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Many ocean policies mandate integrated, ecosystem-based approaches to marine

monitoring, driving a global need for efficient, low-cost bioindicators of marine ecological

quality. Most traditional methods to assess biological quality rely on specialized

expertise to provide visual identification of a limited set of specific taxonomic groups,

a time-consuming process that can provide a narrow view of ecological status. In

addition, microbial assemblages drive food webs but are not amenable to visual

inspection and thus are largely excluded from detailed inventory. Molecular-based

assessments of biodiversity and ecosystem function offer advantages over traditional

methods and are increasingly being generated for a suite of taxa using a “microbes

to mammals” or “barcodes to biomes” approach. Progress in these efforts coupled

with continued improvements in high-throughput sequencing and bioinformatics pave

the way for sequence data to be employed in formal integrated ecosystem evaluation,

including food web assessments, as called for in the European Union Marine Strategy

Framework Directive. DNA sequencing of bioindicators, both traditional (e.g., benthic

macroinvertebrates, ichthyoplankton) and emerging (e.g., microbial assemblages, fish

via eDNA), promises to improve assessment of marine biological quality by increasing

the breadth, depth, and throughput of information and by reducing costs and reliance

on specialized taxonomic expertise.

Keywords: metagenetics, metagenomics, metabarcoding, eDNA, marine biological quality element (BQE), good

ecological status (GES), biodiversity and ecosystem function (BEF)

MONITORING THE MARINE SYSTEM: SUPPORTED BY LEGAL
OBLIGATION

Marine and coastal systems provide a variety of important ecosystem services, such as food,
recreation, employment, medicine, and regulation of waste, disease, and climate (Liquete
et al., 2013). However, marine ecosystems and transitional waters (e.g., coastal areas, estuaries,
lagoons, fjords) are increasingly stressed by multiple and often interconnected factors, such
as overexploitation, chemical and nutrient pollution, pathogens, harmful algae, and hypoxia.
With an estimated two-thirds of the human population living in or near coastal areas
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(Millennium Ecosystem Assessment, 2005), coastal population
growth contributes ecosystem pressure, with virtually no marine
areas unaffected by human influence (Halpern et al., 2008).
In addition, sources of degradation such as elevated CO2 and
temperature threaten ecosystem integrity and the capacity for
marine ecosystems to remain productive (WHCEQ, 2010; NOC,
2013; Rogers, 2013; Halpern et al., 2015).

To maintain ecosystem services, many countries develop
legal and policy frameworks to guide sustainable use of marine
resources (Pereira et al., 2013). Examples include the United
Nations Convention on the Law of the Sea, Australia’s Oceans
Policy, the Canada Oceans Act and Oceans Strategy, the
United States Oceans Act of 2000 and National Ocean Policy
Implementation Plan, the European Union Marine Strategy
Framework Directive (MSFD), and the South African National
Water Act. A main objective of such policies is maintenance
of good ecological status (GES) in marine waters, habitats, and
resources using integrated or “holistic” approaches (Borja et al.,
2008, 2016; Karsenti et al., 2011; Duffy et al., 2013; Danovaro
et al., 2016). For example, an Ecosystem-Based Management
(EBM) approach to marine resources considers a suite of natural
physical, chemical, biological, geographic, and climatic factors in
context of anthropogenic activities and impacts. The goal is to
protect and maintain natural ecological function while delivering
ecosystem services and societal benefits (Levin et al., 2009; Elliott,
2011).

Marine monitoring and impact assessment programs
are developed to respond to sustainability requirements.
Such programs may evaluate marine ecological quality to
inform management actions, such as establishment of harvest
guidelines, habitat and species conservation plans, and setting of
requirements and practices to minimize pollutants and invasive
species. In many cases, long-term monitoring programs evaluate
the demographic status and trends of various marine populations
(Borja et al., 2010 and references therein). Holistic approaches
require integrated monitoring and assessment of both abiotic
and biotic parameters, including multiple species (Arkema et al.,
2006; Day et al., 2008; Curtin and Prellezo, 2010; Möllmann et al.,
2014) and, ideally, multiple trophic levels to capture Biodiversity
and Ecosystem Function (BEF) relationships (Strong et al., 2015).

CURRENT LIMITATIONS IN MARINE
ECOLOGICAL QUALITY ASSESSMENT

Most evaluations of marine ecological status rely on biological
quality element (BQE) assessments, such as monitoring of
invertebrates, fishes, or phytoplankton. Assessment of BQE
populations and/or ecological relationships can be translated into
straightforward classifications of ecosystem status (e.g., report
cards) and provided to stakeholders, management authorities,
and policy makers. However, traditional BQE monitoring poses
a number of drawbacks, as outlined in Table 1.

One drawback of traditional BQE assessments is reliance on
morphological taxonomy. This causes a bottleneck in sample
throughput because manual sorting and visual identification is
labor-intensive and slow. Identification demands a high degree

of specialized taxonomic knowledge, such expertise is required
for each BQE target separately, and juvenile and cryptic species
can nonetheless be misidentified (Bourlat et al., 2013; Aylagas
et al., 2014, 2016; Pawlowski et al., 2014; Carugati et al., 2015;
Thomsen and Willerslev, 2015; Bowers et al., 2016; Bucklin et al.,
2016; Danovaro et al., 2016). Estimates suggest that between 24
and 98% of marine eukaryotic species are yet to be described
(Leray and Knowlton, 2016). In addition, the quantification
of early life stages for stock assessment purposes, for example
ichthyoplankton eggs and larvae (Harada et al., 2015) may
not accurately predict life history or therefore the future adult
population, which is the target of management action (Lewis
et al., 2016).

The inability to inventory microbial assemblages is another
drawback of typical monitoring approaches. Microbial species
dominate the ocean numerically and the majority of marine
primary production is microbial in origin, produced by
cyanobacteria and microalgae (Duarte and Cebrian, 1996;
DeLong, 2009; Amaral-Zettler et al., 2010). Microorganisms may
act as sentinels of system ecological status because they respond
rapidly to natural and anthropogenic environmental pressures in
terms of diversity, physiology, and function (Mock and Kirkham,
2012; Nogales et al., 2011; Mock et al., 2015). They hold promise
as ecosystem indicators with regard to measures of biodiversity,
toxic species, pathogens, and metabolic properties that indicate
ecosystem health, such as biodegradation capacity and resistance
to metals and antibiotics (Ininbergs et al., 2015; Tan et al., 2015;
Caruso et al., 2016). The ocean microbiome, an assemblage of
bacteria, archaea, microeukaryotes, and viruses (Stulberg et al.,
2016), is the heart of marine food webs. Although the need for
food web assessments in marine ecosystem status is recognized
(Zampoukas et al., 2014; Caruso et al., 2016), microbes are not
readily amenable to visual identification (Bowers et al., 2016;
Giner et al., 2016), hindering inclusion as a BQE in monitoring
frameworks. Instead, marine monitoring programs are often
restricted to gross measurements such as chlorophyll to capture
this critical segment of the ecosystem.

Ecosystem assessments include a suite of biotic and abiotic
measurements. The call for integrated monitoring recognizes
that isolated BQE measures may not capture ecological status
adequately (Table 1) and instead should include multiple
taxonomic groups (e.g., animals, protists, bacteria) and life stages
(e.g., for fish: eggs/larvae, juveniles, adults) (Aylagas et al.,
2016; Thompson et al., 2016; Trivedi et al., 2016). However,
harmonization is challenging (Simboura et al., 2005; Borja et al.,
2014). The costs and complexity of integrated assessment can
limit spatio-temporal scope and hinder the ability to realize
an ecosystem approach (de Jonge et al., 2006; Vince et al.,
2015).

DNA SEQUENCING: A SOLUTION FOR
OCEAN ASSESSMENT

From the perspective of cost and sample throughput, DNA
sequencing offers a variety of advantages to marine monitoring
and assessment programs compared to time-consuming visual
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TABLE 1 | Summary of traditional method shortfall vs. benefits to DNA sequencing approaches.

Traditional method shortfalls Explanation DNA sequencing benefits

Reliance on morphotaxonomic expertise Identification of each taxon relies on the expertise of

specialized technicians in the face of declining

availability to train new experts, yet diagnostics are

still hampered by cryptic species, undifferentiated

morphology, and damaged specimens.

Sequencing approaches do not rely on traditional taxonomic

expertise, life stage, or intact specimens (although a curated

reference library is needed, which requires initial collaboration

with taxonomists to establish). In contrast to traditional

taxonomy, workforce training in molecular and bioinformatic

methods is growing.

Life stage limitations Traditional methods rely on the species abundance

of specific taxonomic groups, frequently ignoring

early life stages.

Sequencing approaches can identify morphologically

undifferentiated organisms (e.g., eggs, larvae, juveniles),

expanding assessments.

Lack of microbial/food web assessment Standard biotic measures do not provide

information on microbial ecology, which drives the

ocean productivity that supports ecosystem

services.

Molecular approaches are well-developed for marine

microbial assemblages, enabling improved assessment of

food webs, a foundational component of an ecosystem.

Limited trophic information Assessments may not include multiple trophic

levels.

Multiple trophic levels can be assessed (“microbes to

mammals”).

Fail to assess biodiversity and ecosystem

function

Fails to capture Biodiversity and Ecosystem

Function (BEF) relationships. Data may be limited to

physico-chemical measurements with biotic data

indirectly inferred.

Information on taxonomy and metabolic potential, can identify

key enzymes and markers of biogeochemical cycles,

biodegradation, antibiotic or metal resistance, etc.

Slow throughput, high cost Labor intensive, requires the services of multiple

specialized technicians to identify each taxonomic

group.

Costs for high-throughput sequencing continues to decline.

Ecosystem scale-up issues Limited sampling in heterogeneous marine systems

is performed under assumption of homogenous

conditions, creating difficulties when ecological

quality classification is up-scaled to the whole

system.

Low per-sample costs coupled with progress in automated

bioinformatic pipelines holds promise for high sample

throughput, allowing higher resolution sampling and resulting

in a more representative assessment.

inspection (Table 1). High-throughput sequencing allows
faster and more accurate species identification and decreases
dependence on morphological taxonomic expertise (Bourlat
et al., 2013; Aylagas et al., 2014). Advantages extend to taxa
traditionally monitored in marine assessment programs, such
as invertebrates and fish, investigated either as individuals
or assemblages (Ardura et al., 2013; Bourlat et al., 2013;
Carugati et al., 2015; Harada et al., 2015; Tan et al., 2015;
Zimmermann et al., 2015; Aylagas et al., 2016; Borja et al.,
2016; Caruso et al., 2016; Danovaro et al., 2016; Lewis et al.,
2016; Thompson et al., 2016). Information about higher trophic
levels also can be gleaned from DNA extracted from filtered
seawater via capture of sloughed or excreted cells, rather than
direct extraction from tissue (Foote et al., 2012; Kelly et al.,
2014; Kelly, 2016). Such work is buttressed by genomic-based
studies which continue to advance, in part, by increased
access to and application of DNA sequencing technologies
(Cammen et al., 2016; Leslie and Morin, 2016). Declining
costs encourage sequencing as an alternative to traditional
biodiversity monitoring (Bourlat et al., 2013) and supports
continued advances in conservation biology (Wallace et al., 2010;
Hancock-Hanser et al., 2013).

Although information derived from DNA sequencing
is yet to be formally included in current marine status
assessment programs (Bourlat et al., 2013), there is widespread
recognition of the importance of this approach, and an
increasing number of projects (Table 2) generate sequence-based

biodiversity assessments. For example, molecular approaches
were found to be more time-efficient compared to visual
census (Yamamoto et al., 2017) and were successfully used
to identify nonindigenous species in marine waters and to
retrieve taxa from benthic samples that were not identified
by morphological analysis (Zaiko et al., 2015; Aylagas et al.,
2016). Progress moving molecular assessments into formal
monitoring is being made as evidenced by adaptation of
the AZTI Marine Biotic Index (AMBI), determined by
traditional manual sorting and visual identification of
benthic macroinvertebrates, to an index based on genetics
(gAMBI) (Aylagas et al., 2014, 2016). Success with this
approach was extended to bacterial assemblages (Aylagas et al.,
2017).

DNA sequencing addresses the challenges of microbial
assemblage inventory. Limitations of visual identification and
culture methods drove microbial ecology to become an early
adopter of molecular methods (Giovannoni et al., 1990;
Handelsman, 2004; Venter et al., 2004; Rusch et al., 2007).
Sequencing technology and bioinformatics revolutionized the
study of marine biology, providing new insights into how
the “hidden majority” (Rappé and Giovannoni, 2003) mediates
cycles of carbon, nutrients, oxygen, metals, and toxins and
responds to ecosystem change. The field is now sufficiently
mature to be considered in routine marine monitoring efforts.
For example, DNA sequencing could be used to monitor
marine food webs, as explicitly called out in the EU Marine
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TABLE 2 | Examples of projects promoting molecular-based biodiversity assessment.

Project Methods employed Aims

BioMArks

biomarks.eu

Metabarcoding Develop taxonomically curated DNA barcode

reference database for unicellular eukaryotes

(protists) and bioinformatics and statistical tools

to “provide a complete toolbox for modern,

cheap, and accurate biomonitoring of marine

eukaryotic biodiversity.”

Consortium for the Barcode of Life (CBOL)

www.barcodeoflife.org

Barcoding Construct a richly parameterized barcode

reference library as a global standard for

identification of biological species.

DEVelopment Of innovative Tools for understanding

marine biodiversity and assessing good Environmental

Status (DEVOTES)

www.devotes-project.eu

Metagenetic vs. traditional methods Development of analysis pipelines

complementary to traditional tools that

translate genomic data into indicator metrics to

be used by stakeholders.

Earth Microbiome Project (EMP)

earthmicrobiome.org

Metagenetic (16S V4 region) Massively collaborative effort to characterize

microbial life across the globe, including marine

biomes.

FishPopTrace

https://fishpoptrace.jrc.ec.europa.eu

Sequencing/gene expression/proteomic Develop a wide range of traceability tools for

assigning fish and fish products back to their

origin population.

Global Genome Initiative (GGI); Global Genome

Biodiversity Network (GGBN)

ggi.si.edu; ggbn.org

Barcoding/metabarcoding/metatranscriptomic Endeavors to capture and understand the

Earth’s genomic biodiversity with emphasis on

sample archival.

International Census of Marine Microbes

https://icomm.mbl.edu/

Metagenetic (V9 region) Inventory of marine microbial diversity inclusive

of bacteria, archaea, protists and associated

viruses.

Marine Biodiversity Observation Network (MBON)

www.marinebon.org/

Metagenetic/metagenomic/eDNA Work includes development and application of

standardized molecular methods to elucidate

the role of marine microbes to connect

biodiversity and ecosystem function.

Bioplatforms Australia - Marine Microbes

bioplatforms.com/marine-microbes

Metagenetic/metagenomic Investigation of changes in the diversity of

Australian marine microbes from multiple

environments including seawater, sediment,

sponges and seagrass.

Marine Microbial Eukaryotic Transcriptome Sequencing

Project (MMETSP)

marinemicroeukaryotes.org

Metatranscriptomic Provide a significant base for integrating

microbial eukaryotes into marine ecology

generating functionally annotated, and publicly

available transcriptomes.

Moorea Biocode;

mooreabiocode.org

Barcoding Catalogue specimens, photographs, and DNA

sequences for species in marine, freshwater,

and terrestrial habitats on the island of Moorea,

French Polynesia.

Ocean Sampling Day (OSD), Marine Microbial

Biodiversity, Bioinformatics, Biotechnology (MicroB3)

www.microb3.eu

Metagenetic (16S V4, 18S V4 and V9)/metagenomic A snapshot of 16S, 18S, and marine

metagenomic sequences taken on the same

day across the globe to promote standardized

methods in sample and metadata collection.

Tara Oceans

http://oceans.taraexpeditions.org

Prokaryotic and eukaryotic plankton V9 rDNA

metabarcoding/metagenomic

Probe morphological and molecular diversity,

evolution and ecology of marine plankton to

explore how they are impacted by changes in

the Earth’s climate.

Strategy Framework Directive (MSFD) (Zampoukas et al., 2014).
Examples of projects (Table 2) focused on microbial assemblages
include Ocean Sampling Day (Kopf et al., 2015), the TARA
Oceans project (Karsenti et al., 2011; Bork et al., 2015), the Earth
Microbiome Project (Gilbert et al., 2014), theMarine Biodiversity
Observing Network (Duffy et al., 2013; Muller-Karger et al.,
2014), and Bioplatforms Australia—Marine Microbes (NCRIS,
2016).

Overall, DNA sequencing is a promising approach for
integrated ecosystem assessments. Sequencing data can provide
information about individuals, populations, and communities,
and data can be used to understand stress responses and
adaptation capacity. Such information can be distilled into
ecosystem indicators and potentially integrated in ecosystem
models aimed to inform people dependent on marine ecosystem
services.
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DNA SEQUENCING APPLIED TO MARINE
MONITORING

Technical Context
DNA sequencing and analysis approaches vary widely, with
opportunities to serve a variety of marine monitoring
applications. Terminology usage shifts as methods change
(e.g., the evolution of long-read Sanger to short-read Illumina
sequencing) and varies among applications, particularly
between microbial/macrobial and aquatic/benthic specialties.
For example, the term “metagenomics” is defined simply and
broadly as the analysis of genetic materials obtained directly
from environmental samples, including analysis of sequenced
amplicon (Xu, 2015). Alternatively, this broad definition is
rejected in favor of keeping terminology for amplicon sequencing
separate (e.g., “metagenetics” or “metaprofiling”) rather than as a
subset ofmetagenomics (Esposito andKirschberg, 2014; Escobar-
Zepeda et al., 2015; Mendoza et al., 2015; Creer et al., 2016).
A similar situation exists for “environmental DNA” (eDNA)
which is broadly defined in some cases (Pedersen et al., 2015).
However, the term eDNA is increasingly used to connote animal
DNA obtained indirectly from environmental samples rather
than tissues per se (Bohmann et al., 2014; Kelly et al., 2014; Kelly,
2016), and that connotation is generally used here. Additional
ambiguities arise from advances in sequencing technologies.
For example, both Sanger (first generation) and later platforms
such as Roche 454, SOLiD, and Illumina (second generation)
may be referred to as next generation sequencing (NGS) in the
literature, and both second and third-generation (PacBio, Ion
Torrent, Oxford Nanopore) may be referred to as massively
parallel or high-throughput sequencing (HTS). Other examples
of terms with ambiguous usage include: conservation genomics
(Garner et al., 2016), genetic fingerprinting, tag sequencing,
targeted metagenomics, metabarcoding (Mendoza et al., 2015),
and community analysis. With continued modifications to
technology, expanding applications, and development of
bioinformatic tools, terminology is expected to remain a
challenge.

In generic terms, it is anticipated that DNA sequencing as a
tool in routine marine monitoring will employ high-throughput
sequencing coupled with a bioinformatic analysis pipeline.
Sequencing may target whole genomes or specific regions that
may be amplified by PCR prior to sequencing. DNA may be
obtained from an individual, an assemblage of organisms (“meta”
approach), or an assemblage of partial organisms (eDNA). For
the purposes here, the focus is on high throughput, short-read
sequencing of amplicons from macroeukaryotic assemblages
(metabarcoding) or individuals (barcoding); amplicons from
assemblages of maroeukaryotes obtained indirectly from the
environment rather than from whole organisms or tissues
(eDNA); amplicons from prokaryotic/microeukaryotic
assemblages (metagenetics); and shotgun sequencing of
prokaryotic/microeukaryotic assemblages (metagenomics). A
variety of references regarding extraction (Cox and Goodwin,
2013; Hazen et al., 2013), amplification, and sequencing strategies
for water, sediments, and tissues are available herein, and eDNA
is also reviewed extensively elsewhere (Bohmann et al., 2014;

Rees et al., 2014; Pedersen et al., 2015; Thomsen and Willerslev,
2015; Shelton et al., 2016); therefore, only a brief technical
overview is provided here.

Sequencing of PCR-amplified marker genes is often employed
to identify organisms (Patwardhan et al., 2014). This targeted
sequencing approach can provide detection of species in
relatively low abundance (DeSantis et al., 2006; Sogin et al.,
2006; Hamady and Knight, 2009; Quast et al., 2013) and
better depth of coverage compared to shotgun whole-genome
approaches (Zhou et al., 2015). For example, amplification of
a nuclear 16S rRNA gene segment is typical for taxonomic
classification of marine prokaryotic assemblages (Klindworth
et al., 2013). Amplification of 18S rRNA regions is used for
a variety of communities, including phytoplankton and other
microeukaryotes (Dunthorn et al., 2012; Hugerth et al., 2014;
Johnson and Martiny, 2015; del Campo et al., 2016; Giner et al.,
2016), and amplification of the 23S rRNA gene is used to classify
organisms such as zooplankton (Hirai et al., 2015a; Bucklin et al.,
2016). Amplification of mitochondrial DNA is used to identify
an assortment of organisms, with cytochrome oxidase I (COI),
cytochrome b, and mitochondrial 16S as examples of popularly
employed target regions (Dauble et al., 2012; Pawlowski et al.,
2014; Cowart et al., 2015; Guo et al., 2015; Harada et al., 2015;
Johnson and Martiny, 2015; Aylagas et al., 2016; Bucklin et al.,
2016; Creer et al., 2016; Leray and Knowlton, 2016; Thompson
et al., 2016; Trivedi et al., 2016). Newer approaches are being used
to identify fish (Miya et al., 2015) and marine mammals (Foote
et al., 2012; Ma et al., 2016) from seawater samples.

In comparison to amplifying and sequencing a specific
genomic region, shotgun metagenomic methods sequence
broadly across entire genomes (Thomas et al., 2012; Escobar-
Zepeda et al., 2015; Sharpton, 2014; Guo et al., 2016). In general,
DNA extracted from a sample is fragmented, a DNA library is
prepared (Head et al., 2014) using a limited number of PCR
cycles or via PCR-free methods (Mendoza et al., 2015), and
the assortment of random DNA fragments is sequenced. The
resulting sequences can be compared directly against genomes of
known taxa or can be assembled into longer segments (contigs)
which can be further annotated for gene content, function, and
taxonomic assignment (Segata et al., 2012; Teeling and Glöckner,
2012; Wood and Salzberg, 2014; Bengtsson-Palme et al., 2015).
This approach provides a broad view because a variety of genes
are detected, including those that encode metabolic enzymes and
pathways. If the goal is to characterize the functional potential
of an ecosystem, shotgun sequencing is desirable because
whole-genome data provides information on potential metabolic
function, in addition to taxonomic information (Handelsman,
2004; Thomas et al., 2012). Furthermore, shotgun sequencing is
less affected by primer bias and chimeras compared to amplicon
sequencing (Guo et al., 2016). However, obtaining adequate
depth of coverage can be problematic (Zhou et al., 2015),
motivating some studies to utilize both amplicon and whole-
genome approaches (e.g., Ocean Sampling Day, Table 2).

Regardless of the DNA sequencing approach used,
bioinformatics is critical to understand the information delivered
by DNA sequencing efforts. A plethora of bioinformatic tools
are available, with a complete review beyond the scope of
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this article. Many bioinformatic tools and platforms are now
tailored to gene sequences derived from environmental samples,
particularly for prokaryotic assemblages (Kanehisa et al., 2008;
Meyer et al., 2008; Caporaso et al., 2010; Abubucker et al.,
2012; Thomas et al., 2012; Kozich et al., 2013; Hunter et al.,
2014). Furthermore, de-novo assembly is increasingly being
used to derive nearly complete genomes of previously unknown
ecologically important organisms from metagenomes (Garza
and Dutilh, 2015; Hugerth et al., 2015). A growing number of
assemblers (Boisvert et al., 2012; Peng et al., 2012) and binning
tools (Alneberg et al., 2014; Imelfort et al., 2014; Nurk et al.,
2017) are available that assemble short sequencing reads into
larger contigs and subsequently combine them into bins based
on, for example, sequence similarity (Teeling and Glöckner,
2012). In addition to standard biodiversity metrics such as alpha,
beta, and gamma diversity (Escobar-Zepeda et al., 2015; Zhou
et al., 2015), network analysis tools aid visualization of complex
ecological relationships (Mitra et al., 2010; Hurwitz et al., 2014).

Applications of DNA Sequencing to Marine
Assessment Programs
Marine microbes were among the first communities to be
explored by DNA sequencing (Giovannoni et al., 1990; Venter
et al., 2004). Sequencing was initially applied to prokaryotic
and microeukaryotic communities in seawater with techniques
developed for these whole organisms because traditional culture
methods were inadequate to describe microbial biodiversity in
water and soil (Rappé and Giovannoni, 2003; Handelsman,
2004). The Global Ocean Sampling expedition helped establish
DNA sequencing as a fundamental tool in marine ecosystem
research (Rusch et al., 2007; Dupont et al., 2015). Potential
benefits of DNA sequencing of microbial communities to marine
assessment programs include characterization of food webs,
assessing responses to disruption and stress, and detection of
sensitive, rare, threatened, toxic, or invasive taxa (Hulme, 2006;
Kudela et al., 2010; Mock and Kirkham, 2012; Lindeque et al.,
2013; Muller-Karger et al., 2014; Pawlowski et al., 2014; Chown
et al., 2015; Mock et al., 2015; Tan et al., 2015; Zaiko et al., 2015;
Bowers et al., 2016; Bucklin et al., 2016).

Sequencing of environmental samples such as seawater is
now applied in a macrobial sense across a range of trophic
levels (“microbes to mammals”) (Trivedi et al., 2016; Valentini
et al., 2016), and approaches used to inventory individuals
(Ardura et al., 2013; Harada et al., 2015; Thompson et al.,
2016) are being applied to assemblages (Carugati et al.,
2015; Zimmermann et al., 2015; Aylagas et al., 2016). Studies
demonstrate DNA metabarcoding to be a reliable method for
biodiversity assessment with potential for inferring biotic indices
for marine ecosystem quality assessment (Aylagas et al., 2014;
Pawlowski et al., 2014; Cowart et al., 2015; Elbrecht and Leese,
2015; Visco et al., 2015; Ferrera et al., 2016). Comparable results
between molecular and traditional approaches are reported in a
number of studies (Hirai et al., 2015a; Lejzerowicz et al., 2015;
Aylagas et al., 2016, 2017; Valentini et al., 2016), suggesting that
assessment programs that require manually intensive sorting and
visual inspection will be among the first to formally integrate

molecular techniques. For example, larval rockfish time-series are
currently used to quantify spawning stock biomass off California,
USA and are integral components of rockfish stock assessment
(He et al., 2015). However, the utility of the traditional approach
for counting rockfish larvae based on morphology is limited
because only a few species can be visually identified to species.
Recent research to improve stock assessment has genetically
identified rockfish larvae collected off southern California and
increased from 6 to 36 the number of species with time-
series (Chen, 2017). The genetically-derived data is now being
considered for integration into formal stock assessments.

Newer eDNA methods allow detection of higher trophic
levels, including fish and mammals used to evaluate ecological
status, from DNA extracted from sediment or filtered seawater.
The eDNA approach promises information about bioindicators
and commercially important or protected species without the
need to collect tissue or trawl through sensitive habitats (Foote
et al., 2012; Bohmann et al., 2014; Thomsen and Willerslev,
2015; Evans et al., 2016; Lacoursière-Roussel et al., 2016; Shelton
et al., 2016). Some studies show promising results with regard
to abundance estimates (Hänfling et al., 2016; Port et al., 2016),
but others show significant differences between eDNA results and
traditional tows for epibenthic macroinvertebrates (Kelly et al.,
2017) and zooplankton (Hirai et al., 2015b), suggesting that these
methods require further research.

Indications of Ecosystem Stress
DNA sequencing offers insight into ecosystem stress via
changes in relative abundance or completeness of enzymatic
pathways associated with chemical biodegradation or resistance.
For example, a number of microorganisms carry genes that
confer resistance to antibiotics or heavy metals. Increased
exposure to anthropogenic chemicals promotes production and
dissemination of these genes. Increases in the abundance of
resistance genes and of integrons, genetic elements involved in
horizontal gene transfer, are documented in polluted sediments
(Thureborn et al., 2013). Resistance to multiple antibiotics is
more frequent at polluted sites, and resistance to antibiotics
and heavy metals can co-occur (Henriques et al., 2016). A
number of studies demonstrate environmental gradients showing
co-occurrence of anthropogenic inputs and gene occurrence
in marine environments (Tacão et al., 2012; Chen et al.,
2013; Thureborn et al., 2013), providing an opportunity to
use individual gene markers (e.g., blaCTX-M, merA) or a full
metagenomic profile to indicate pollution in ecological status
assessments.

Disrupted ecosystems can also present shifts in particular
taxa or overall biodiversity (Nogales et al., 2011; Mason et al.,
2014; Mukherjee et al., 2017), opening the possibility to evaluate
ecological status according to such metrics. Toward this goal,
Aylagas et al. (2017) developed two composite indicators: (1)
a sediment quality index that included organic matter content,
redox potential, and metal, PAH and PCB concentrations; and
(2) a bacterial index of environmental quality adapted from
the AMBI. The indices were correlated, a promising result
with regard to inclusion of prokaryotic assemblages into future
assessment programs (Caruso et al., 2016). Furthermore, DNA
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sequencing approaches are used for public health applications
related to human pathogens derived from fecal contamination
(Tan et al., 2015; Staley and Sadowsky, 2016) and to investigate
the impacts of anthropogenic stressors on the coral microbiome
(Ziegler et al., 2016; Staley et al., 2017). Kelly et al. (2016)
demonstrate that eDNA in seawater can be used not only for
biodiversity measurement but also for assessing anthropogenic
disturbance in coastal environments. In that study, sequencing
of metazoan mitochondrial 16S DNA show greater diversity
of sessile taxa in more urbanized sites. Higher diversity in a
disturbed site also is reported for estuarine benthic eukaryotes
using 18S rRNA metabarcoding (Chariton et al., 2015). In
contrast, lower diversity of benthic foraminifera is reported for
sites impacted by fish farming (Pawlowski et al., 2014). Such a
combination of results suggests that a sole biodiversity index may
be inadequate to evaluate ecosystem status and indicates that an
AMBI-like approach, which weights taxa abundance by pollution
tolerance, may be needed to convert taxonomic measures into
indices of ecosystem function.

HURDLES AND CHALLENGES

Standardization
While DNA sequencing holds promise for marine assessment
programs (Table 1), improvements are required to adapt these
powerful tools to formal monitoring frameworks. One of the
greatest needs, cutting across all aspects of the endeavor, is the
need for standardization. Standardization is particularly critical
for marine monitoring applications because long-term data set
generation is a hallmark of such efforts. Standard methods and
practices can be applied at every stage: study design; metadata
collection and curation; sample collection and preservation;
DNA extraction; inclusion of control samples; approaches to
amplification, library preparation and sequencing; sequence
quality control and other downstream processing; bioinformatic
method documentation; and depositing of sequence results with
appropriate metadata.

Standardization of metadata, a minimum common set of
measurements to be recorded at the time of sample collection,
is critical. Adequate metadata is required to integrate DNA
sequencing information into marine ecosystem assessment
programs, provide environmental context to sequence data,
simplify annotation, facilitate data mining, and to allow
comparisons between studies. Progress is being made to create
standardized protocols (Field et al., 2008; Chain et al., 2009;
Gilbert, 2015; Droege et al., 2016). Efforts that promote
community collaboration and participation to produce standard
practices include theMIxS standard from the Genomic Standards
Consortium (GSC) (Yilmaz et al., 2011; ten Hoopen et al., 2015),
the Environmental Ontology (Buttigieg et al., 2013, 2016), and
data standards of the Global Genome Biodiversity Network
(GGBN) (Droege et al., 2016). Despite widespread recognition
of its importance and the realization that subsequent data
curation is costly and time-consuming (ten Hoopen et al., 2016),
compliance with metadata collection and curation standards is
lacking. Gold standards with regard to data analysis, applied
algorithms, and reference data sets comparable to those sought

for the human medical space will improve the reliability and
usability of results gained from marine sequencing studies.
Recent sampling efforts such as the Ocean Sampling Day (Kopf
et al., 2015), TARA Oceans project (Karsenti et al., 2011; Bork
et al., 2015) and the AustralianMarine Microbes Project (NCRIS,
2016) mark first steps to standardize sample preparation and
sampling procedures for marine microbial ecology.

Controls and Replication
An adequate set of negative and positive control samples (e.g.,
mock communities, both DNA and whole-cell) are needed to
track DNA preservation, extraction efficiency, contamination,
and sequence errors, which can significantly affect results (Zhou
et al., 2015; Allen et al., 2016; Mulcahy et al., 2016; Siegwald
et al., 2017). Work initiated in the area of standardizing
laboratory procedures includes much-needed development of
reference materials and improved DNA extraction methods, as
exemplified by establishment of the International Metagenomics
and Microbiome Standards Alliance (IMMSA) (NIST, 2016).
Controls used to assess artifacts and bias introduced by sample
preparation, PCR, and sequencing are reviewed elsewhere (Pinto
and Raskin, 2012; Elbrecht and Leese, 2015; Pedersen et al.,
2015; Tan et al., 2015; Zhou et al., 2015; Aylagas et al., 2016;
Danovaro et al., 2016) and should be used in conjunction with
standard quality control pipelines for sequence quality, including
chimeric removal (Smyth et al., 2010; Teeling and Glöckner,
2012; Zhou et al., 2014; Escobar-Zepeda et al., 2015; Jeon et al.,
2015). Including mock communities in DNA sequencing efforts
can assess technical issues such as incomplete DNA extraction
or library preparation, PCR, and sequencing errors (Schirmer
et al., 2015) and provide correction factors (Tan et al., 2015;
Aylagas et al., 2016). Furthermore, simulated datasets can test
the performance of both sequencing technology and analysis
pipelines (Bonilla-Rosso, 2015), and bioinformatic tools can be
used to mask technical variability (Leek et al., 2012).

The technical variation in sequence data is compounded by
the considerable temporal and spatial biological variability in
marine systems. Environmental heterogeneity is both natural
(e.g., salinity gradients in transitional waters) and driven by
proximity to anthropogenic influences. Study design should
account for expected variability and include appropriate types
and amounts of biological and technical replicates to ensure that
meaningful comparisons and statistical analysis, suited to the
question at hand, can be provided rather than ad-hoc sequencing
based on available budget (Prosser, 2010; Knight et al., 2012;
Pinto and Raskin, 2012; Thomas et al., 2012; Zhou et al., 2015).
Greater sequencing coverage can aid the ability to differentiate
environmental variability, with the balance of biological and
technical replicates dependent on the study questions and
community complexity (Teeling and Glöckner, 2012; Zhou et al.,
2015).

Taxonomic Classification and
Quantification
A challenge to DNA sequencing of environmental samples is
obtaining accurate taxonomic classification, particularly from
short DNA sequence reads. The issue is exacerbated when
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reference genomes are lacking, such as for marine ecosystems
and particularly for eukaryotic and viral components (Leray and
Knowlton, 2016; Roux et al., 2016). Taxonomic mis-classification
of reads impacts the accuracy of abundance estimates (Aylagas
et al., 2016). Lack of intercalibration between morphological
and molecular methods presents an additional issue, and
transferability across taxa is a concern, particularly if the initial
assessment used to establish the database is limited to one or two
taxonomic groups (Kelly, 2016). Although comparable molecular
and traditional approaches are reported (Lejzerowicz et al., 2015;
Aylagas et al., 2016, 2017; Hänfling et al., 2016; Valentini et al.,
2016), other studies show discrepancies (Cowart et al., 2015; Hirai
et al., 2015b; Mohrbeck et al., 2015; Giner et al., 2016; Kelly
et al., 2017); therefore, it has been advised to use both approaches
in a complementary fashion rather than outright substitution
of morphotaxonomic approaches (Borja et al., 2008; Pedersen
et al., 2015; Thomsen and Willerslev, 2015). Although such an
approach may deliver a holistic perspective of marine ecological
status, it would not produce the desired effect of streamlining
monitoring efforts, which is needed to transition research into
practice (de Jonge et al., 2006).

Bioinformatic tools to aid microbial classification include
similarity based approaches (Liu et al., 2011; Menzel et al., 2016),
phylogenetic placement of sequences to known reference trees
(Matsen et al., 2010), and using a combination of methods
(Darling et al., 2014; Dröge et al., 2015). The reliance of current
methods on known sequences, however, is a major drawback, as
only a fraction of marine genomes (whole genomes or marker
gene regions) are sequenced to date. It is worth noting that
sequences obtained from metabarcoding efforts may provide
value to ecosystem assessments even if reliable taxonomy cannot
be assigned to them. A biodiversity index that does not require
taxonomic assignment—a reference-free approach (Mendoza
et al., 2015)—could in principle substitute for existing indices
targeting specific species. It is noted that diversity in terms
of operational taxonomic units (OTUs) vs. strict taxonomic
assignment of sequences could satisfy requirements of the EU
MSFD (Danovaro et al., 2016). Several bioinformatic tools are
available for microbial sequences that could aid this goal (Eren
et al., 2013; Callahan et al., 2016; Amir et al., 2017). For example,
the Earth Microbiome Project (earthmicrobiome.org) employed
Deblur (Amir et al., 2017) to deliver a set of unique sequences
with single-nucleotide resolution, rather than representative
sequences delivered by OTU clustering. This strategy enabled
sequences to be tracked across a variety of studies and
habitats and, coupled with environmental metadata, allowed
global inferences regarding microbial community structure.
Patterns were not dependent on taxonomic assignments, but
because exact sequences were provided, taxonomy can later be
assigned as reference databases improve. Such approaches can
be extended from metagenetics to metagenomics and should
continue to improve as longer sequence reads delivered from
high-throughput platforms become more routine (Teeling and
Glöckner, 2012).

Presence/absence detection appears sufficient for certain
ecological quality assessment applications (Aylagas et al.,
2016), although improvements in quantification would surely

extend the utility of DNA sequencing for marine monitoring
purposes. Some studies report adequate estimates of relative
abundance (Aylagas et al., 2014, 2016; Elbrecht and Leese,
2015; Tan et al., 2015; Thomsen and Willerslev, 2015) even
though read abundance does not necessarily provide a direct
correlation to organism abundance because of issues that
include variations in copy number, genome size, and growth
condition. Bioinformatic solutions to the issue of quantification
include estimation of organism abundance based on normalized
read counts of clade-specific marker genes (Segata et al.,
2012; Sohn et al., 2014), polymorphisms in universal markers
(Luo et al., 2015), or accounting for incorrect taxonomic
classification through probabilistic models (Lu et al., 2017).
Differences in sequencing depth, i.e., the number of reads
obtained from an environmental sample, significantly affects
results (Rodriguez and Konstantinides, 2014) and can potentially
render a study unable to detect low-abundance strains. In
cases in which detection or abundance estimation is critical,
amplicon sequencing with deep sequence coverage coupled with
quantitative PCR (qPCR) may be a workable strategy.

The challenge that residual or ancient DNA poses to
quantitation, particularly in benthic environments where DNA
turnover is relatively slow, is reviewed extensively elsewhere
(Bohmann et al., 2014; Pedersen et al., 2015; Thomsen and
Willerslev, 2015). Recent studies in aquatic systems focus on
DNA decay rates to better understand the potential of, and limits
to, applying eDNA to marine monitoring and stock assessment
(Sassoubre et al., 2016). In some cases, qPCR of eDNA is used to
address the need for quantification (Laramie et al., 2015). In other
cases, qPCR alone is suggested for abundance measurements of
harmful algae in marine monitoring programs (Zamor et al.,
2012). Overall, overcoming and/or circumventing issues that
compromise abundance estimates is a research need that requires
attention on all fronts—from the first steps of sample collection
and DNA extraction, to routine generation of longer sequence
reads, and development of better bioinformatic tools.

Bioinformatics Infrastructure and Expertise
DNA sequences can be obtained cheaply and quickly; a decade
ago a standard sequencing run returned a few thousand DNA
base pairs. Now for the same cost, sequencers routinely generate
hundreds of billions of base pairs in a single run. Despite the
enormous opportunities posed by this technological revolution,
the vast amount of data generated requires new solutions for
data handling, storage, processing, documentation, visualization,
and dissemination (Desai et al., 2012; Muir et al., 2016). This, in
turn, drives a critical need (and current gap) for bioinformatic
infrastructure and expertise. Adequate investment must be paid
to obtain and maintain the tailored IT infrastructure needed
to handle the increasing data volume and sophistication of
processing. New developments such as cloud computing provide
cost efficient solutions for decentralized storage and analysis of
Big Data (Stein, 2010) while facilitating research collaborations.
However, a common problem for sequencing projects is a
dearth of experienced and skilled bioinformaticians. This is
partly due to the rapid expansion of the field; the need has
expanded faster than the ability to train scientists (Hughey and
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Karplus, 2003). In addition, the skill sets needed are diverse
and project-dependent. The result is that many bioinformatic
tools are executed by researchers without sufficient training and
knowledge of the underlying algorithms. Choosing the correct
pipeline is important (Siegwald et al., 2017), and competence
in bioinformatics is required to choose the appropriate analysis
software from the vast number of available tools. Despite the
critical importance of bioinformatics expertise to sequencing
studies, bioinformaticians can lack appropriate career and
development opportunities (Chang, 2015). There is a need for
institutions and funding bodies to address this gap and to
create attractive career paths and salary models for current
and future bioinformaticians. Meanwhile, education and training
opportunities are being created to close the bioinformatic
workforce gap (Edwards et al., 2013; Atwood et al., 2015),
creating a fundamental difference between the expertise gap in
bioinformatics and the one for traditional taxonomic identity
(Table 1).

FUTURE OF BIODIVERSITY
ASSESSMENTS USING SEQUENCING
APPROACHES

Although there is progress to be made, environmental sample
DNA can now be routinely analyzed by high-throughput
sequencing methods. Furthermore, there is growing ability
to apply other ‘omic approaches to environmental samples,
such as metatranscriptomic, proteomic, and epigenetic analyses.
Sequencing approaches empower mechanistic understanding of
ecosystem dynamics and integration into marine monitoring
and assessment programs will allow “environmental intelligence”
(who is there, what they do, and how they are impacted
by changing conditions) to be gathered with scope and
detail never before available. In addition to improving routine
assessment methods that rely on sorting & visual inspection
(e.g., benthic invertebrates, ichthyoplankton), sequencing can
provide a detailed inventory of the microbial portion of the food
web. Inclusion of this fundamental component should add value

to marine monitoring programs, allowing holistic ecological
assessment from both a taxonomic and functional perspective.
Simultaneously, eDNA approaches offer the ability to inventory
higher organisms from seawater samples. Moreover, molecular
approaches are amenable to integration into automated in-situ
or remotely operated platforms (Yamahara et al., 2015; Bowers
et al., 2016), further opening the possibility to increase temporal
or spatial sample coverage while realizing economies compared
to ship or satellite sensing. Environmental managers seek
to take advantage of DNA sequencing for environmental
assessment and management given potential savings in labor
costs, faster sample throughput, and the relative ease of
integration across trophic levels. As research science makes
progress in developing techniques, standardizing practices,
and demonstrating efficacy for monitoring missions, increased
integration of DNA sequencing into formalmonitoring programs
is expected.
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