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Little is still known of the impacts of protist grazing on bacterioplankton communities in

the dark ocean. Furthermore, the accuracy of assessments of in situ microbial activities,

including protist grazing, can be affected by sampling artifacts introduced during sample

retrieval and downstream manipulations. Potential artifacts may be increased when

working with deep-sea samples or samples from chemically unique water columns such

as oxygen minimum zones (OMZs). OMZs are oxygen-depleted regions in the ocean,

where oxygen concentrations can drop to <20 µM. These regions are typically located

near eastern boundary upwelling systems and currently occur in waters occupying below

about 8% of total ocean surface area, representing ∼1% of the ocean’s volume. OMZs

have a profound impact not only on the distribution of marine Metazoa, but also on the

composition and activities of microbial communities at the base of marine food webs.

Here we present an overview of current knowledge of protist phagotrophy below the

photic zone, emphasizing studies of oxygen-depleted waters and presenting results of

the first attempt to implement new technology for conducting these incubation studies

completely in situ (theMicrobial Sampling- Submersible Incubation Device, MS-SID). We

performed 24-h incubation experiments in the Eastern Tropical South Pacific (ETSP)

OMZ. This preliminary study shows that up to 28% of bacterial biomass may be

consumed by protists in waters where oxygen concentrations were down to ∼4.8µM

and up to 13% at a station with nitrite accumulation where oxygen concentrations were

undetectable. Results also show that shipboard measurements of grazing rates were

lower than rates measured from the same water using the MS-SID, suggesting that in

situ experiments help to minimize artifacts that may be introduced when conducting

incubation studies using waters collected from below the photic zone, particularly from

oxygen-depleted regions of the water column.
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INTRODUCTION

Bacterioplankton are at the heart of marine biogeochemical
cycles. Aside from bottom-up controls such as, temperature,
competition, and nutrient availability, the primary top-down
controls on marine bacterioplankton are viral lysis, and protist
grazing (e.g., Cuevas and Morales, 2006; Chow et al., 2014).
The relative contributions of viral lysis and protist phagotrophy
remain debated (e.g., Pedrós Alió et al., 2000), and undoubtedly
vary depending on physico-chemical conditions unique to
each site, and the physiological state of individual populations
within the microbial community. Either process can affect
the phylogenetic diversity of bacterioplankton communities
(through selective removal) and the specific activity of affected
populations. For example, Detmer et al. (1993) found a significant
impact of protist grazing on Synechococcus populations in
Baltic Sea samples. Protist grazing and viral lysis are linked to
heterotrophic bacterioplankton, in a “microbial loop” of complex
interactions that drive carbon and other nutrient cycling in the
world oceans (Taylor, 1982; Azam et al., 1983; and conceptually
advanced over recent years, for example, in Chow et al., 2014).
As much as a half or more of the total flux of matter and energy
in marine food webs is thought to pass through heterotrophic
bacterioplankton that utilize dissolved organic matter released
from protist grazing, viral lysis, or upon cell death (Fuhrman,
1999). The mesopelagic (200–1,000 m) and bathypelagic (1,000–
4,000 m) are realms of significant remineralization of organic
matter, long-term carbon storage and burial (Fowler and Knauer,
1986). Organic carbon originating in the epipelagic from primary
and secondary production is exported to depth through vertical
fluxes of settling particles (particulate organic carbon, or POC),
migration of plankton, and physical processes such as the
movement of major water masses. As a result, deep ocean waters
are the largest oceanic reservoir of dissolved organic carbon
(Hansell and Carlson, 1998; Brenner, 2002). Up to one third of
marine biological CO2 production is accounted for by respiration
of this pool of carbon in dark pelagic layers (del Giorgio and
Duarte, 2002; Arístegui et al., 2005). Quantifying accurately the
impacts of protist grazing in the dark ocean at different locations
is therefore critical to our understanding of the impacts of this
component of the microbial loop and of the role of deep ocean
waters in marine biogeochemical cycling.

Mesopelagic, and in some cases bathypelagic waters, are
experiencing oxygen decline in many areas of the world
oceans. Climate-change driven alterations in ocean thermohaline
circulation, decreasing O2 storage capacity of warming waters,
and imbalances between remineralization of sinking biogenic
material and ventilation of subsurface waters all contribute to
decreases in dissolved oxygen in marine waters. Oceanic oxygen
minimum zones (OMZs) are typically located near eastern
boundary upwelling systems. Some of the most prominent
OMZs include the northern Indian Ocean and Arabian Sea,
and the eastern North and South Pacific. Oxygen concentrations
in offshore, subsurface waters have been declining over the
last 50 years, and the vertical and horizontal extent of these
oxygen-depleted regions has increased (Stramma et al., 2008).
Coastal OMZs exist in locations where water circulation is

reduced and/or oxygen-depleted conditions are exacerbated by
anthropogenic additions of nutrients to coastal waters. OMZ
oxygen concentrations range between∼20 µM and undetectable
levels (Ulloa and Pantoja, 2009). OMZs cover about 8% of ocean
surface area (Paulmier and Ruiz-Pino, 2009) and ∼1% of the
ocean volume (Ulloa and Pantoja, 2009). Recently developed
sensor technology (Revsbech et al., 2009) has revealed that
significant portions of major OMZs are anoxic (Thamdrup et al.,
2012; Ulloa et al., 2012); here nitrite, a product of the anaerobic
process of nitrate reduction, accumulates.

OMZs vary in intensity and duration, and have a profound
impact not only on the distribution of marine Metazoa, but also
on microbial nutrient cycling (e.g., carbon and nitrogen marine
biogeochemical cycles) at the base of marine food webs. OMZs
cause shifts in prokaryotic and eukaryoticmicrobial communities
and biogeochemical processes favoring anaerobic respiratory
and fermentative processes. Such metabolic shifts can lead to
nitrogen loss by denitrification and anammox (e.g., Thamdrup
et al., 2006; Lam et al., 2009). Most studies of biogeochemical
cycling in OMZs have focused on prokaryotic (archaeal and
bacterial) activities because large multicellular eukaryotes cannot
permanently occupy anoxic marine waters (Parris et al., 2014).
Nevertheless, a diverse community of microeukaryotes and
even larger taxa (such as zooplankton) can potentially adapt
to oxygen limitation and therefore play important roles in
OMZ ecology. For example, vertically-migrating crustacean,
zooplankton, chaetognaths and even fish can seek temporary
refuge from predation in low-oxygen regions of OMZs (Wishner
et al., 1998, 2013; Escribano et al., 2009). In addition, diverse
communities of phagotrophic and parasitic protists are described
from oxygen-depleted and anoxic water columns, many of which
exhibit complex relationships with prokaryotes (Lin et al., 2007;
Edgcomb et al., 2011; Orsi et al., 2011, 2012; Wright et al.,
2012).

Knowledge of protistan dynamics in oxygen-depleted water
columns is still poor. There is a lack of information on
the impact of the protist grazing on prokaryotes due to the
challenges in obtaining accurate assessments of in situ microbial
activities and responses to environmental change (Taylor et al.,
2015). Here we present an overview of the current state of
knowledge on protist phagotrophy in the dark ocean (below the
photic zone), including studies of oxygen-depleted waters. In
addition, we present preliminary data on phagotroph activity
in the Eastern Tropical South Pacific (ETSP) OMZ collected
using recently-developed in situ incubation technology; the
Microbial Sampling- Submersible Incubation Device (MS-SID).
The motivation for development of this in situ incubation and
sample preservation device was to minimize artifacts introduced
by sample recovery from Niskin bottles. This was the first time
completely in situmethods have been applied to studies of protist
phagotrophy in OMZ waters. While these data are based on
only a few samples due to technical challenges encountered
during the first deployments of this instrument on a free-floating
mooring (Bombar et al., 2015), they provide useful insights
on the value of applying in situ approaches for researchers
planning to conduct future studies of phagotrophy in the
dark ocean.
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Methodologies Used for Calculating Protist
Grazing
In the last 30 years, several studies have been conducted to
reveal the impact of protist grazing on bacterial communities in
the ocean. Various methodologies used by different researchers,
such as, the uptake of fluorescently labeled prey (FLP; Vazquez-
Dominguez et al., 1999), the dilution method (Landry et al.,
1995), the size-fractionation technique (Wright and Coffin,
1984), the use of metabolic inhibitors of protists (Sherr et al.,
1986), or the radioactive labeling of prey (Hollibaugh et al.,
1980). Consequently, results from most studies are not directly
comparable. Nonetheless, general observations can be made
about the impact of protists on prokaryotic populations in
different locations and at different depths.

The most common method to determine protistan grazing
on bacteria involves measuring the uptake of FLP (Vazquez-
Dominguez et al., 1999). The use of FLP (often prepared from a
commercially available cultured bacterium) allows for calculation
of specific ingestion rates for particular classes of protists in
short-term (∼1 h) incubations by microscopic measurements
of the accumulation of FLP inside food vacuoles (Jürgens
and Massana, 2008). This approach also allows calculation of
overall grazing rates for a whole community by measuring
the disappearance of FLP in long-term (12–24 h) incubations
(Marrasse et al., 1992; Vazquez-Dominguez et al., 1999). These
long-term experiments are less labor-intensive, but also yield
less specific information. The FLP approach has the potential
to introduce different potential artifacts due to feeding biases
against prey of particular sizes, morphologies or heat-killed prey
(Marrasse et al., 1992; Vazquez-Dominguez et al., 1999; Fu et al.,
2003). While the FLP technique has a number of drawbacks
(e.g., noted in McManus and Okubo, 1991; Vaque et al., 1994;
Fu et al., 2003) one of the major advantages is that the observed
grazing effect can only be attributed to the predators examined,
because the method is based on direct enumeration of the prey
analogs (Oikonomou et al., 2014). Care must be taken however to
avoid photo-bleaching of the fluorochrome in the FLP during the
incubation study if it is conducted within the photic zone. As we
found during shallow 13-m incubations (see below), this makes
downstream analysis and data interpretation extremely difficult.

Another potential methodological bias of the FLP approach
may occur due to shifts in total available prey concentrations once
FLP are added. Generally, FLP are added at 10% of the indigenous
prokaryotic concentrations (Vazquez-Dominguez et al., 1999).
While the 10% target may be debated, it is generally accepted
that if added FLP represent a higher percentage of the indigenous
population, this significantly changes the microbial population
size and thus, can impact the measured grazing rate. On the
other hand, if the relative FLP concentration is too low, grazing
may be undetectable over the time course of the experiment
(Vazquez-Dominguez et al., 1999).

Studies of Protist Grazing in Normoxic
Marine Water Column Samples Collected
from Below the Photic Zone
Cho et al. (2000) used fluorescently labeled bacterial prey
prepared from indigenous populations and short-term

(0.5 h), on-board experiments to measure grazing rates
of heterotrophic nanoflagellates (HNF) in water samples
collected from 0 to 500m depth in the East China Sea. These
authors found that HNF ingestion rates were not statistically
different between the mesopelagic and the epipelagic zones.
However, HNF clearance rates were often higher in mesopelagic
waters during several months of the study. They suggested
that HNF could not only survive in the mesopelagic, but
that they can be active consumers of bacteria and other
particles in that realm. Additionally, mesopelagic HNF may
adapt their physiological state to conditions found in the
mesopelagic. That study suggests protist grazing could play
an important role in carbon cycling in the mesopelagic
environment.

Rocke et al. (2015) conducted on-board, long-term (24 h)
incubation experiments using waters from the epipelagic,
mesopelagic and bathypelagic North Atlantic collected via Niskin
sampling, and FLP prepared from whole seawater samples from
another location (Vineyard Sound, MA, USA). Estimation of
grazing rates (prey consumed per eukaryote per hour) were not
greatly different between the euphotic, 220 and 750 m. Similar
percentages (up to 30%) of the standing stock of prokaryotes
were consumed by eukaryotes in the mesopelagic (750 m) and at
2,500 m, despite lower eukaryote and prokaryote concentrations.
Those authors emphasize the point that these results suggest
a potentially important role of the protist community in
biogeochemical cycling in deep water layers through their impact
on carbon turnover and potentially through their control of key
prokaryotic prey communities.

Pachiadaki et al. (2014) used a recently-designed instrument,
the MS-SID, to estimate protist phagotrophy in euphotic,
mesopelagic, and oxygen-depleted bathypelagic (discussed
below) waters of the Mediterranean Sea. The MS-SID is an
autonomous micro-laboratory that is simultaneously capable of
conducting tracer incubation experiments in situ at user-chosen
depths and preserving large volume microbial samples. The
MS-SID consists of a 2-L syringe-like incubation chamber, a
Fluidic Distribution Valve (FDV), a syringe pump-like Tracer
Injector for accurate delivery of a specified volume of tracer (in
this case FLP) into the sample to be incubated, and 48 Fixation
Filter Units (FFUs Taylor et al., 2015) or flexible Restek R© 5-layer
(outer nylon layer, metalized aluminum, polyethylene, aluminum
foil, inner polyethylene layer) bags containing preservative for
collection and in situ preservation (Pachiadaki et al., 2014).
In that study, total prokaryotic and protist abundances were
measured and estimates of phagotrophy were made using
samples that were fixed in situ following incubation studies
employing FLP prepared from indigenous microbiota. This
is the only previous study that has made use of the MS-SID
for calculating grazing impacts. Results from mesopelagic
incubations showed a decline in the prokaryotic turnover rate
with depth, ranging from 31.37 ± 5.9% of prokaryotic cell
abundance at 40m to 0.57± 0.3% at 950 m, however the grazing
effect showed an increase from 5,790 cell mL−1 h−1 at the
euphotic zone to 13,600 cell mL−1 h−1 in the anoxic depth.
That study indicated HNF appear to be the main grazers in the
euphotic and in the mesopelagic zones, supporting the notion
that in oligotrophic water columns flagellates have evolved
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adaptations to improve their methods for capturing bacteria
prey.

Studies of Protist Grazing in
Oxygen-Depleted Marine Water Column
Samples Collected from below the Photic
Zone
Studies have revealed difficulties associated with accurately
assessing in situ microbial activities and their physiological
responses in environments where oxygen is either very low
or absent, because oxygen contamination is difficult to control
when using Niskin bottles and transferring samples to incubation
vessels (De Brabandere et al., 2012; Edgcomb et al., 2016). Small
amounts of oxygen contamination and/or pressure changes can
create stresses on a community from oxygen-depleted or anoxic
water columns (Stewart et al., 2012).

In some cases, oxygen contamination may increase grazing
activity, depending on the composition of the microbial
consortium. For example, Detmer et al. (1993) measured the
uptake rates of FLP bymesopelagic protists and estimated grazing
effects in the Baltic Sea. Those authors found that grazing impacts
in anoxic waters were at least 50% of prey production, and oxygen
contamination may result in enhanced growth and grazing rates
of facultative anaerobic organisms. As a result, grazing activities
occurring in anoxic water columns may be underestimated in
experiments where oxygen introduction may stimulates prey
growth. Anderson et al. (2012) conducted on-board incubations
using water collected at the oxic-anoxic interface of the Baltic Sea
andmeasured the disappearance of FLP. They found that 50–80%
of the prokaryotes were grazed daily.

Similar values were reported by Pachiadaki et al. (2014) from
in situ incubation studies using the MS-SID in suboxic and
anoxic waters in theMediterranean Sea. They found that elevated
concentrations of prokaryotes and heterotrophic nanoflagellates
(HNF) within a bathypelagic oxycline water column above a deep
hypersaline anoxic basin coincided with a high phagotrophic
impact of the protistan community, reaching a grazing effect
higher than that observed for the normoxic upper mesopelagic,
and demonstrated protist grazing can be significant in oxygen-
depleted water columns.

In contrast, using predator exclusionmethods, a low impact of
protist grazing was observed in water samples collected from the
redoxcline of the Cariaco Basin at 400m depth. It remains to be
tested whether in situ approaches would have detected a greater
grazing impact within the redoxcline of the Cariaco Basin. Those
researchers did detect shifts in major phylogenetic groups upon
removal of grazers, indicating selective grazing (Lin et al., 2007).

Cuevas and Morales (2006) conducted shipboard grazing
experiments at both oxic and suboxic sites at two stations along
the North coast of Chile using two different approaches [studies
of food vacuolar content (FVC) and studies applying the Selective
Inhibitor Technique (SIT)] to try to reduce disturbance of the
organisms and to improve the maintenance of in situ oxygen
conditions. Samples were collected from 10 to 12 depths using
a Niskin rosette. The FVC studies quantified the content of
cyanobacterial prey in food vacuoles of heterotrophic protists.

The SIT approach focused on depths representing the oxic (∼10
m) and suboxic layers (∼60 m), immediately below the shallow
oxycline, and utilized the eukaryotic inhibitor cycloheximide.
At one sampling station bottle incubations were placed within
an array and re-deployed at the depths from which the waters
originated. In their studies the grazing impact on bacteria was
higher in the suboxic layer (40–50 m) where removal of bacterial
prey via grazing equaled the growth of the bacteria. In the surface
oxic layer (15m) net bacterial growth did occur, and grazing rates
were negligible (<0.1 h−1). Grazing by HNF on cyanobacteria
(Synechococcus) occurred at similar rates (0.2 h−1) in the oxic and
the shallower suboxic layer (40 m) but was lower (<0.1 h−1) in
the deeper suboxic layer (50 m). This may simply be a function of
lower abundances of Synechococcus found at the deeper depths.

Oikonomou et al. (2014) quantified the protistan grazing
effect in the sulfidic anoxic monimolimnion (at 22m depth) of
Lake Alatsee (Germany), and found that turnover rate in the
anoxic bottom water of the lake was negligible (0.37% d−1), and
bacterial loss was attributed principally to viruses. Along the
oxycline (18 m), higher prokaryotes and protist abundances were
observed, however the impact of grazing was only 2.13% d−1,
suggesting that prokaryote communities were not controlled by
top-down processes at this interface. Although this is a freshwater
environment andmethodologies are variable between studies, the
anoxic conditions make an interesting comparison with results
from anoxic marine water columns.

A Preliminary Study of Phagotrophy in the
ETSP OMZ Using In situ Sampling and
Incubation Approaches
Recently, we applied the MS-SID on a free-floating mooring
system at two stations within the ETSP OMZ off the coast
of Chile to examine impacts of protist grazing in an OMZ
using in situ approaches. Initially, 48-h deployments were
planned (two 24-h consecutive incubation studies at each depth).
Due to technical difficulties associated with new software for
the autonomous operation, only a limited number of in situ
incubation studies could be completed. We therefore interpret
these results with caution, and acknowledge additional future
replicated experiments are necessary. However, these preliminary
results are presented in this review as a means of introducing
the potential value of utilizing in situ technologies for studies of
protist grazing.

METHODS

Site Description
The ETSP is considered one of the most productive regions
in the world’s oceans due to intense upwelling processes along
the western coast of South America that introduce nutrient-
rich water to the surface, promoting an increase in primary
production (Stevens and Ulloa, 2008). Here, the water column
is poorly ventilated below the surface and characterized by low
levels of dissolved oxygen that can decline from 250 µM at
the surface to undetectable levels, <10 nM at the OMZ core
(Thamdrup et al., 2012; Ulloa et al., 2012), making it one of the
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most significant OMZ regions in the world (Ulloa et al., 2012).
Our preliminary study using in situ approaches was conducted
during the “Lowphox I” cruise on board the R/V Cabo de Hornos
from Valparaiso to Iquique along the coast of northern Chile
(Figure 1), between November 20th and December 14th, 2015.
Two stations were chosen for conducting grazing experiments.
One station, Station T3 (20◦ 06’007 S, 070◦ 25’215W) was located
∼20 kilometers offshore directly over the central portion of the
OMZ, and exhibited nitrite accumulation and undetectable levels
of oxygen at the core of the OMZ. The second station, OMZ
Station L6 (29◦ 29’949, 71◦ 36’643) was located near the coast
(where particle load measurements and microbial activity were
high)∼1053 kilometers south of OMZ Station T3, away from the
central portion of the OMZ. OMZ Station L6 exhibited no nitrite
accumulation, and only a few micromoles per liter of oxygen
(Figure 2).

Preparation of the Fluorescently-Labeled
Prey (FLP)
FLP were prepared according to Pachiadaki et al. (2014),
with minor modifications. Water samples were collected into
Niskin bottles at each station from the depth of intended
incubations (13 and 150m). Two 5-ml replicates were taken
from those samples and fixed with glutaraldehyde (1% final
concentration) to count indigenous prokaryote cells using a
flow cytometer on board. Twenty liter samples were pre-filtered
through a 2.7 µm pore size glass fiber filters to exclude protists

and larger eukaryotes, and prokaryotic cells were concentrated
by tangential flow filtration (Pellicon System, Millipore Co.
equipped with a Biomax 500K polyethersulfone membrane).
Concentrated cells were centrifuged at 12,000 rpm for 5 min
and pelletized cells were re-suspended in Na2CO3/NaHCO3

buffer (pH: 9.5) before subsequent staining with the fluorescent
stain 5-(4,6-dichlorotriazinyl) aminofluorescein (DTAF) at a final
concentration of 0.8mg mL−1. The mixture was incubated at
65◦C for 2.5 h. Staining was followed by 3 washing steps, using
Na2CO3/NaHCO3 buffer (pH: 9.5) to remove excess DTAF.
Enumeration of prey analogs was performed via microscopic
analyses.

Specification and Deployment of the
MS-SID
Because two 24-h consecutive incubations would be conducted
at each depth at each site, it was necessary to deploy the MS-
SID on a free-drifting spar float system (Figure 2; modified from
the version shown in Bombar et al., 2015) so that hydrocasting
and other ship operations could proceed normally. This cruise
was the first deployment of the MS-SID for autonomous tracer
incubation studies. Each incubation study consisted of the
following instrument routine: (1) Three pre-incubation flushes
of the incubation chamber were performed by drawing∼100 mL
of water from the environment and immediately expelling that
back into the environment. Approximately 9mL of the 100mL
flush volume remained after each flush. (2) After flushing, a 1-L

FIGURE 1 | Location of sampling and MS-SID deployment sites in the ETSP OMZ off the northern coast of Chile.
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FIGURE 2 | The MS-SID as deployed on a free-drifting spar float

system used in this study of ETSP OMZ protist grazing.

sample was drawn into the incubation chamber and during this
process a precise volume of the tracer (FLP cells) was injected via
the Tracer Injector into the incoming sample, effectively mixing
the tracer with the sample. (3) Once the chamber was filled
to the desired volume, the incubation began, and subsamples
(200 mL) were expelled from the chamber at T0 and then at
12-h intervals into sample bags containing glutaraldehyde (2%
final concentration). (4) Upon completion of the incubation,
remaining sample within the chamber was expelled into the
environment and the chamber was flushed four times to remove
remaining tracer.

A single 24-h near-surface incubation (13m depth) and
a single 24-h incubation at 150m (depth of the turbidity
maximum) were successfully executed in situ at OMZ Station
T3. Due to photo-bleaching of the FLP during the un-shaded

13-m incubation and associated difficulties visualizing FLP in
subsamples, results from those experiments will not be discussed
further. Due to time constraints, an additional 24-h incubation
using Niskin water from 150-m depth from OMZ Station
T3 was conducted in the incubation chamber of the MS-SID
immediately after returning the first 150-m MS-SID in situ
incubation to the ship’s deck. Niskin water was transferred to
the MS-SID’s incubation chamber on the ship’s deck to be as
consistent as possible between experiments intended to provide
insight into potential biases associated with retrieving waters
to the surface prior to incubations. Water was transferred by
dispensing Niskin water through tubing into the bottom of
a glass bottle pre-gassed with nitrogen, allowing the bottle to
overflow for a couple of minutes, capping, and then inserting
the input tubing for the MS-SID into the bottom of this bottle.
This does not completely eliminate sources of potential oxygen
intrusion, and is representative of typical approaches used to
transfer water from Niskins to incubation bottles. The chamber
was shaded during incubation, surrounded with ice packs and
monitored to preserve water temperatures found at 150m over
the course of the experiment. Subsampling was conducted
exactly the same as for in situ incubations. At OMZ Station
L6 we conducted a pair of 24-h in situ incubations at 150m
(Table 1).

After retrieval of the instrument when incubations were
conducted in situ, or in the case of the on-deck incubation,
following completion of the subsampling and fixation routine,
the fixed subsamples (∼200 mL) were collected from the
1L Restek R© 5-layer bags and filtered onto 0.6 µm Millipore
Isopore membrane filters for microscope estimations of total
eukaryotic, prokaryotic and FLP abundances at all-time points.
The equations from Salat and Marrase (1994) were used to
calculate daily grazing (number of prokaryotes mL−1 day−1)
by the total protistan community. The grazing effect (number
of prokaryotes mL−1 h−1) was calculated by dividing the daily
grazing by 24 h. The grazing rate (number of prokaryotes
grazer−1 h−1) was calculated by dividing the grazing effect by the
numbers of eukaryotes present in each sample.

Epifluorescence Microscopy
Initial and final abundances of FLP, eukaryotic, and prokaryotic
populations from all incubations, were enumerated in triplicate
using epifluorescence microscopy. A portion of each filter (∼
one quarter segment) was stained with 1 µg mL-1 DAPI (4′,6-
diamidino-2-phenylindole, dihydrochloride) (Porter and Feig,
1980). The stained filters were mounted with immersion oil
onto glass slides and observed with at 1,000x magnification.
Microscopic eukaryotes and prokaryotes were counted using the
DAPI filter set. FLP were counted using the FITC (fluorescein
isothiocyanate) filter. For eukaryotes, prokaryotes and FLP 20
fields of view were counted on three different filter segments
and results were averaged. For protists, numbers counted over
20 fields ranged from 44 to 101. The accuracy of DAPI counts for
eukaryotes was validated with fluorescence in situ hybridization
(FISH) using the general eukaryotic probe Euk1209 and methods
according to Pernthaler et al. (2001).
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TABLE 1 | Station information, and incubation experiment features for grazing studies conducted using waters collected from the ETSP OMZ.

Station ID Coordinates of source water Incubation sample ID FPL concentration

injected (%)

Incubation

time (h)

Incubation depth

(m)

OMZ Station T3 20◦ 06′007 S70◦ 25′21 W OMZ Station T3150m 10 24 150

OMZ Station T3 20◦ 06′007 S 70◦ 25′21 W OMZ Station T3 13m 1 24 13

OMZ Station T3 on

board incubation

20◦ 06′007 S 70◦ 25′21 W OMZ Station T3 Shipboard MS-SID

from 150m

10 24 On board using

Niskin water from

150 m
OMZ Station L6 29◦ 29′94 S 71◦ 36′64 W OMZ Station L6 150m experiment a 10 24 150

OMZ Station L6 29◦ 29′94 S 71◦ 36′64 W OMZ Station L6 150m experiment b 10 24 150

FLP % is the percentage of the FLP introduced relative to the total in situ concentration of indigenous prokaryotes.

FIGURE 3 | Vertical profiles of temperature, salinity dissolved oxygen and nitrite for both ETSP OMZ stations in this study: (A) OMZ Station L6, left panel;

(B) OMZ Station T3, right panel.

RESULTS

Hydrographic Conditions
Vertical profiles of temperature, salinity, dissolved oxygen and
nitrite for both stations are presented in Figure 3. The water
column at OMZ Station L6 was characterized by a steep
thermocline from the surface (15.65◦C) to 40m (12.84◦C), then
temperature remained stable down to 190m (12.60 ± 0.06◦C),
followed by a small decrease until 350 m. Salinity values,
computed from the CTD conductivity using the practical salinity
scale (PSU), did not vary significantly (mean 34.742 ± 0.1), but
a halocline was observed between the surface (34.36) and 50m
(34.71), remaining stable down to 350 m. Station L6 was selected
because it was away from the central portion of the OMZ and
not anoxic, did not havemeasureable accumulated nitrite, yet had
low oxygen concentrations with a steep vertical gradient. Oxygen

values decreased from 280 µM at the surface to down to ∼3 µM
at the OMZ core, where nitrite concentrations were <0.1 µM.

Similar conditions were found at the OMZ Station T3. A
well-mixed layer of 15m depth occurred at the surface, followed
by a steep thermocline, where temperature dropped from 21 to
14◦C at 50 m, after which the temperature declined gradually to
approximately 4◦C at 1,000 m. In contrast to Station 1, salinity
values were highest at the surface (35.29) decreasing rapidly until
∼ 50m (34.90). A minimum salinity of 34.45 was reached at
800 m, then gradually increased toward a maximum of 34.55 at
1,000 m. Below a well-oxygenated layer of ∼15m (248 µM), a
steep oxycline was observed between 16 and∼100mwith oxygen
concentrations decreasing from 240 to 52 µM. Within the OMZ
core oxygen levels were undetectable and nitrite concentrations
were > 6 µM. Below ∼440m depth, oxygen gradually increased,
reaching a maximum of 69 µM at 725 m.
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TABLE 2 | Average microscope cell counts for Time 0 and Time final (Tf = 24h) for in situ incubation studies of protist grazing in the ETSP OMZ using the

MS-SID and for the shipboard study using Niskin bottle water from 150m at Station T3 incubated in the MS-SID chamber.

Microscope counts (cell/mL)

Incubations sample ID FLP (× 100) Prokaryotes (× 100) Eukaryotes (× 10)

Station L6 150m in situ experiment a T0 334.10 ± 28 2387.40 ± 311 97.1±7

Station L6 150m in situ experiment a T24 263.32 ± 27 1795.87 ± 155 94.8±3

Station L6 150m in situ experiment b T0 197.10 ± 15 3315.84 ± 284 93.6±2

Station L6 150m in situ experiment b T24 146.95 ± 13 2640.31 ± 139 91.8±2

Station T3 150m in situ experiment T0 375.20 ± 41 2837.38 ± 357 131.6±3

Station T3 150m in situ experiment T24 259.48 ± 10 2485.51 ± 235 129.0±6

Station T3 150m Shipboard MS-SID T0 520.41 ± 30 3794.73 ± 569 175.0±4

Station T3 150m Shipboard MS-SID T24 313.03 ± 13 3334.39 ± 288 114.4±11

Prokaryotic and Eukaryotic Abundances
and Estimated Phagotrophy
Bacterial abundances in water samples used for incubations from
the upper mesopelagic zone (150 m) at OMZ station T3 (150 m)
and at OMZ Station L6 (station L6 experiments a and b (150 m))
were 2.8± 1.0× 105 cells mL−1, 2.3± 0.9× 105 cells mL−1 and
2.6 ± 0.9 × 105 cells mL−1, respectively. A decrease in bacterial
cell counts was observed from T0 to Tf (final incubation time,
which was very close to 24 h) in all incubations (Table 2).

Eukaryotic abundances (total ciliates and flagellates) were
higher in samples collected at OMZ Station T3 (Table 2) than
in any incubation at OMZ Station L6. Consistent with Cuevas
and Morales (2006), who also studied oxygen depleted waters off
Chile, heterotrophic nanoflagellates (2–20 µm) appeared to be
the dominant protists. T0 counts ranged from 1,316 eukaryotic
cells mL−1 recorded in the in situ incubation conducted at 150m
at OMZ Station T3 to 971 and 936 cells mL−1 recorded in
the two consecutive replicate in situ incubation experiments a
and b conducted at 150m depth at OMZ Station L6. During
the Station T3 Shipboard MS-SID incubation conducted using a
water sample from 150m depth collected using a Niskin bottle,
a 35% decline in eukaryotic abundances was observed between
T0 (1750 cells mL−1) and Tf (1144 cells mL−1). However, this
decline was not observed over the course of the in situ incubation
conducted at OMZ Station T3 at 150 m, where the eukaryotic
abundances at T0 were 1,311 cells mL−1 and at Tf were 1,296 cells

mL−1. This suggests the cumulative effects of retrieval of Niskin
water to the surface and subsequent transfer to the incubation
“bottle” (in this case, the MS-SID glass chamber, for consistency).
As we could not replicate this comparative experiment during
this cruise, these preliminary results must be interpreted with
caution. Furthermore, while we believe microbial community
composition at 150m at this site is unlikely to be significantly
different between the first 24-h in situ experiment and the start
of the second 24-h shipboard experiment, the possible impacts of
community shifts that may occur over this time period cannot be
entirely ruled out. Nonetheless, these preliminary data warrant
future confirmation, and we believe they are consistent with our
view that minimizing sample manipulation through use of in
situ approaches can only improve the accuracy of our estimates

of protist phagotrophy in deep-ocean and/or low oxygen water
columns.

Grazing estimates for the depths examined at both sites are
presented in Table 3 and compared with results from previous
studies of grazing conducted using water samples collected from
below the euphotic zone in different regions of the world. We
exclude from Table 3 the results for our 13-m depth in situ
studies because photo-bleaching of FLP in the unshaded in situ
experiment compromised the quality of resulting data. Future
in situ incubation studies must protect fluorochromes from
photobleaching during incubations conducted within the photic
zone. For our ETSP studies, measured prokaryote turnover rates
based on in situ studies were slightly higher in the 2 incubations
conducted at OMZ Station L6 (28 and 20% d−1) than those
measured during the in situ incubation conducted at OMZ
Station T3 (13% d−1), (all studies conducted at 150 m).

Summary of Preliminary ETSP Experiments
In our experiments conducted at two stations in the ETSP, a
decline in eukaryotic abundance (35% of the bulk population
of eukaryotes) was observed in a shipboard incubation between
T0 and Tf in water collected from 150m depth using a Niskin
bottle. A decline of this magnitude was not observed during an
incubation conducted in situ at the same depth immediately prior
to the shipboard incubation. The difference may be attributable
to physiological changes in the predator population associated
with recovery of water samples to the surface prior to initiation
of experiments. This preliminary experiment suggests sample
retrieval to the ocean surface and subsequent handling onboard
the ship had an impact on the community (Table 2). Replication
of these comparative studies in the future is warranted to
assess reliability of these effects not only at these sites in
the ETSP, but in other oceans and at other depths. Potential
bottle effects during incubations typically include attachment of
eukaryotes to container surfaces, negative responses to changing
physicochemical conditions (e.g., temperature or oxygen) within
the bottle, or preferential grazing and alteration of the food web
(Marrasse et al., 1992; Oikonomou et al., 2014; Rocke et al.,
2015). In situ incubations will not eliminate all potential sources
of artifacts, but can minimize physico-chemical alterations
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associated with sample depressurization and handling prior to
initiation of experiments.

Estimates of grazing from our ETSP experiments are within
the range found in studies of several other oxygen-depleted
waters around the world (Table 3), showing that up to 28.28%
of the bulk population of bacteria could be consumed by protists
at 150m where oxygen concentrations were down to ∼4.8µM
(Station L6) and up to 13.22% at 150m where oxygen was
undetectable (OMZ Station T3). Abundances of prokaryotes
and eukaryotes measured in our ETSP samples are comparable
to values reported by Lin et al. (2007) in the Cariaco Basin,
Anderson et al. (2012) in the central Baltic Sea, Pachiadaki et al.
(2014) in the Mediterranean Sea, and Rocke et al. (2015) in
the western Atlantic. Cuevas and Morales (2006) also reported
similar values of prokaryotic (0.6 ± 0.04 × 106 cells mL−1) and
eukaryotic (0.10 ± 3.84 × 103 cells mL−−1) abundances for
the north coast of Chile over the OMZ at 100 m. We observed
a decline in concentration of both prokaryotes and protist
communities with depth. In the absence of seasonal or episodic
phenomena (e.g., turnover events, storms), results from different
studies support a general decline in abundances of bacterial and
protistan microbiota with depth in normoxic water columns.
However, protist abundances can shift drastically within a short
vertical distance within redox gradients found within stratified
water columns (e.g., Anderson et al. (2012). As a result, we cannot
rule out the possibility that higher resolution grazing studies
(conducted at a greater number of depths in the ETSPOMZ)may
have detected higher protist numbers at another depth along the
redoxcline.

Specific Challenges Associated with
Studies of Protist Phagotrophy in Anoxic
and Deep Waters
Much remains to be learned about microbial activities and their
role in biogeochemical cycling in the mesopelagic ocean and
below, as well as in seasonally- or permanently-stratified water
columns below the photic zone. In particular, the impact of
protist grazing in these realms on carbon turnover and on prey
communities integral to particular biogeochemical cycles is still
poorly understood. Most studies of protist grazing that have been
conducted using waters collected from below the photic zone
suggest that protist grazing can have a significant impact on
carbon turnover and on particular prey populations.

Collecting water samples and returning them to the surface
using Niskin bottles, is a practice that can affect survival of
protists from the deep sea or from deep low oxygen/anoxic
waters, and can significantly alter the activities of both predator
and prey populations retained in those samples (Edgcomb et al.,
2011, 2016). When conducting studies of protist phagotrophy
on deck of a ship the experimental outcome can be affected
by artifacts associated with sample handling (e.g., changes in
pressure, temperature, oxygen) that may compromise microbial
functioning, and in some cases cause cell lysis (Edgcomb et al.,
2011; Anderson et al., 2012; Pachiadaki et al., 2014). Longer
intervals between sample collection and initiation of shipboard
experiments and increased pressure changes for samples coming

from greater depths can potentially exacerbate experimental
artifacts. Evidence to date suggests that for more accurate
assessments of protist phagotrophy the use of methodologies
that allow in situ sample collection and experimentation prior to
retrieval to the ocean surface should be considered, particularly
for studies of waters from below the epipelagic.

Regardless of experimental design and whether in situ
approaches are utilized or not, if ingestion of prey or
disappearance of prey is used to gauge protist phagotrophy, the
choice of prey should be considered carefully. Tracer techniques
that follow fluorescently-labeled prey (FLP) surrogates into
protist food vacuoles and either measure the ingestion of FLP
by examining food vacuoles or by calculating the removal
of FLP from the aqueous phase (or both) are considered to
be relatively robust for providing specific ingestion rates for
different protists morphotypes in marine samples (Jürgens and
Massana, 2008). Potential artifacts associated with this approach
include egestion of vacuole contents during the addition of
fixatives following incubations (Pace and Baliff, 1987), prey
selectivity (e.g., Landry et al., 1991) and times often required
for obtaining reliable counts of ingested FLPs, particularly at
low grazer densities, which may exacerbate known bottle effects
(grazing of smaller protist by larger ones during the experiment,
attachment of prey or predators to bottle walls, deleterious
effects of altered chemistry due to confinement in bottles)
(McManus and Okubo, 1991). For oligotrophic systems with
low grazer concentrations one can follow the disappearance of
added FLPs in longer-term (12–48 h) incubations (Marrasse et al.,
1992). These long-term experiments are less labor-intensive, but
can only provide an estimate of phagotrophy for the whole
protistan community (Jürgens and Massana, 2008). Results of
short- and long-term incubation experiments for deep-sea (3,000
m) samples were found to be consistent (Pachiadaki et al.,
2014). Additionally, autofluorescence of phototrophic prey can
interfere with fluorescence detection of labeled prey (ingested
or not) or with attempts to apply cell sorting of protists based
on ingestion of FLP. The application of protist inhibitors to
gauge protist grazing impacts by monitoring bacterioplankton
responses requires verification that the inhibitor does not have
undesired effects on the natural bacterioplankton community.
It stands to reason that if one can prepare labeled prey
using indigenous bacterioplankton from the depths targeted for
grazing studies, this will minimize potential artifacts due to prey
selectivity that may occur. In the future, advances in cell sorting
sensitivities as well as increasing availability of instruments
allowing sample collection and replicated experimentation in situ
are likely to enable better estimates of protist grazing impacts on
deep sea bacterioplankton communities and on communities in
oxygen-depleted water columns.
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