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Microplastic contamination was determined in sediments of the Southern North Sea and

floating at the sea surface of NorthWest Europe. Floating concentrations ranged between

0 and 1.5 microplastic/m3, whereas microplastic concentrations in sediments ranged

between 0 and 3,146 particles/kg dry weight sediment. In sediments, mainly fibers and

spheres were found, whereas at the sea surface fragments were dominant. At the sea

surface, concentrations of microplastics are lower and more variable than in sediments,

meaning that larger sample sizes and water volumes are required to find detectable

concentrations. We have calculated the widths of the confidence intervals (CI) for different

sample sizes, to give a first indication of the necessary sample size for a microplastic

survey at the water surface. Higher concentrations of floating microplastics were found

near estuaries. In sediments, estuaries and areas with a high organic carbon content

were likely hotspots. Standardization of monitoring methods within marine regions is

recommended to compare and assess microplastics pollution over time.

Keywords: microplastics, marine litter, floating debris, sediment, Marine Strategy Framework Directive (MSFD),

baseline

INTRODUCTION

Marine litter accumulating in the marine environment may be one of the greatest threats facing
the planet. The exact quantity of plastic in the ocean and volumes entering the ocean from waste
generated on land is unknown. Recent studies estimate that 275 million metric tons (MT) of plastic
waste was generated in 192 coastal countries in 2010, of which 4.8–12.7 million MT could have
entered the ocean (Jambeck et al., 2015). It has been estimated there are 5.25 trillion pieces of
plastic debris in the ocean, of that mass, 269,000-ton float on the sea surface (Cózar et al., 2014;
Eriksen et al., 2014; van Sebille et al., 2015). Due to UV radiation and mechanical forces, this plastic
slowly break down into smaller and smaller fragments below 5 mm, also known as microplastics
(GESAMP, 2015). The origin of these fragments can be broken down fishing nets or lines, plastic
films and bottles, remains of oxo-biodegradable plastic, industrial raw material like pellets, but also
synthetic fibers from textiles as a result of washing clothes or other particular direct sources of
microplastics, for example facial cleansers (Derraik, 2002; Arthur et al., 2009; Barnes et al., 2009;
Fendall and Sewell, 2009; Browne et al., 2011; Leslie et al., 2011). In Norway, they found that
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abrasion from tires and roadmarking was the biggest source of
microplastics, followed by dust and particles from plastic based
paint (Sundt et al., 2014). Next to breakdown, city storm water
effluent and road runoff could thus be another major pathway
for microplastics (Eriksen et al., 2013a; McCormick et al., 2014).
Some of these microplastics will escape water treatment (Cheung
and Fok, 2016) and can be transported via rivers downstream
to estuaries and the marine environment (Moore et al., 2011;
Lechner et al., 2014; Lima et al., 2014; Rech et al., 2014). In Brazil,
the highest amount of microplastics was observed during the late
rainy season, when the environment is under influence of the
highest river flow, which induces the runoff of plastic fragments
to the lower estuary (Lima et al., 2014). Microplastic fibers can
even be deposited by atmospheric fallout (Dris et al., 2016).

A large proportion of plastics normally float on the surface
being less dense than seawater, however the buoyancy and density
of plastics depend on polymer type and may change during
their residence at sea due to weathering and biofouling and
therefore spread across surface, water column and sediments (Ye
and Andrady, 1991; Morishige et al., 2007). Recent studies have
demonstrated that pollution of microplastics, particles <5mm,
has spread at the surface of oceans, in the water column and
in sediments, even in the deep sea (Woodall et al., 2014).
Concentrations at the water surface range from thousands to
hundred thousand of particles km−2. Because of their size
microplastics are available to a broad range of organisms and
have already been shown to be ingested by several species (Cole
et al., 2011). The ingestion of microplastics by species at the
base of the food web causes human food safety concerns as little
is known about their effects and transfer across trophic levels
(Vethaak and Leslie, 2016). Moreover, plastics can leach toxic
additives and accumulate persistent organic pollutants (POPs)
while residing in the marine environment. Some of these POPs
are known to have endocrine disruptive and carcinogenic effects
(Rios Mendoza and Jones, 2015). Furthermore, plastic particles
create habitats for micro-organisms and other species, allowing
potential invasive species to transfer to new areas of the ocean
(Gregory, 2009; Keswani et al., 2016).

International attention is focusing more and more on the
problem of marine litter, including microplastics. In Europe,
marine litter and microplastics are included in the Marine
Strategy Framework Directive (MSFD), specific information in
relation to trends in the amount, distribution and, where possible,
composition of micro-particles (in particular microplastics) is
requested (criterion 10.1.3 of the MSFD; Galgani et al., 2013).
There are several other actions and measures directly related to
microplastics and their sources e.g., microbead bans and thus
baseline studies are urgently needed to produce appropriate
regional baselines to monitor future amounts of microplastics
and follow progress of action plans and where required assess
potential impacts on the marine environment (Galgani et al.,
2014).

This study presents the outcomes of two baseline studies,
looking at microplastics in sediments of the Southern North Sea
and floating at the water surface in seas of North West Europe.
Samples from the surface layers of the North Sea, Irish Sea,
Celtic Sea, and Channel Area were analyzed and compared with

sediment samples in approximately the same region. Even though
sampling locations do not overlap exactly in terms of spatio-
temporal scale, it is the first study in the North Sea region in
which results from both matrices are compared. Since sediment
is thought to be a sink (Morét-Ferguson et al., 2010; Foekema
et al., 2013; Van Cauwenberghe et al., 2013; Cózar et al., 2014)
for microplastics, research on the occurrence and relationship
between floating and deposited microplastics is paramount in
understanding the physical processes acting on plastic particles
and predicting hotspots for monitoring and clean-up (Gago et al.,
2016).

MATERIALS AND METHODS

Sediment
Sampling took place on the Dutch continental shelf in 2014; on
the Belgian continental shelf in 2013 and 2014; in the North Sea
and English Channel area of the UK in 2013 and 2014 (Figure 1);
and in the French part of the English Channel in 2014. In total,
27 locations were sampled (Table 1). The sample size differed per
country; the UK had the smallest number of sampling stations
(4 stations), whereas the Netherlands had the highest number of
stations (11 stations).

Sediment samples were collected from shallow (wadable)
locations using a scoop (FR) and from deeper locations with
a van Veen grab (NL, BE, UK). At those deeper locations,
three sediment grabs were taken from which the upper 5
cm layer of sediment was collected and pooled into one
sample. Samples were collected in 1l glass jars with plastic
lids and cooled (4◦C). Any visible biota was removed. Upon
arrival on shore, samples were frozen at −20◦C until further
analysis.

Samples were analyzed by the Institute for Environmental
Studies (Amsterdam, the Netherlands). Sediment samples
were thawed and homogenized, subsamples were taken for
microplastic analysis and determination of dry weight. To extract
microplastics from sediments, a modified method of Thompson
et al. (2004) was followed. The sediment (25 g) was added to
an Erlenmeyer with MilliQ water and a saturated NaCl solution
(1.2 kg/L). The suspension was stirred for 2 min using a Teflon
stirrer at the bottom of the Erlenmeyer flask. This allowed the
sample material to suspend and enabled density separation of the
sediment and particle material. Post-stirring, the suspension was
left for 1 h, allowing the heavier sediment particles to sink while
the lighter particles start to float on the saturated salt solution.
The suspension was filtered over a 0.7µm Whatman GF/C
glass filter, followed by a rinsing step with hydrogen peroxide
(30%) to remove any residual organic material. Alongside each
batch of samples, two blanks, and two duplicate analyses were
performed. The filters were examined using light microscopy
and measured the length of the particles with MicroCamLab
for Microsoft. Microplastics were counted and corrected for
background levels determined by the blank samples. The dry
weight of the sediments was determined gravimetrically after
freeze-drying a 5 g subsample of the homogenized sample until a
constant weight was observed. Microplastic concentrations were
expressed as number of particles per kg of dry sediment and
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FIGURE 1 | Visual representation of amounts of microplastic particles found per location/kg dry weight sediment.

sorted into three categories “fibers/kg DW,” “spheres/kg DW,”
and “fragments/kg DW.”

Sediment organic matter or total organic carbon (TOC) on
the upper layer sediment was measured using the “dichromate
method” (Mebius, 1960). Carbonate content was measured on
the same sediment fraction as “loss on ignition” (Dean, 1974).
Grain size distribution was calculated using laser diffraction
particle sizing. All samples were analyzed by means of a Malvern
Mastersizer 2000G hydro version 5.40 (ISO 13320:2009)1. Grain
size fractions were determined as volume percentages according
to the Wentworth scale (Wentworth, 1922): clay (<4µm), silt
(4–63µm), very fine sand (63–125µm), fine sand (125–250µm),
medium sand (250–500µm), coarse sand (500–1000µm), very
coarse sand (1–2 mm), and gravel (>2 mm). Throughout this
study, the clay and silt fractions have been combined as clay/silt
(<63microns).

Sea Surface
Floating microplastic sampling was carried out during existing
fisheries surveys in the UK Channel, North, and Celtic Sea
area from January to March 2011 (Figure 5). Samples were
collected from surface waters in between fisheries stations using
a high-speed manta trawl with a rectangular opening 50 cm
high by 15.5 cm wide, and a 4.5m long 333µm net with a
30 × 10 cm cylindrical collecting bag. Collection took place
in winter time, when low biomass facilitated sampling, during

1https://www.iso.org/standard/44929.html

the following three Cefas cruises: Cend3/11, Cend4/11, and
Cend5/11 (Table 3). In the Atlantic Ocean the water flow is
predominantly from west to east driven by the northern and
southern branches of the North Atlantic Drift. In the shelf areas
currents are predominately generated by tides and wind, but the
main water flow is from south to north (Pollard et al., 1996). The
sea state on the Beaufort Scale remained between 1 and 3 for all
sample sites. Water surface samples were only collected during
calm sea conditions with wave heights below 50 cm.

The sampled transects were not equidistant, but sampling
periods were each 60 min long. Coordinates of start and stop
positions were registered, along with the number of rotations
of the flow meter inside the lower part of the mouth of
the manta trawl. The area sampled was calculated firstly by
calculating the distance between start and stop coordinates and
secondly by using the onboard knotmeter, which takes into
account the ground speed and measures the number of nautical
miles traveled over a defined distance, to measure the actual
length of sea surface trawled in the 60-min period. These tow
lengths multiplied by the width of the trawl mouth provided
the area sampled, allowing for the particle abundance per square
kilometer to be calculated in two different ways. Next to this,
we also calculated the total number of particles by volume
sampled as indicated by the flowmeter. The lower part of
the manta trawl opening was fitted with a GO environmental
flowmeter (http://cce.lternet.edu/docs/data/methods/M2-1314e
%20Mechanical%20flowmeter.pdf) with a standard speed rotor
constant of 26,873 and 1 rotor revolution equaling 10 counts.
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TABLE 1 | Overview of sampling details and number of microplastic particles at each location.

Location

number

Country Location name IVM LIMS code Latitude Longitude Sampling year Total MPs/kg dry weight

sediment

1 BE MIC 1 14/0030 51◦17.944 002◦50.004 2013 252

2 BE MIC 1 14/0031 51◦17.944 002◦50.004 2013 110

3 BE MIC 3 14/0032 51◦26.400 002◦35.500 2013 54

4 BE MIC 1 14/0562 51◦17.944 002◦50.004 2014 59

5 BE WO2 14/0563 2014 330

6 BE 830 14/0564 51◦42.54 2◦27.03 2014 146

7 BE OO harbor 14/0565 51◦14.277 2◦54.415 2014 3,146

8 UK CSEMP475 14/0014 52.00 2.33 2013 0

9 UK CSEMP536 14/0015 50.43 −3.12 2013 348

10 UK CSEMP484 14/0016 50.97 1.03 2013 643

11 UK CSEMP466 14/0017 51.50 1.00 2013 233

12 NL NOORDWK70 14/1180 052◦34′10.00′′ 003◦31′53.00′′ 2014 96

13 NL NOORDWK20 14/1179 052◦20′30.00′′ 004◦10′30.00′′ 2014 418

14 NL NOORDWK10 14/1178 052◦18′08.00′′ 004◦18′09.00′′ 2014 301

15 NL NOORDWK2 14/1177 052◦15′41.00′′ 004◦24′22.00′′ 2014 109

16 NL GOERE2 14/1174 051◦50′49.00′′ 003◦50′05.00′′ 2014 0

17 NL SCHOUWN10 14/1173 51,950 2,667 2014 176

18 NL WALCRN70 14/1172 051◦57′25.00′′ 002◦40′45.00′′ 2014 225

19 NL WALCRN20 14/1171 051◦39′31.00′′ 003◦13′14.00′′ 2014 0

20 NL WALCRN2 14/1170 051◦32′56.00′′ 003◦24′39.00′′ 2014 62

21 NL LOSWLN 14/1175 2014 499

22 NL TERHEIJ2 14/1176 52,052 4,160 2014 561

23 FR BR 3 14/0525 N 48◦37′47.56 O 003◦50′51.79 2014 194

24 FR BR 4 14/0526 N 48◦46′51.60 O 003◦00′46.69 2014 138

25 FR BR 5 14/0527 N 48◦30′09.19 O 002◦40′47.43 2014 140

26 FR BR 6 14/0528 N 48◦36′18.49 O 002◦01′51.08 2014 425

27 FR BR 7 14/0529 N 48◦40′02.14 O 001◦51′41.22 2014 1,509

The trawled distance in meters equals the count between
rotation numbers multiplied by 26,873 divided by 999,999.
Marks were made on the side of the high speed mantatrawl
to visually estimate the depth of the opening during transects.
The sample surface of the net is 15.5 by 50 cm but
for the majority of the duration of the transects the net
was only half submerged while operating as a result of
the repetitive wave oscillation. Based on these observations,
the net surface was calculated as 0.155 by 0.25 m. These
assumptions allowed us to calculate the measured volume in
cubic meters by multiplying the sample surface of the net in
meters by the trawled distance obtained by the calculations
above.

The manta net was rinsed from the outside with a hose
to concentrate the sample in the cod end. The cod end was
removed over a bucket, to prevent any spillage and the sample
was transferred into a large bowl. The cod end was inverted and
washed out from the outside using very little water. Leftovers
were gently removed by using a long metal spoon which was
rinsed into the bowl. Samples were put into a glass container
and preserved in 10% formalin. A yellow waterproof label with
the trawl number, date, and time was included in all containers.
The lids were covered with aluminum foil and the lids labeled

again with a waterproof marker from the outside of the sample
container.

In the laboratory, samples were rinsed with filtered, distilled
water and large floating plastic items were removed. The
remaining items were separated on sieves in six size classes
and stored in isopropyl alcohol. Size classes above 4.75 mm
were hand picked out the sieve and the smaller fractions
(>4.75) were sieved over five more sieves to retain ever smaller
fractions (0.355–0.499, 0.500–0.709, 0.710–0.999, 1.00–2.79,
2.800–4.749 mm). The fractions were removed by gentle
washing of the sieves and concentrated in Petri dishes. A
dissecting microscope was used to sort through the remaining
debris and organic material. Debris was sorted by category
(plastics, non-plastics, plankton, and miscellaneous) and plastics
were further categorized and counted (fragment, pellet, line,
film, and foam). These size classes were then sorted and
quantified into shape type (fragment, pellet, line, film, and
foam). The color of each piece of plastic was also recorded
(by size class) (BLACK/GRAY, BLUE/GREEN, BROWN/TAN,
ORANGE/PINK/RED, TRANSPARENT/TRANSLUCENT,
WHITE, YELLOW). Plastic, plankton, and plant material were
weighed, then oven dried at 65◦C for 24 h and weighed again.
The selection of sieve sizes, plastic shapes, and color categories
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was based on available literature and existing studies (Moore
et al., 2005, 2011; Eriksen et al., 2013b).

Data Analysis
The statistical analysis and strength of correlations in the
sediment microplastic data were calculated with a 2-tailed
Pearson Correlation in SPSS (version 22). We analyzed the
floating microplastic data and calculated the widths of CI
for different sample sizes using the R package. The graphical
representation of the sediment and floating data was produced
with Microsoft Excel (2010), except for the histograms which
were produced in R.

RESULTS

Sediment Samples
At all stations, apart from UK station (No. 74) and two Dutch
station (No. 16 and 19), microplastic particles were found in the
sediment. Both the highest and lowest number of microplastics
were found in samples from Belgium, respectively at location
3 with 54 particles/kg DW sediment and location 7 with 3,146
particles/kg DW sediment. The overall average amount found
across all areas was 421 particles/kg DW sediment. Remarkably,
no plastic fragments, only spheres and fibers were observed at any
of the locations. Furthermore, the amount of spheres/kg DW of
sediment was higher on average across all stations compared to
the amount of fibers.

The average amount of fibers/kg DWwas the lowest (99 fibers)
in the Dutch coastal sediment samples, whereas the highest
average amount of fibers/kg DW was found in coastal sediment
samples from Belgium (301 fibers). The sediment samples from
the French coast of the English Channel had the highest amount
of spheres/kg DW on average (350 spheres) while the Dutch
samples had the lowest (123 spheres) amount of spheres/kg
DW. In terms of the average number of total particles/kg DW,
the highest amounts were found in marine sediments collected
from coastal zones in Belgium (585 particles) and the lowest
amounts in coastal zones from the Netherlands (222 particles).
The average amounts of plastic particles/kg DW are in the same
order of magnitude between the different countries, indicating
that there are no marked differences between counties, however,
more samples are required to obtain a clearer picture. In terms of
percentage of dry weight of the sediment, samples from France

had the lowest level (55%), and samples from the Netherlands
had the highest level (76%). An overview of the results is given in
Table 2.

An indication of a relationship between the percentage Total
Organic Carbon (TOC) and the number of plastic particles/kg
dry sediment (R2 = 0.616, p = 0.001), signifies that there are
more plastic particles present with higher concentrations of TOC
in the sediment (Figure 2).

In all samples, an indication of a negative relationship
between the median grain size of the sediment and the number

FIGURE 2 | Relationship between Total Organic Carbon (TOC) and the

total plastics amount found.

FIGURE 3 | Median size of the sediment grains (inµm) in relation to the

total amount of particles found per location/kg dry weight.

TABLE 2 | Average amounts of microplastics found per country in terms of number of samples, average fibers/kg dry weight sediment, average

spheres/kg dry weight sediment, average fragments/kg dry weight sediment, average total particles, dry weight (% of wet weight), average median grain

size of the sediment.

Country Number of

stations samples

Average fibers/kg

dry weight

Average spheres/kg

dry weight

Average

fragments/kg

dry weight

Average total

particles

Dw (% of ww) Average median

grain size (µm)

Belgium 7 301 (445) 283 (695) 0 585 (1,114) 69 (21) 245 (140)

France 5 131 (154) 350 (471) 0 481 (587) 55 (13) 62 (45)

Netherlands 11 99 (110) 123 (136) 0 222 (198) 76 (3) 291 (98)

UK 4 121 (144) 185 (150) 0 306 (267) 70 (13) 260 (194)

Values between brackets represent standard deviations.
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FIGURE 4 | Dry Weight (as % of wet weight) in relation to the total

amount of particles found per location/kg dry weight.

TABLE 3 | Selected surveys for manta trawl sampling.

Time Cruise name Cruise type No. of stations

greater north Sea

No. of stations

celtic Sea

Feb-11 Cend 3/11 Nutrient 15 9

Mar-11 Cend 4/11 Fisheries 0 48

Mar-11 Cend 5/11 Fisheries 65 15

of microplastic items was found (R2 = −0.492, p = 0.009),
signifying that at locations with a smaller grain size, more plastic
particles can be found (Figure 3).

The microplastics particles make up a certain fraction in
weight of the sediment. Here, the dry weight (DW) of the
sediment was determined as a percentage of the wet weight.
Similarly, an indication of a negative relationship can be found
between DW and the total number of microplastics present
(R2 = −0.796, p = 0.000), indicating that at locations with a
lower DW, more plastic particles can be found (Figure 4).

Water Samples
A total of 3,597 items were collected from 152 manta trawl
transects in the Channel, North, and Celtic Sea with vessels
speeds between 1.6 and 8.2 knots (Table 3). We were not able
to sample the North-East part of the Channel and parts of the
North Sea due to adverse weather conditions in 2011, leading to
rough seas, complicating the sampling bymanta trawl (Figure 5).
Nevertheless, on almost all sampled locations, litter items were
found, indicating a general presence of plastic items floating at
the sea surface of both the North Sea and Celtic Sea.

Geographical variations in microplastic abundance at the sea
surface were observed (Figure 6). The different type of distance
measurements available, allowed us to calculate the number of
plastic items in a few different ways. We calculated the number of
items present per trawled surface area and per volume (Table 4).

From the three applied methods to measure distance, the
flowmeter results were significantly different from the others
(p < 0.005). Abundance ranged from 0 to 185,000 items per km2

using the distance between coordinates, 0 to 157,000 items per
km2 when using the actual distance covered by the ship and

0–376,000 items per km2 when using the distance as measured
by the flow meter. Expressed as items per m3, this equals to 0–
0.7 items per m3 for the coordinates method, 0–0.6 items per m3

using the knotmeter and 0–1.5 items per m3 using the flowmeter
readings.

The size class 1.00–2.79 mm accounted for the highest
proportion of microplastics. In terms of shapes, the most
abundant types found were fragments (63%), followed by thin
film (14%), pellets (10%), foam (8%), line (5%). The most
prominent color was white (33%), but also transparent (29%) and
black (19%) The highest catch contained 283 items consisting out
of 128 fragments, 28 pellets, 28 pieces of lines, 50 thin films, and
49 foamy items.

Our study did report wind data and indicates average wind
speeds of 12.5 mph which only allows for a low amount of mixing
(Kukulka et al., 2012). No correlation between themeasured wind
speed and the observed concentrations was found (R=−0.1497;
Figure 7).

We have calculated the widths of the confidence intervals (CI)
for different sample sizes so that the mean can be estimated
with a certain precision of its value, giving a first indication
of the necessary sample size for a microplastic survey at the
water surface. From our 152 transects, only two returned with
no microplastics. A histogram of the non-zero observations and
the natural log of these values is shown in Figure 7. From this
it seems reasonable to assume that the non-zero data follows
an approximate lognormal distribution (i.e., that the natural log
of the data is Gaussian). Thus, we modeled the data as a two-
stage process. Firstly, we assumed that a proportion p (where
p is estimated by 2/152 = 0.01316) of observations are zero
and that the remaining data follows a lognormal distribution.
N observations were simulated from this distribution and the
width of the bootstrap 95% percentile confidence interval (using
1,000 replications) was calculated. The values of N were 20, 40,
60, 80, 100, 120, 140, 160, 180, 200. This whole process was
repeated 500 times and a mean width was determined for each
value of N. A plot of these mean widths against N is shown in the
bottom left plot of Figure 7. This width represents the precision
with which we have calculated the mean number of items per
km2. From the original data, the original mean was 19,237 items
per km2. Thus, with a sample size of n = 200, we achieve a
confidence interval of width (8,000), almost 40% of this mean
(Figure 8). Future monitoring programmes for microplastics at
the sea surface in coastal waters of North West Europe should
thus have a minimum of 200 stations so that the mean can be
estimated with a precision of 40% of its value.

DISCUSSION

Microplastics in the Sediment
Microplastics particles were found in 89% of the sediments (24
out of 27) collected from locations in the North Sea and Channel
area between BE, NL, FR, and the UK. No plastic fragments were
found, most observed plastic particles were spheres, followed
by fibers. In the sublittoral zone of the Belgian Continental
Shelf, part of the North Sea, an average concentration of 97.2
microplastics particles/kg dry sediment was found (Claessens
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FIGURE 5 | Spatial overview of manta trawl stations (left) and microplastic concentrations (right).

FIGURE 6 | Floating marine litter concentrations along the European coasts, including a table with mean, median, and maximum values.

et al., 2011), lower than the findings in our study. In harbors,
however, both studies found markedly higher amounts of
microplastics compared with other locations (Claessens et al.,
2011). The different amounts of microplastic particles reported
by studies in nearby locations (Table 5) might be an indication
of the heterogeneous nature of microplastics presence in marine
sediments, temporal changes, and/or result from differences in

the analysis (Filella, 2015), we filtered over a smaller pore size
filter. Apart from the harbor station (nr. 7), results are still in the
same order of magnitude and might thus give an indication for
the accumulation rate of microplastics at those sites. Results from
a tidal flat in Germany showed concentrations ranging between
36 and 136 microplastics per 10 g of sediment (Liebezeit and
Dubaish, 2012), a result which falls within a similar range of
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TABLE 4 | Number of microplastics per surface area and per volume using different types of observations.

Station Abundance lat/long

(items/m2)

Abundance knotmeter

(items/m2)

Abundance flowmeter

(items/m2)

Concentrations

lat/long (items/m2)

Concentrations

knotmeter (items/m2)

Concentrations

flowmeter (items/m2)

MICROPLASTICS

AVG 0.023360 0.019237 0.036623 0.093439 0.076947 0.146494

STDEV 0.029278 0.022878 0.045556 0.117114 0.091512 0.182225

MEDIAN 0.013146 0.011881 0.023183 0.052586 0.047525 0.092732

MIN 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

MAX 0.184727 0.156624 0.375854 0.738907 0.626498 1.503417

Lat/long, distance calculated based on coordinates; knotmeter, distance based on onboard equipment measuring speed; flowmeter, distance based on number of rotations.

FIGURE 7 | The concentration of microplastics on the water surface compared with the wind speed.

our highest observations. In the sampled regions, however, due
to the regular disturbance of the sediments by natural events
such as storms (Carretero et al., 1998) and/or anthropogenic
activities such as trawling and dredging (Schratzberger and
Jennings, 2002; Allen and Clarke, 2007), the upper sediment layer
is regularly mixed, making it difficult to link sedimentation rates
with temporal microplastics accumulation (Van Cauwenberghe
et al., 2013).

There is a large spread of values around the average, indicating
a heterogeneous spread of microplastics in sea floor sediments.
This inhomogeneity could mean that there are areas where
microplastics settle in higher amounts. In the present study,
we investigated if a correlation between sediment characteristics
and microplastic abundance exists. Our research indicates a
relationship between the amount of organic carbon and the
amount of microplastics present in the sediment. This finding
is supported by a Danish study (Strand et al., 2013) who found
a correlation between the content of microplastics in marine
sediments and %TOC. Although further research is required,
similarities in densities and resulting sedimentation processes
might be driving this correlation, %TOC could help to identify

potential areas with high microplastic concentrations. From
our findings, it seems sensible for future monitoring to target
undisturbed patches of fine sediments.

Microplastics at the Sea Surface
The ubiquity of small floating litter items in the UK Channel,
North and Celtic Sea is prominently illustrated in this study
by the presence of microplastics in all samples except two. The
abundance of microplastics appears to be still relatively low
in surface waters of the North Sea and Celtic Sea compared
to other regions e.g., Pacific gyre. We observed some higher
concentrations of microplastics near the coast and river estuaries.
This might indicate the relative importance of inputs through
rivers (Cheung et al., 2016) or could be a result of higher inputs
from industrialized and populated areas nearby (Browne et al.,
2011; Naidoo et al., 2015). Nevertheless, plastic particles were also
commonly found at the sea surface of the North and Celtic Sea
far away from land or potential sources. This could be a result
of atmospheric deposition of microplastics (Dris et al., 2016).
Microplastic abundance at the sea surface has been shown to vary
with wind speed due to vertical mixing (Kukulka et al., 2012;
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FIGURE 8 | Histograms of non-zero and ln non-zero data (top row),

confidence interval widths (bottom row).

TABLE 5 | Comparison between microplastic numbers at the same

stations between Claessens et al. (2011) and the findings in this study.

Claessens et al., 2011 This study

Station S5 MIC 1

Result (particles/kg dry sediment) 98.2 2013: 110–280

2014: 59

Station S2 WO2

Result (particles/kg dry sediment) 115.8 330

Station OO4 Ooh

Result (particles/kg dry sediment) 109.2 3,146

Reisser et al., 2015). Data from the eastern North Pacific suggest
that the abundance of suspended plastic within 10–30m of the
sea surface averages two orders of magnitude less than that of
surface (Ryan et al., 2009). We found no correlation between
wind speed and microplastic concentrations.

The distances measured or calculated by different techniques
such as coordinates, knot meter and flow meter result in
large differences in reported microplastic concentrations. Our
maximum values of 157,000 particles km−2, calculated using
the distance given by the onboard instrumentation, are similar
to those reported on average in the Mediterranean (Collignon
et al., 2012), 116,000 particles km−2 and well below those
measured in the Pacific Gyre (Moore et al., 2001), who recorded
densities of more than 300,000 particles km−2 in 1999. However,
concentrations based on flowmeter data equaled maximum
concentrations of 375,854 particles km−2. This indicates the
need for standardized marine litter protocols, methodologies
and units worldwide. Internationally, various techniques, and
principles have been applied to sample and analyse floating
microplastics (Filella, 2015). Consequently, available studies have
been reporting marine litter abundance in diverse dimensions

TABLE 6 | Comparison of the current study results with results from

research in the same region (Morris and Hamilton, 1974; Lusher et al.,

2013; Cole et al., 2014; Frias et al., 2014; Mintenig, 2014).

Location Equipment Particles/m3 Sources

UK offshore waters Manta trawl 0.14 Current Study

Offshore, Ireland Underway sampling 2.46 Lusher et al., 2014

English Channel, UK Plankton net 0.27 Cole et al., 2014

Bristol Channel, UK Lowestoft Plankton

Sampler

0–100 Morris and

Hamilton, 1974

Portuguese coast Neuston net/CPR 0.02–0.036 Frias et al., 2014

North Sea Manta trawl 0–3.5 Mintenig, 2014

and scales, making direct comparisons extremely difficult, e.g.,
the number of microplastics by volume (particles/m3) or by
surface area (particles/km2), smaller or bigger than 5 mm,
analyzed with microscopes or spectroscopes (Galgani et al.,
2015).

We showed above that even within the same study, several
ways of expressing microplastic quantities can be used depending
on the initial calculation of trawled distance. Only using
coordinates could easily lead to errors as it doesn’t consider
ocean currents and factual sampling distance. When available,
using onboard instruments to precisely measure the vessels
groundspeed while sampling gives a more accurate estimate of
the trawled distance. The flow meter determines the distance
based on the water flow through the net. However, there
were significant differences between the first two methods and
the flowmeter method. The flow meter registered a smaller
distance than what was obtained by using coordinates or onboard
instrumentation. This could be due to the bow wave effect
which has been previously observed when trawling nets at high
speeds or a result of the chopping through waves (Chiang
et al., 2011), meaning that a far lower volume will be filtered
by the manta net compared to what one could calculate from
less direct measurements such as coordinates and ship speed.
Microplastics are vertically distributed within the upper water
column due to wind and temperature driven mixing (Kukulka
et al., 2012, 2016). This suggests that microplastic concentrations
could be significantly underestimated by traditional surface
measurements. To allow for comparison, it is therefore
recommended to sample in comparable conditions of calm sea
state with low wind and wave intensity. The authors also propose
to use flow meters and to report both units, items per km2 and
items per m3, in future microplastic studies at the sea surface.

We listed microplastic concentrations from within the same
geographical area, using comparable equipment for sampling
microplastics (Table 6). Our average value, 0.14 items per m3 and
maximum value of 1.5 items per m3, based on the flow meter
data, is comparable to previous microplastic studies with manta
nets in this region.

Comparison Water and Sediment Matrices
Our results indicated that sediments were more contaminated
with microplastics, by number of items per volume, than surface
waters. The transport of small particles to the seafloor and
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their deposition in the benthic sediments is facilitated by the
colonization of the material by fouling organisms, which increase
the density of the particles and force them to sink (Andrady,
2015). Plastics degrade very slowly resulting in high persistence
of plastic litter especially at the seafloor (Andrady, 2015). Several
microplastics of a few micron were found in marine sediments
with a rapid-screening approach based on fluorescent tagging
with Nile Red, highlighting the role of marine sediments as a sink
(Maes et al., 2017). In our study, most of the microplastics found
in the sediments were fibers and spheres, with spheres having
the highest average amount/kg sediment. This is in contrast
with the findings from the floating microplastics were mainly
fragments were found. It seems that for the floating microplastic
particles there is a potential influence from rivers. Rivers are both
pathways and producers of microplastics (Thiel et al., 2011; Rech
et al., 2014). A study on microplastics in European rivers indeed
found that fragments (Po and Rhine) and fibers (Danube and
Dalålven) were the largest part of the microplastics found (van
der Wal et al., 2015). Plastic fragments are breakdown products
of larger plastic items via mechanical and/or UV-weathering
(Barnes et al., 2009), which occurs when exposed to the sun, wind
and other mechanical stresses such as found in a river. Similarly,
we observed thousands of fragments in the floating fraction in
our study.

The fact that there are mostly spheres and fibers found in the
sediments is not so surprising, many spheres and fibers are made
from polystyrene and polyacrylamides which are often heavier
then seawater and thus readily sink (Cheung and Fok, 2016).
The shape of the particle and fiber could influence its settling
velocity, however, few studies have been published on this topic.
The high amounts of fibers in the sediments, could be a result of
the degradation of fishing nets and dolly rope while dragging over
the seafloor (Devriese et al., 2015), from the continuous input via
sewage and laundry (Browne et al., 2011) or via the disposal of
sewage sludge and dredged sediments (Browne et al., 2011). Also
Brown shrimp, collected from the same study area, contained
mainly fibers (Devriese et al., 2015). It is much more challenging
to define the main sources of microplastics in sediment due to
the wide variety of potential pathways (Andrady, 2015), including
atmospheric depositions (Dris et al., 2016).

Due to wind and currents, floating microplastics are more
mobile compared to those found in sediments (Kukulka et al.,
2012), which act as a stable sink (Woodall et al., 2014). In this
study, microplastic concentrations in different surface transects
varied between a few tens to a few thousands. Due to this
variability, large sample sizes, above 200 stations, are required
to ensure that the mean can be estimated with a precision of
40% of its value. North West European seas in the North-
East Atlantic are periodically impacted by geologically significant
storms, which have a marked influence on water circulation
but also affect terrigenous sediment supply, flood deposition,
and long-term accumulation of fine-grained sediment on the
continental shelf (Green et al., 1995). Also, fisheries activities
disturb the sediment and homogenize the upper sediment layers
by trawling (Schratzberger and Jennings, 2002). So far, there are
no studies considering the impact of these physical processes
on microplastic distribution in water or sediment samples. Our

results indicated that the number of microplastics in sediment
samples were less variable, especially at locations with high
%TOC, in comparison to those found at the sea surface. To look
at temporal trends, it seems sensible for future monitoring to
target undisturbed patches of fine sediments with high %TOC.
Such monitoring could be combined with the monitoring of
hazardous substances, since these surveys are well established
and targeting fine sediments (<64microns) tomonitor persistent
organic pollutants (Davies et al., 2012).

Monitoring of Microplastics
This study is one of the first to determine baseline values
for microplastics in North West European seas. Based on our
findings, we see a potential for microplastics monitoring in
combination with existing environmental surveys. Standardized
methods resulted in a comparable outcome between the project
partners of the Interreg 2 Seas MICRO IVa project (van
der Meulen et al., 2015). The standardization of methods
for collecting, processing, and analysis of samples is required
to achieve comparable outcomes within one region. When
counting microplastics, different types of equipment like regular
microscopy or spectroscopy can be applied, causing under or
over estimations which possibly influence the final numbers
(Löder and Gerdts, 2015). To monitor and compare spatial
and temporal trends of microplastics, simple, cost-effective and
standardized protocols, capable of efficiently and accurately
sampling, and enumerating microplastics in a variety of
environmental matrices are recommended (Maes et al., 2017;
Underwood et al., 2017). Without this it will remain impossible
to make direct comparisons among studies and habitats, because
such comparisons could be confounded with methods used
(Underwood et al., 2017).

The results of this study demonstrate that microplastics were
present at the sea surface and in sediments of the UK Channel,
North Sea and Celtic Sea. Different shapes and types of plastics
were found in both matrices. Monitoring of both matrices had
certain advantages and disadvantages which must be considered
when designing future monitoring programmes. Microplastic
monitoring in sediments can easily be combined with existing
contaminant surveys sampling fine sediments. Water column
and sea surface monitoring might be more appropriate for
determining effect concentrations for certain marine biota.
Because the concentrations of microplastics in the water are
lower and the variability is higher than in sediments, more
water must be sampled to achieve a comparable sample size to
sediments or other seafloor indicators. We recommend to install
a flow meter near the lower edge of the manta net frame to give
additional information on the number of items per cubic meter.

Areas with high concentrations of floating microplastics were
found in the estuarine and coastal areas. For the sediment,
we observed high concentrations of microplastics in estuarine
areas and in organic sediments, supported by the correlation
with high total organic carbon content. Hotspot areas are thus
likely situated in areas with fine muds since these generally
contain high concentrations of organic materials and are made
up of smaller grain sizes. The settling of microplastics might be
following similar sedimentation processes as those observed in
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fine sediments. A previous study of microplastics in the deep sea
suggested that aggregation of microplastics with organic matter,
such as marine snow and fecal pellets of marine organisms, could
play a role in the sinking processes (Van Cauwenberghe et al.,
2013). This also indicates that benthic organisms burrowing and
feeding in muddy environments, are likely exposed to higher
concentrations of microplastics than benthic organisms in areas
with a larger grain size and lower TOC. Pooled sampling,
repeated over time, is advisable to determine trends while
minimizing spatial heterogeneity. Determination of sediment
characteristics will enlarge our understanding of underlying
sedimentation processes and could help with the identification of
potential microplastic hotspots. We suggest that future programs
of monitoring continue to distinguish the type of microplastic
particles as well as the sampled size fractions, and we advise to
monitor microplastics in sediments with standard mesh sizes and
equipment such as the van Veen grab to allow future spatio-
temporal comparison of microplastic abundance across wider
marine environments.

CONCLUSIONS

This study presents a baseline for the monitoring of microplastic
in coastal sediments and surface waters of North West European
seas. Floating concentrations ranged between zero and 1.5
microplastic per m3, whereas microplastic concrentrations in
sediments ranged between zero and a few thousands per kg
dw sediment. In sediments, mainly fibers and spheres were
found, whereas at the sea surface fragments were dominant. For
the water phase concentrations of microplastics are lower and
more variable than in sediments, meaning that larger sampled
water volumes are required to find detectable concentrations.

Future monitoring programmes for microplastics at the sea
surface in coastal waters of North West Europe should have a
minimum of 200 stations to estimate the mean with a precision of
40% of its value. Standardization of monitoring methods within
OSPAR and EU is recommended to aid in the implementation of
the MSFD and the assessment of the microplastics pollution
of Northern European waters over time. High concentrations
of microplastics in the water can be found in estuaries. For
sediments, estuaries and areas with a high organic carbon content
are likely hotspots.
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