophs also contribute substantially to N2 fixation rates
(Zehr et al., 1995). N2 fixation might be mediated by a variety
of auto and heterotrophic bacterial community in the eastern
Arabian Sea, a region of rather limited information. Previously
estimated rates (Gandhi et al., 2011) were surprisingly high; so in
this study, we revisited the N2 fixation and carbon uptake rates
over the eastern Arabian Sea to verify the veracity of the reported
higher rates, using the 15N2 gas tracer technique (Montoya et al.,
1996). We report measured N2 fixation rates for dark and light
conditions and discuss the possible reasons for this estimated
rates.

MATERIALS AND METHODS

Sampling for Incubation Experiments
Water samples were collected using Niskin bottles (bottles were
closed by a messenger) from the four different depths (0, 5,
10, and 20 m) within the euphotic zone at three locations
(NF-a, NF-b and NF-c that have station depths 42, 37, and
37 m, respectively) over the eastern Arabian Sea, during ORV
Sagar Manjusha cruise during 10–14 May 2010 (Figure 1).
Duplicate samples were taken from each depth in 1.225 L
polycarbonate Nalgene bottles. All the bottles filled without
headspace followed by the addition of 15N2 gas (bubble method)
with the chromatographic gas tight syringe (Montoya et al.,
1996). Two milliliters of 15N2 gas (99% 15N enriched gas from
Cambridge Isotope Laboratories, Inc. USA) and 1ml of 0.2 mmol
ml−1 NaH13CO3 (99% 13C enriched) tracers were injected to
each bottle (final enrichment of 16.6% for 15N and 8.5% for 13C)
before the start of the incubations, which were performed during
10:00–14:00 h, i.e., symmetric to local noon. Tracer added bottles
were covered with the calibrated neutral density filters to simulate
the irradiance at the depths from which the samples were taken.
After the incubations, the samples were filtered sequentially
through pre-combusted (4 h at 400◦C) Whatmann GF/F filters
(25 mm diameter and 0.7 µm pore size), washed with filtered sea

FIGURE 1 | Sea water sampling locations (filled circles) NF-a, NF-b and

NF-c, during ORV Sagar Manjusha cruise May-2010.

water, dried in an oven at 50◦C overnight and stored for further
mass spectrometric analysis. At each station, 2 L surface seawater
was collected for measuring the nitrogen isotopic composition of
natural particulate organic nitrogen (PON) and carbon (POC).

Mass Spectrometric Analysis and
Calculation of Rates
Elemental analyzer interface with continuous flow mass
spectrometer at the Physical Research Laboratory, Ahmedabad
was used to measure the PON, POC, atom% 15N and atom% 13C
in the samples. Volumetric rate of N2 fixation were calculated
following (Montoya et al., 1996).

N uptake rate = (1/t)[(APNf − AN0)/(ANenrich − APN0)]

× [PON]f (1)

Where, APN0 = 15N atom% in PON at the start of experiment,
APNf =

15N atom% in PON at the end of experiment, t = time of
incubation (4 hrs), [PON]f = concentration of PON at the end of

the experiment and ANenrich = 15N enrichment in the dissolved
form after tracer addition at the start of the incubation, which is
estimated as:

ANenrich = (15Ntracer × tracer conc+ 15Nnatural × ambient

conc)/(tracer conc+ natural conc) (2)

Surface water samples (at 0–1m depth) were also incubated in
complete dark condition and these estimates are attributed to the
presence of heterotrophic diazotrophs and their contribution to
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N2 fixation. It has been discovered that in the “bubble method,”
only 40% enrichment can be achieved in 4 h incubations, which
further results in 40% underestimation in the rates (Mohr et al.,
2010). Hence, we multiplied N2 fixation rates by a constant
factor of 2.5 to avoid possible underestimation in the bubble
gas technique. Later, it was discovered that the underestimation
of rates is community dependent-there is less underestimation
for Trichodesmium compared to that for other diazotrophs. Our
sampling area witnesses Trichodesmium so underestimation in
bubble method was less (Großkopf et al., 2012; White, 2012;
Klawonn et al., 2015). We still multiplied our rates by 2.5
because we compared our results with Gandhi et al. (2011), who
multiplied by the same factor. Carbon uptake rate is calculated by
substituting N and 15N by C and 13C, respectively, in Equations
(1) and (2) (Slawyk et al., 1977). Areal rates were calculated from
the volumetric rates using the trapezoidal rule of integration, i.e.,
mean of volumetric rates were multiplied by the corresponding
depth interval and then summed for all the depth intervals.
Hundred milliliters of each sample was separately collected for
nutrient measurements using a SKALAR auto analyzer at the
offshore laboratory.

Spatial distribution of sea surface temperature (SST) was
plotted using the Gridded High Resolution Sea Surface
Temperature: Operational sea surface temperature and sea ice
analysis (GHRSST: OSTIA) satellite data (Donlon et al., 2012).
The mixed layer depth (MLD) was estimated based on the
temperature criterion (0.2◦C difference from the SST; de Boyer
Montégut et al., 2004). Salinity values were obtained from the
CTD data, values ranged from 35.23 to 35.56 at the sampling
locations (Figure 2).

RESULTS AND DISCUSSION

Hydrography
Temperature profiles from a portable CTD at sampling locations
NF-a, NF-b, and NF-c showed that MLD varied between 17 and
20m (Figure 2). Surface temperature at NF-b was ∼1.4◦C less
than that at the other two stations. Temperature measurements
obtained from CTD at surface level were reproduced by the

satellite remote sensing data images (Figure 3). Salinity values
obtained from CTD varied from 35.23 to 35.56 at the surface
with maximum at NF-b and minimum at NF-c. NF-b is possibly
influenced by Western India Coastal Current (WICC), which
brings convecting mixing driven colder water from the north to
the south during pre-monsoon (Schott and McCreary, 2001) as
evidenced in the temperature profile (Figure 1).

Dissolved oxygen from the same CTD casts showed a dip of
2mg L−1 at 3m depth at sampling location NF-c, whereas there
was no vertical gradient in oxygen in the upper 20m at locations
NF-a and NF-b (Figure 2). Oxygen showed a sudden decline at
all the stations below 20m depth. Lower temperature at NF-b was
associated with the detectable SiO4 values, whereas the dip in the
dissolved oxygen was associated with the maximum NOx (NO

−

2

+ NO−

3 ), phosphate (PO
3−
4 ) values and higher N:P ratios at NF-

c (Table 1).

Nutrients
Nutrient concentrations were higher at the surface and decreased
with depth, with maximum surface value at NF-c (Figure 4).
NO−

3 varied from 0.37 to 2.42 µM while PO3−
4 ranged from 0

to 0.71 µM (Table 1). At sampling station NF-b, SiO4 values
were readily detectable with maximum at surface (1.69 µM)
and decreased with depth (Table 1). We calculated P∗ that
indicates PO3−

4 concentration deviations from the Redfield ratio
(N:P= 16):

P∗ = [PO3−
4 ]− [NO−

3 ]/16 (3)

Positive P∗ indicates PO3−
4 concentrations in excess compared

to NO−

3 (Deutsch et al., 2007). Surface water P∗-values were
mostly in excess (except at 20m at NF-c) and varied from −0.06
to 0.56 µM (Table 1). P∗-values at surface showed increasing
trend from NF-a to NF-c, and decreased with depth at all the
three locations. PO3−

4 and NO−

3 maxima at NF-c could be due
to the upwelling of subsurface water. Low P∗ at NF-a could also
be either due to the consumption of phosphate by diazotrophy
or due to the upwelling, which starts during May (Gupta et al.,
2016) as evidenced in the temperature profile at NF-a (Figure 2).

FIGURE 2 | Temperature, salinity and dissolved O2 profiles at the three sampling locations based on the CTD data.
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FIGURE 3 | Spatial distribution of Sea Surface Temperature (◦C) for 10th May-2010, 12th May-2010, and 14th May-2010 from GHRSST: OSTIA, http://

apdrc.soest.hawaii.edu/las/v6/constrain?var=4928.

Upwelling would create low oxygen just belowMLD (Gupta et al.,
2016; Sudheesh et al., 2016), as observed at NF-a (Figure 2).
However, high P∗-values would have been expected in low
oxygen water but deeper water, as evidenced from the P∗ profiles
(Table 1), has low P∗—possibly because of the remineralization
of diazotrophy dominated organic matter (high N:P ratio) in the
deeper depths. PO3−

4 was below the detection limit at 20m depth
at NF-c yet there was N2 fixation. This could again be attributed
to the PO3−

4 consumption by diazotrophs.
N:P ratio was less than the Redfield ratio (positive P∗,

Table 1) at all stations with maximum at NF- c, which could
have resulted in nitrogen limitation and further would have
facilitated of N2 fixation. N2 fixation is controlled by iron
and PO3−

4 availability (Wu et al., 2000; Capone, 2001; Sañudo-
Wilhelmy et al., 2001; Mulholland, 2007). At these sampling
locations, N2 fixation may be regulated by iron input as PO3−

4
is not the limiting nutrient in the northern Indian Ocean as
suggested by P∗-values (Shiozaki et al., 2014). Iron limitation
is likely, as some part of the western Arabian Sea has been
highlighted as a high nutrient low chlorophyll (HNLC) region
(Naqvi et al., 2010; Moffett et al., 2015). Changes in the response
of external forcing (e.g., seasonal monsoon and upwelling events)
and inputs (e.g., aeolian and river influx) have specific control
on N2 fixation over the basin (Mulholland and Capone, 2009).
POC and PON varied between 15 and 73 µM and 3–51 µM,
respectively (Table 1), but did not show any correlation with
C and N2 fixation rates. However, the highest values of POC,
PON, C, and N2 fixation rates were observed at the surface at
NF-a.

N2 Fixation Rate and Carbon Uptake
N2 fixation rates varied from 4 to 238 nM N h−1, while carbon
uptake rate ranged between 16 and 1628 nM C h−1 (Figure 5).
Our N2 fixation rates were higher than those synthesized by
Capone et al. (2008) in the world oceans (0–5.4 nM N h−1).
The highest values for both carbon uptake and N2 fixation rate
for light incubation fixation (Figure 5) were observed at NF-
a lying south of the other two sampling locations (Figure 1).
N2 fixation rates were higher in dark incubations compared
to the light incubations at the surface level, except for NF-
a (44.93, 63.32, and 164.7 nM N h−1 at NF-a, NF-b, and
NF-c, respectively, Figure 6). Whereas carbon uptake rates
in the light incubations were an order of magnitude higher
than in the dark incubations (Figure 6). Higher N2 fixation
rates for the dark incubations compared to light might be
attributable to the presence of heterotrophic species at the
surface. Heterotrophs contributed up to 52% to the total N2

fixation (estimated from light and dark incubations, assuming
light incubations correspond to phototrophic and dark to
heterotrophic). Heterotrophic contribution to N2 fixation could
be even higher in the deeper waters due to favorable conditions
for them. These higher values associated with dark incubation
suggest that heterotrophic N2 fixers might play an important
role in fixing N2 over the eastern Arabian Sea. In the surface
waters of the Arabian Sea, the DNA and RNA recovered
during the southwest monsoon periods were also categorized
as those of heterotrophic bacteria (Jayakumar et al., 2012;
Bird and Wyman, 2013). Therefore, our results suggest that
an active N2 fixation by heterotrophic bacteria could occur in
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TABLE 1 | Sampling Date, Latitude (◦N), Longitude (◦E), water depth (m), Nutrients concentrations (µM), N:P, P* (µM), particulate organic carbon (POC,

µM) and nitrogen (PON, µM), N2 fixation (nM N h−1) and carbon (C) uptake (nM C h−1) at the three locations sampled in the eastern Arabian Sea.

Date and Station Lat Long Depth NO2 NO3 PO3−

4 SiO4 N:P P* POC PON N2 fixation C uptake

10-May-10; NF-a 13.87 74.36 0 0.04 0.37 0.22 0.00 1.66 0.20 73 51 238.07 1628

5 0.04 0.66 0.13 0.00 4.94 0.10 26 5 5.05 173

10 0.06 0.76 0.18 0.00 4.25 0.13 21 7 6.68 121

20 0.02 0.45 0.13 0.19 3.34 0.10 23 5 5.98 78

12-May-10; NF-b 17.12 73.11 0 0.06 0.76 0.53 1.69 1.42 0.49 24 6 6.63 68

5 0.02 0.97 0.31 1.44 3.11 0.25 23 5 4.88 39

10 0.00 0.67 0.27 0.63 2.51 0.22 21 4 4.01 50

20 0.00 0.81 0.22 0.94 3.66 0.17 18 4 4.78 58

14-May-10; NF-c 14.96 73.84 0 0.14 2.42 0.71 0.00 3.40 0.56 44 25 8.70 24

5 0.12 0.90 0.22 0.00 4.05 0.17 20 4 6.19 22

10 0.12 0.58 0.09 0.00 6.53 0.05 16 4 5.38 24

20 0.02 0.91 0.00 0.00 NA −0.06 15 3 6.15 16

FIGURE 4 | Depth profiles of measured nutrients (NO−

2 , NO−

3 , PO3−

4 ) and P*, at sampling locations NF-a, NF-b, and NF-c.

Frontiers in Marine Science | www.frontiersin.org 5 March 2017 | Volume 4 | Article 80

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


Kumar et al. N2 Fixation in the Eastern Arabian Sea

FIGURE 5 | (A) N2 fixation rate and (B) Carbon uptake rate at the sampling location (NF-a, NF-b, and NF-c) for light (at ambient conditions) incubation

for samples at different depths.

FIGURE 6 | N2 fixation and carbon uptake rate at surface for light (gray bars) and dark (black bars) incubation.
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the surface water of the eastern Arabian Sea (Shiozaki et al.,
2014).

Euphotic-depth integrated autotrophic N2 fixation and
carbon uptake rates were highest at NF-a, where N2 fixation rate
was 8.4 ± 2.8 mmol N m−2 d−1 (standard deviation of duplicate
samples) and carbon uptake rate was 74.7 ± 17.7 mmol C m−2

d−1. Our areal rates (8 mmol N m−2 d−1) were the highest ever
observed in anywhere in world oceans (Table 2) and comparable
to those measured by Gandhi et al. (2011) in the similar region-
suggesting that the high rates during the spring 2009 were not

episodic rather it could be a regular phenomenon during the
spring in the Arabian Sea. High rates in the eastern Arabian Sea
are probably due to the availability of both the essential nutrients
for diazotrophs, i.e., iron and PO3−

4 . Iron is available because this
region unlike the western Arabian Sea is close to the Thar desert,
whereas the western Arabian Sea is recognized to be an HNLC
region (Naqvi et al., 2010). PO3−

4 is available because upwelled

water brings PO3−
4 rich (compared to NO−

3 ) water as NO
−

3 is
lost in denitrification. So the Arabian Sea is unique basin for
sustaining diazotrophy and the higher rates of N2 fixation. On

TABLE 2 | Summary of Photic N2 fixation rates in the world oceans (Table updated after Singh et al., 2013; Benavides and Voss, 2015).

Methodology Areal Rates (µmol N m−2 d−1) Region References

Acetylene Reduction Assay 239 Western tropical North Atlantic Capone et al., 2005
15N2 tracer-bubble method 850 Western tropical North Atlantic Capone et al., 2005
15N2 tracer-bubble method 2.4–532 Western North Atlantic Mulholland et al., 2012

Extrapolation 714–3,571 North Atlantic Ocean Carpenter and Romans, 1991

Extrapolation 160–430 North Atlantic Ocean Lipschultz and Owens, 1996

N* = [NO−

3 ] − 16 × [PO3−
4 ] + 2.72 500–2,500 North Atlantic Ocean Michaels et al., 1996

N* = ([NO−

3 ] − 16 × [PO3−
4 ] + 2.90) × 0.87 197 North Atlantic Ocean Gruber and Sarmiento, 1997

DINxs = [NO−

3 ] − 16 × [PO3−
4 ] 70–208 North Atlantic Ocean Hansell et al., 2004

P* = [PO3−
4 ] − [NO−

3 ]/16 63 North Atlantic Ocean Deutsch et al., 2007

P* = [PO3−
4 ] − [NO−

3 ]/16 151–178 North Atlantic Ocean Palter et al., 2011
15N2 tracer-bubble method 1.2–298 North Atlantic Ocean FernÁndez et al., 2010
15N2 tracer-bubble method 1.8–182 North Atlantic Ocean Moore et al., 2009
15N2 tracer-dissolution method 91 ± 4 Atlantic Ocean Großkopf et al., 2012
15N-nitrate and ammonium 4.5–68.1 Tropical Northwest Atlantic Goering et al., 1966
15N2- bubble and Acetylene Reduction Assay 73–90 Tropical Northwest Atlantic Falcón et al., 2004
15N2 tracer-bubble method 41–93 Sargasso Sea Orcutt et al., 2001

DINxs = [NO−

3 ] − 16 × [PO3−
4 ] 45–259 Sargasso Sea Bates and Hansell, 2004

N* = [NO−

3 ] − 14.63 × [PO3−
4 ] 120 ± 9 Sargasso Sea Singh et al., 2013

Acetylene Reduction Assay 0.05–540 Subtropical Northeast Atlantic Carpenter and Price, 1977

Acetylene Reduction Assay 0.001–0.09 Subtropical Northeast Atlantic Benavides et al., 2011
15N2 tracer-bubble method 28–142 Tropical Northeast Atlantic Turk et al., 2011
15N2 tracer-bubble method 56–60 Tropical Northeast Atlantic Turk-Kubo et al., 2012
15N2 tracer-bubble method 15–424 Eastern equatorial Atlantic Subramaniam et al., 2013
15N2 tracer-bubble method 0–148 Eastern tropical south Pacific tropical South Pacific Dekaezemacker et al., 2013
15N2 tracer-bubble method up to 800 Off Peru-South Pacific Loescher et al., 2014
15N2 tracer-bubble method 0–23 Eastern tropical South Pacific Knapp et al., 2016
15N2 tracer-bubble method 520 ± 160 Eastern North Pacific gyre Montoya et al., 2004
15N2 tracer-bubble method 126 ± 47 Timor–Arafura–Coral seas Montoya et al., 2004
15N2 tracer-bubble method 3,995 Arafura Sea Montoya et al., 2004

Acetylene Reduction Assay 85 Subtropical North Pacific Ocean Karl et al., 1997
15N2 tracer-bubble method 1–13 South China Sea Chen et al., 2008
15N2 tracer-bubble method 0–90 North Pacific Ocean Shiozaki et al., 2010
15N2 tracer-bubble method 20–310 North Pacific Ocean Church et al., 2009

Acetylene Reduction Assay 170 Central Arabian Sea Capone et al., 1998
15N2 tracer-bubble method 24.6–47.1 Arabian Sea Shiozaki et al., 2014
15N2 tracer-bubble method 6.27–16.6 Equatorial and southern Indian Ocean Shiozaki et al., 2014
15N2 tracer-bubble method* 100–34,000 Eastern Arabian Sea Gandhi et al., 2011
15N2 tracer-bubble method 174–238 Southeastern Arabian Sea Bhavya et al., 2016
15N2 tracer-bubble method* 1,140–8,405 Eastern Arabian Sea This study

*These rates were corrected for bubble in-equilibrium.
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the other hand, the other major oceans, like the Atlantic does not
have enough phosphate (Wu et al., 2000), while the Pacific does
not have enough iron (Behrenfeld and Kolber, 1999).

Gandhi et al. (2011) showed an overall increasing trend in
the N2 fixation rate from south to north, whereas in this present
study, it was in the opposite direction. N2 fixation supplies a
large portion of the new N that supports marine productivity
(Capone, 1997; Karl et al., 2002; LaRoche and Breitbarth, 2005;
Mahaffey et al., 2005). Estimated contribution of new nitrogen to
N2 fixation in the present study is about 92% of new nitrogen,
which is the same as that reported by the previous study (Gandhi
et al., 2011).

Most observations around the world oceans are indirectly
derived from geochemical estimates that are based on sub-surface
nutrient distribution (Table 2). We have directly measured N2

fixation using 15N2 tracer, which is still the best available method
despite its inherent problems of incomplete dissolution of the
bubble (Großkopf et al., 2012). Our findings of high N2 fixation
in this region have large implications in understanding marine C,
N, and cycles. If we extrapolate these high rates over the Arabian
Sea, then we might find the missing nitrogen inputs (Codispoti,
2007). But we require to conduct more N2 fixation experiments
using the dissolution method in this region for extrapolation.
In addition to seasonal upwelling, N2 fixation might play a
role in making the Arabian Sea perennially productive (Singh
and Ramesh, 2015). Higher N2 fixation and its degradation in
the subsurface waters may also be useful in understating the
phosphorous cycle-low P∗ at the deeper waters and higher P∗

at the surface-contrary to what is expected from the denitrified
waters.

CONCLUSION

Results from the three sampling locations in the eastern Arabian
Sea suggest that the Arabian Sea witnessed the highest ever
rates of the N2 fixation among the world ocean for the two
consecutive springs. Out of all nitrogen gain processes, about
92% of new nitrogen is gained through N2 fixation only,
with highest areal rates (8 mmol N m−2 d−1). N2 fixation
rate for the dark was higher than the light incubation at
the surface except for NF-a, which alluded to the presence
of heterotrophic species. Based on the higher N2 fixation
values at the surface for dark incubation, we hypothesize
that heterotrophic fixers dominantly (about 52% of total
N2 fixation is by heterotrophs) play an important role in
fixing N2.
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