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MODIS Algorithms for Monitoring
Chlorophyll-a in Coastal Waters
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Raphael Kudela?

" Coastal and Freshwater Group, Cawthron Institute, Nelson, New Zealand, ? Kudela Lab, Department of Ocean Sciences,
University of California, Santa Cruz, Santa Cruz, CA, United States

Monitoring of the phytoplankton pigment chlorophyll-a is often used as an indicator of
eutrophication in coastal waters. Improved water quality monitoring using data sourced
from MODIS (Moderate Resolution Imaging Spectroradiometer)-sourced data allows for
infrequently sampled sites to be interrogated for long-term trends. Despite the wide
availability and good spatial and temporal coverage of MODIS data, these data have had
little use in operational coastal monitoring of chlorophyll-a in New Zealand. This is in part
due to the poor performance of global oceanic algorithms applied in the coastal waters.
Accessible algorithm tuning methods that can be validated by in situ measurements may
assist the uptake of satellite data for coastal monitoring. This study presents results from
regional tuning and validation of two empirical algorithm approaches, including a new
simple exponential model, to estimate chlorophyll-a for two coastal locations in New
Zealand. A novel method of training chlorophyll-a models using smoothed in situ data
to match spatial scales of satellite observations was applied, and shows promise for
improving tuned model performance. This approach shows potential for lowering barriers
for researchers and coastal managers wishing to make use of the growing satellite data
resource in their coastal environments.

Keywords: remote sensing, satellite, biological oceanography, New Zealand, water quality

INTRODUCTION

Chlorophyll-a (chl-a) concentrations provide a valuable measure of phytoplankton biomass in
the marine environment. Phytoplankton biomass can provide an indicator of trophic state in
marine systems due to an association with anthropogenic nutrient pressures (Smith et al., 1999).
Consequently chl-a is commonly monitored, particularly in coastal marine environments, as part
of a wider suite of indicators (Bricker et al., 2003; Giovanardi and Vollenweider, 2004). However,
field monitoring and analysis of chl-a is a resource-intensive process which may limit the temporal
and spatial coverage of monitoring by relevant authorities.

A traditional way of monitoring chl-a in aquatic systems involves field analysis of in situ chl-a
fluorescence. For logistical reasons, field sampling is often unable to match the spatial and temporal
scale of variability in phytoplankton biomass. Since the launch of ocean-color sensors such as
the Coastal Zone Color Scanner (CZCS) in the 1970s, multispectral and hyperspectral satellite
remote sensing data are routinely processed to estimate oceanic water chl-a concentrations. Many
satellite sensors are currently available to monitor chl-a, making them potentially useful tools for
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management, but the use of the data in coastal waters requires
local calibration and validation (IOCCG, 2000).

The rewards from successful satellite algorithm development
for coastal waters are high. For example the MODIS (Moderate
Resolution Imaging Spectroradiometer) Aqua and Terra satellite
datasets have been collected daily from 1999, with some of
these data easily viewable through webtools such as Worldview
(https://worldview.earthdata.nasa.gov/) and  CawthronEye
(http://www.cawthron.org.nz/apps/cawthroneye). Consequently
there is the potential to access over a decade of twice daily surface
data at a spatial resolution of about 1 km?. As well as the MODIS
datasets, there are several other accessible satellite datasets. The
MERIS (MEdium Resolution Imaging Spectrometer) instrument
offered additional insights due to a greater number of spectral
bands, and provides a template for the Ocean Land Color Imager
(OLCI) launched on Sentinel-3. However, MERIS is not currently
operational and so it has limited opportunities for calibration
to contemporary datasets. Similarly the LandSat satellites also
offer high spatial resolution (30 m), but have a limited number
of relevant spectral bands for aquatic research and only a 16-day
temporal resolution. Consequently we selected MODIS satellite
data for use in this study.

In order to quantify radiance across many spectral bands,
the receiving satellite sensor relies on sunlight penetrating the
atmosphere and the surface ocean water. The incident light
will be affected by various factors in the water that interfere
and change the intensity of light of different wavelengths that
arrive at the satellite sensor. These factors include absorbance
by waterborne constituents and atmospheric aerosols and can
include other factors such as ocean surface waves or bottom
reflectance. It is these spectral modifications that can affect the
estimation of properties, such as chl-a concentrations in surface
waters.

Accurate estimation of chl-a concentration, from satellite-
sensed data cannot be tested and validated without substantial
field datasets, which equates to a large effort for an unknown
result. This is particularly true for chl-a in optically complex
coastal waters. The common issue to overcome is the overlap
in the spectral response with other water constituents such
as colored dissolved organic matter (CDOM; IOCCG, 2000).
Internationally, freely accessible satellite-derived chl-a data in
coastal waters are increasingly being used with newly developed
algorithms. However, little application of satellite data to New
Zealand coastal waters has occurred, with only a limited number
of studies undertaken for coastal monitoring (Jones et al., 2013).
We suspect the limited uptake may be associated with the risk
of unsuccessful results and lack of access to tools and advice to
assist with calibration of satellite data algorithms for estimating
chl-a in coastal waters. Indeed a recent survey study by Schaeffer
et al. (2013) identified a number of factors that limit the use of
satellite data globally.

Many algorithms have been developed for estimating chl-a
from MODIS and SeaWiFS (Sea viewing Wide Field-of-view
Sensor) data, ranging from empirical to more physically realistic
“semi-empirical” algorithm approaches. Examples of commonly
used global empirical algorithms are: the OC3M algorithm
(Carder et al., 2004) for MODIS, the OC2 and OC4 algorithms

for SeaWiFS, and the OC4Me for MERIS (O’Reilly et al., 1998,
2000; Morel et al.,, 2007). These algorithms have been routinely
used to process satellite images for oceanic (referred to here
as Case 1) waters (IOCCG, 2000), where phytoplankton and
their derivatives predominantly determine the optical properties
(Morel, 1988). For most coastal and inland (Case 2) waters, where
sediments or dissolved yellow substance make an important or
dominant contribution to the optical properties (Morel, 1988),
the algorithms may fail to produce accurate estimates (Ruddick
etal., 2000; Moses et al., 2009). For more reliable estimates of chl-
a concentrations, the application of algorithms to Case 2 waters
will need to be locally validated (Kahru et al., 2014).

The present study explores the potential usage of readily
accessible MODIS multispectral data for describing chl-a
variability in coastal waters of New Zealand at two locations
(Hawke Bay and Tasman Bay; Figure 1). The study relies on
long-term near surface data collected using morred sensors to
determine in situ conditions and to investigate the suitability
of these data for satellite algorithm development in New
Zealand.

Chlorophyll a concentration ( mg /m®)

[
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FIGURE 1 | The two New Zealand coastal regions (Tasman and Hawke
bays) that are the focus of the study are shown in the two southern
boxes with an additional Firth of Thames region (northern-most box)
which is discussed, but which is not analyzed in detail here. Mean
annual global chlorophyll-a concentrations from the Case 1 OC3M algorithm
are shown for 2012. Chlorophyll-a data were sourced at a spatial resolution of
4 km (level 3 data) from the Ocean Color website (https://oceancolor.gsfc.
nasa.gov/).
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MATERIALS AND METHODS

Satellite Data

The present study uses MODIS Aqua Level 2 (L2) data, which
can be downloaded on request from the OceanColor website
(NASA, 2013). Although MODIS Terra data products were
also available for this study, these were excluded from our
analysis due to identified issues with the data collected by this
instrument (Franz et al., 2007). MODIS Level 2 data products
have a spatial resolution of about 1 km? and are atmospherically
corrected using the standard Near-Infrared (NIR) algorithm
for oceanic (Case 1) waters (Gordon and Wang, 1994). For
turbid coastal waters, the water-leaving radiance in the near-
infrared bands is significantly greater than zero due to suspended
particles. Applying the default atmospheric correction algorithm
can therefore lead to over-correction of the reflectance and result
in negative values for some pixels. Alternative algorithms of
atmospheric correction of Case 2 waters can improve radiance
reflectance accuracy in turbid coastal waters. For example,
using the assumption of negligible water-leaving reflectance in
the near-infrared region of the spectrum (Bailey et al., 2010).
However, this procedure would require additional processing of
less refined Level 1 (L1) data (Aiken and Moore, 1997; Ruddick
et al., 2000; Wang and Shi, 2007). Because of aims of this study
to consider accessible methods that will improve accessibility of
data, additional atmospheric processing of L1 data has not been
undertaken for this study.

The L2 data quality was checked before use by inspection of
the provided quality flags for atmosphere, land, glint and cloud
(specific flags used were: ATMFAIL, LAND, HIGLINT, HILT,
CLDICE, CHLFAIL, and ATMWARN). Any flagged data were
excluded from future analysis and remaining remote sensing
reflectance data with negative values were excluded from the
subsequent analyses.

Level 2 processed data files were sourced from the OceanColor
website and also included chl-a estimates based on a global
OC3M algorithm (Carder et al., 2004; NASA, 2013). The global
OC3M chl-a algorithm (Default OC3M) was developed for
Case 1 waters and were used for comparison with locally
calibrated chl-a algorithms (Local OC3M) developed in this
study.

Field Data

Two locations around New Zealand, Tasman Bay and Hawke
Bay (Figure 1), were assessed using available water quality data.
Several sources of time-series data from moored sensors, and data
from discrete water sampling were used to locally calibrate and
assess the performance of satellite data algorithms.

In Tasman Bay, a 2 year dataset (April 2011 to March 2013)
was available through sensors attached to a moored monitoring
buoy named TASCAM (41.058°S 173.091°E, Figure2). The
TASCAM monitoring buoy contained a fluorescent chl-a sensor
(Weblabs Eco-FLNTUS), which uses a 470/695 nm excitation-
emission frequency to characterize the fluorescent signal with
a stated chl-a sensitivity of 0.025 mg/m>. Two chl-a sensors
were used over the 2 year deployment period. Both sensors were
initially calibrated at the factory (www.wetlabs.com) on the 2nd

41°81

173°30'E

FIGURE 2 | Map showing the location of the TASCAM (dot) monitoring
buoy in Tasman Bay and the Motueka River to the south-east of the
buoy. Bathymetric depth contours also shown (gray lines).

of August 2010 at an ambient temperature of 22.3°C and were
deployed from new to the TASCAM site. The second sensor
replaced the initial sensor deployment and was deployed in April
2012. Both sensors were deployed at a depth of 8 m and contained
an integrated copper anti-fouling Bio-wiper™ which was closed
when no measurements were being taken to prevent fouling.
Antifouling was used on the sensor housings, with in situ diver
cleaning occurring approximately every 3 months at the site. A
60 min sampling interval was used over the deployment period,
with a single fluorescent measurement reported.

Hawke Bay chl-a data was accessed from another moored
bouy, HAWQi (Hawke Bay water quality information), (39.386°S
176.949°E, Figure 3). This bouy was identical to TASCAM and
used the same chl-a sensor (i.e., a WETLabs Eco-FLNTUS with
an integrated anti-fouling Bio-wiper™). The chl-a sensor was
also deployed from new with factory calibration and cleaned
with approximately three-monthly visits to the site. A single
sensor at the HAWQI buoy was deployed at a depth of 5m.
Both 30 and 60 min sampling intervals were used over the
period December 2012-October 2013, with a single florescent
measurement reported. Field accuracy of the chl-a sensor was
checked by comparing in situ readings to Van Dorn collected
seawater samples from near to the sensor. Processing of in situ
samples for chl-a concentrations were obtained following the
procedures specified by Lorenzen (1967).

Chlorophyll-a sampling for the period 2002-2013 from a
number of other locations was also collated for Hawke Bay. These
data were collected by the Hawke’s Bay Regional Council using
individual laboratory-analyzed water samples (Figure 3). Due to
issues associated with a coarse temporal sampling scale of the
data and the proximity of the sampling sites to the coast, these
data were excluded from model training. The data were instead
used to assess the skill of the algorithm for different areas of the
bay to assess the applicability of the algorithm for wider use.
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FIGURE 3 | Moored data site of the Hawke Bay water quality
information monitoring buoy (HAWQi; +), and State of the Environment 30 ) ‘ ! ‘ )
(SOE; dots) water sampled sites (3—-18) used in this study. Bathymetric B -%%00 -2000 -1000 0 1000 2000 3000
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FIGURE 4 | Progressive vectors (light gray) showing estimated surface
. . advection length-scales over a 6 h periods at the TASCAM moorin
To ensure data from the moored sensors were compatible with - 9 periocs 9
5 K K R X site. Note the ellipse shows mean advection distances over 6 h and the thin
the 1 km*” resolution satellite data, temporal smoothing using black square shows the 1 km? resolution of satellite data used in the study.

a centered 6h window moving box mean was applied to both
the reported TASCAM and HAWQI buoy data. In the case of
the TASCAM data, this equated to a moving box window of
six data points. For the higher temporal resolution sampling in
the HAWQI time series (i.e., 30 min sampling), 12 data points
were averaged. The smoothing over a 6h time window was
undertaken to approximate the 1 km? scale of satellite estimates
by accounting for water moving past the moored sensor. The
chosen temporal widths equate to movement of 1km for an
average water movement speed of about 4.6 cm/s.

A 6 h time window for both the Tasman and Hawke bays’ buoy
data balanced the need for spatial smoothing, whilst ensuring
that the time period was not too long (i.e., greater than a day). It
was recognized that growth or grazing factors could significantly
influence the measurements if longer averaging periods were
used. Comparison with a progressive vector showed the 6h
window was appropriate for the Tasman Bay site (Figure 4).
Comparison to current data for the Hawke Bay site was not
possible due to a current meter failure at the site, but mean depth
averaged current speeds of 5.6 cm/s observed at a nearby site
(39.319°S, 177.090°E) over a 3 month period imply the selected
6 h window was appropriate (Cawthron unpublished data).

While it is more common to use stringent quasi-simultaneous
and spatially collocated match-ups (Gordon and Wang, 1994;
Moses et al., 2009; Kahru et al., 2014) to increase the availability of
data for comparison, those methods can end up excluding a large
fraction of the data for comparison. This can be due to issues such
as cloud cover and adjacency to land (Kahru et al., 2014). This
approach can also introduce some bias if large gradients exist
over small spatial scales (i.e., at or less than the satellite sensor
resolution) and there exists a risk that in situ measurements may
be matched to optically different water than was sampled (Moses
etal., 2009). Because moored sensors allow continuous sampling,

our approach aimed to reduce the variability that exists between
in situ point-scale measurements and 1 km? satellite retrievals.

In order to prepare in situ samples for the smoothed model
development, a nearest temporal match of the closest satellite
data product pixel was undertaken to the mean sample time.
Typically this time difference was <1 h between the observed chl-
a satellite remote sensing time and the smoothed sensor time. But
allowance was made for time differences of <3 h either side of a
satellite observation to increase the availability of data from the
model for construction and testing. This is consistent with time
differences from other studies (Gordon and Wang, 1994; Moses
et al.,, 2009; Kahru et al., 2014). As a check of the smoothed-
data approach, the single closest-time datum was also used to
train separate models for comparison. However, it is important
to note that each of the closest-time and smoothed models are
predicting different parameters, specifically point-in-time chl-a
and smoothed chl-a, respectively.

Models applied in the present study used two empirical
approaches for fitting satellite remote sensing reflectance
data to observed chl-a concentrations. These models were, a
linear model, based on the OC3M algorithm (hereafter: Local
OC3M), and a novel non-linear exponential model (hereafter:
Exponential) developed for this study.

The Local OC3M takes the form of:

log,,(chla) = ap + a1.R + @R + a3.R> + a4.R*

Where R = logjo(max(Rrs443, Rrs488)/Rrs555), and Rrs443,
Rrs488 and Rrs555 refer to remote sensing reflectance at the
wavebands centered on 443, 488, and 555 nm, respectively. Model
coefficients are defined as a0 to a4 in the equation.
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The model coefficients were fitted to both closest-time chl-a
and 6 h mean (smoothed) chl-a data and the corresponding
satellite remote sensing reflectance ratios (R) using the
generalized least-squares linear model fitting routine (glm) from
the R software package (R Core Team, 2014).

The remote sensing reflectance ratio, R, of the max(Rrs443,
Rrs488) to Rrs555 provides a ratio of light at the peak blue
(i.e., 443 nm) chl-a absorbance to a minimum chl-a absorbance
(555 nm). Unabsorbed light can be reflected, contributing to
the remote reflectance signal, therefore chl-a concentrations
are expected to decrease under increasing R (i.e., less 443 nm
light is absorbed and more is reflected, relative to 555 nm
light). However, phytoplankton specific absorbance is also known
to decrease non-linearly (through a power relationship) with
increasing chl-a (Bricaud et al., 1995). In order to capture this
non-linearity, a simple exponential model was also tested against
the data. This exponential model takes the form:

chla = ae™*S

where a and k are model coefficients and S = 10%. R is the
same as defined in the OC3M linear modeling approach, so S
= max(Rrs443, Rrs488)/Rrs555. In formulating S, we chose to
remove the logarithm from R, as it is redundant in an exponential
model. Furthermore, as S will always be positive (provided
negative Rrs values are removed) this insures that chl-a estimates
cannot be less than zero, which is a benefit over the OC 4th order
polynomial approach.

Coefficients for the Exponential model were fit to both the
closest-time chl-a and 6 h mean chl-a data and the corresponding
satellite remote sensing reflectance ratios (S). Model fitting was
undertaken using the non-linear least squares (nls) model fitting
routine from the R software package (R Core Team, 2014). In the
case of the Tasman Bay data, a limited range to the chl-a data
was observed over the sampling period (maximum chl-a = 2.76
mg/m?). This was a value that is lower than the observed range of
chl-a values in the region which have been noted to be up to about
10 mg/m3 (MacKenzie and Gillespie, 1986). As the coefficient, a4,
in the model provides a constraint on the maximum predictable
order to allow for model fitting to higher values in the case of
Tasman Bay a fixed value of 10 was also selected for the coefficient
a to allow prediction of maximum observed values.

For all model constructions, each dataset was split into two
parts, where two-thirds of the data were randomly selected
for model training and the remaining one-third was used for
evaluation of model performance (i.e., “test” data). Although the
initial derivation of the data split was random, the same division
of the data were used for both the closest-time and smoothed data
models to allow comparative performance to be assessed.

The accuracy of different models was assessed using several
measures used in other remote sensing (IOCCG, 2006; Moore
et al, 2009) and modeling studies (Zhang et al, 2010).
Calculation of the regression parameters for the observed vs.
derived data (i.e., slope and intercept), the deviance explained
(r square), the root mean square error (RMSE) and the average
absolute percentage error (¢) were reported for the smoothed

data, with a subset, deviance explained and RMSE only calculated
for closest match data.

The relevant calculations for RMSE and average absolute
percentage error (&) are specified here:

1
\/; Z [loglo(cm Aobserved) — loglo(Chl aderived)]z

e = l Z |Chl Aderived — chl aobservedl «
n chl agpserved

RMSE

100

where n is sample size.

Another measure, the relative central frequency (RCF), which
reports the proportion of percentage error that lies within £ 50%
of observed values, is also calculated (Zhang et al., 2010). All
analyses were conducted using the R software package (R Core
Team, 2014).

RESULTS

Results of model training to 6h averaged and closest-time
matchups are both presented here, along with their performance
information within their respective regions. Overview statistics
for the chl-a datasets from the two regions are presented in
Table 1.

Six-Hour Mean Models

Tasman Bay

After matching TASCAM chl-a data with the corresponding
satellite remote sensing reflectance data, a total of 394 data points
were available. The two models (Local OC3M and Exponential)
were then trained on the random two-thirds of the total dataset.
TASCAM chl-a data were used as the dependent variable and the
ratios of satellite remote sensing reflectance (R) as independent
variables. Table 2 provides the summary of the output of the two
models.

Validation using the remaining one-third of the data showed
that both locally fitted models performed better than the global
Case 1 OC3M (Default OC3M) model (Figure5). The two
local models displayed significant improvement over the global
OC3M algorithm in all performance measures used (Table 3).
For example, deviance explained increased from 0.09 for the
global algorithm to 0.49 and 0.52 for the local models. The RMSE
decreased from 0.71 for the global algorithm to ~0.22 and 0.24
for the local algorithms. The average percentage error decreased
significantly from 465% for the global algorithm, to 48 and ~56%
for the two local algorithms (Table 3).

Comparison of predicted chl-a with field data (Figure 6)
shows that, though the model can underestimate the peaks, it
generally follows time series and therefore may be useful in
monitoring trends in the coastal water environments of the bay.
Despite the long period of deployment for the sensors at the
TASCAM site, no clear drift in sensor response was apparent over
the deployment period (Figure 6).

Hawke Bay
A total of 174 data points were used for training and testing of the
satellite models. Two-thirds of the dataset (N = 114) was used for
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model construction, and the remaining one-third (N = 58) for
the evaluation model performance. The model summary is given
in Table 4.

Model validation using the remaining one third of the
HAWQIi dataset shows that both local algorithms performed
better than the global OC3M model (Figure 7). Typically, the two
models achieved significantly higher deviance explained, lower
percent error (¢) and RMSE (Table 5). For example, the average
percentage error for the local OC3M model reached 32%, which
is within an acceptable upper limit of 35% (IOCCG, 2006; Moore

TABLE 1 | Statistics for the two chlorophyll-a datasets (mg/m3) used for
algorithm development.

Location Mean Minimum 10th 90th Max
(data source) percentile percentile

Tasman Bay 0.47 0.04 0.1 0.92 2.76
(TASCAM)

Hawke Bay 1.32 0.05 0.12 3.70 9.10
(HAWQI)

TABLE 2 | Summary of results of the two locally-tuned models for Tasman
Bay trained on 6 h averaged data.

Deviance
explained
Model Train Test Coefficient Estimate SE P
Local OC3M 0.45 0.48 EN) —0.339 0.022 <0.001
a —1.604 0.122 <0.001
an —0.678 0.543 0.213
as 3.599 0.636 <0.001
ay 2.911 1.166 0.013
Exponential  0.39  0.51 a 1.552 (10) 0.128 <0.001
(0.28) (0.19) k 1.02 (3.99) 0.087 (0.1249) <0.001

SE, standard error; p, probability. Values given in parentheses for the exponential model
are for the fixed coefficient model (a = 10).

et al,, 2009). Although the exponential algorithm produced a
higher average percentage error (47%) than the local OC3M
model, the exponential model exhibited less bias when compared
to in situ data from the test dataset (Figure 7, Table 5).

Comparison of the predicted time series with HAWQI buoy
data also shows that both the local models performed reasonably
well (Figure 8). The modeled chl-a was able to track observed
trends in the buoy data for most of the time series, with
the exception of a short period in September 2013 (Figure 8).
Similarly in situ seawater sample results taken beside the
sensor were generally comparable to the mooring sensor result,
highlighting the accuracy of the sensor over the deployment
period (Figure 8).

When applied to other areas of the bay using additional water
sample data from the region, the algorithms did not compare well
with the collected data at most sites (Figure 9, Table 6). Although
the two local algorithms performed better than the global OC3M
algorithm, there was a high average percentage error (Figure 9,
Table 6).

Closest-Time Models

Tasman Bay

Using the closest match data to train the two local models
produced different coefficients to the models built using
smoothed data (Table 7). The model performance on the test data

TABLE 3 | Comparison of accuracy of the default (global Case 1) and local
model predictions using the TASCAM monitoring buoy test dataset; n =
sample size and significance test results are shown in brackets.

Model n Intercept Slope Deviance RMSE ¢ RCF
explained

Default OC3M 131 0.34 (s) 0.04 (s) 0.22 071 465 6

Local OC3M 131 0.03 (ns) 1.04 (ns) 0.49 022 48 66

Exponential 131 —0.08 (ns) 1.05 (ns) 0.52 0.24 56 60

For intercept, (s) indicates significantly different from O; for slope, (s) indicates significantly
different from 1; for both, (ns) indicates not significant; RMSE and & are defined in
equations (3) and (4); RCF is the relative central frequency.
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TABLE 4 | Summary of the locally-tuned model outputs for the Hawke Bay
water quality information (HAWQi) monitoring buoy for the 6 h averaged
data.

Deviance explained

Model Train Test Coefficient Estimate SE p

Local OC3M  0.86 0.75 EN) 0.091 0.041 0.028
ay —-2.651 0.192 <0.001
an —2.58 0.934  0.007
ag 2.8 0.722 <0.001
ag 5287 2311 0.025

Exponential  0.64 0.79 a 14791  2.167 <0.001
k 2,217  0.227 <0.001

SE, Standard error; p, probability.

was also decreased when compared to the smoothed data models.
Specifically, deviance explained decreased from 0.48 to 0.26 for
the OC3M model and from 0.51 to 0.41 for the Exponential
model (Tables 2, 7). These results were mirrored in the RMSE
results, which also showed increases from 0.23 to 0.34 for the
OC3M model and from 0.24 to 0.28 for the Exponential model
(Table 3).

Hawke Bay

Using the closest match data also produced different coefficients
to the models built using smoothed data at the Hawke Bay site
(Table 8). However, at this site, the model performance decline
on the test data was generally less pronounced than the smoothed

data models. Specifically, deviance explained decreased from 0.75
to 0.28 for the OC3M model and from 0.51 to 0.41 for the
Exponential model (Tables 4, 8). The decrease in performance
was more pronounced in the RMSE results, which also showed
error increases from 0.17 to 0.58 for the OC3M model and 0.22
to 0.60 for the Exponential model (Table 5).

DISCUSSION

The present study compared estimates of chl-a concentrations
from freely available ocean color data (MODIS Aqua Level
2) with long-term field measurements. The study shows that
the standard global OC3M algorithm over-estimated chl-a
concentrations at all coastal study sites. The average percentage
error ranged between 150 and ~500%. This is in agreement
with previous findings that showed that the chl-a retrievals from
standard Case 1 MODIS algorithms typically over-estimate chl-a
concentration for turbid coastal waters (Darecki and Stramski,
2004; Magnuson et al.,, 2004; Werdell et al.,, 2009). Although
the global Case 1 OC3M algorithm typically over-estimated chl-
a concentration for coastal waters in our study, it appears that
aspects of the model may still be useful in coastal environments
provided the model is locally tuned.

In the case of the two locations analyzed for this study, there
were potentially different optical regimes in place based on the
composition of the respective catchments that drain into these
locations. In the case of Tasman Bay, the site is located about 8
km from the mouth of the Motueka River (Figure 2). This river
drains a catchment with a large proportion of native vegetation
cover and subsequently high inputs of colored dissolved organic
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TABLE 5 | Comparison of accuracy of the default (global Case 1) and local
model predictions using the Hawke Bay water quality information
monitoring buoy (HAWQI) test dataset; n = sample size and significance
test results are shown in brackets.

Model n Intercept Slope Deviance RMSE e RCF
explained

Default OC3M 58 0.28 (ns)  0.41 (s) 0.70 042 159 24

Local OC3M 58 0.09(ns) 1.11(ns) 0.77 0.17 32 80

Exponential 58 0.03(ns) 0.95(ns) 0.78 0.22 47 72

For intercept, (s) indicates significantly different from 0; for slope, (s) indicate significantly
different from 1, for both, (ns) indicates not significant; RMSE and ¢ are defined in equation
(3) and (4); RCF is the relative central frequency.

material which may affect the optical properties of the site. The
catchments around the Hawke Bay site are largely associated with
pastoral farming and the HAWQIi buoy was located further away
from major rivers, consequently differing signal to noise ratios in
the chl-a response to incoming solar radiation were likely.

Modeling Approaches
Differing coefficients were observed in each model formulation,
which is due in part to both optical differences inherent at the
two sites, and the range of observed chl-a at each site. The
local OC3M model may provide a preferred approach based
on its historical use and because this model generally achieved
lower average percentage error (g) than the exponential model
(Tables 2, 4, 5). However, the exponential model better captured
the deviance in the observations of chl-a based on a higher
deviance explained values (Tables 2, 4, 5). Such contradictions
based on different measures, shows the need for the use of several
measures to evaluate model performance and careful selection
based on relevant scientific, or management, objectives for the
data. For example, a bias error could have greater impacts on
long-term trend analysis.

While the simple exponential model applied in this study does
not have the historical use of the OC3M approach, it is clear

that it has a similar performance and there are fewer degrees of
freedom. The reduced flexibility for fitting the exponential model
implies that it would be less likely to result in statistical over-
fitting of the model. This is consistent with the results presented
here, which show that deviance explained for the exponential
model is higher in both test dataset results (i.e., Tables 2, 4) and
with the results of the comparison with independent datasets.
Given the similar performance of the empirical approaches across
the two case studies presented, we consider that local calibration
of the exponential model is potentially a more robust approach
to construction of empirical locally calibrated chl-a models. As
indicated by the results of a naive fitting of the exponential model
to the Tasman Bay data, clearly any model needs to be checked
for its relevance to the region of interest. In the case of the
Tasman Bay, the Exponential model will only able to estimate chl-
a concentrations up to 1.55 mg /m? (i.e., the a coefficient value),
this is limited when compared to measured historical maxima of
10 mg chl-a/m3 (MacKenzie and Gillespie, 1986).

Fitting using an informed coefficient may be one way to
avoid this issue; however comparison of the two exponential
models constructed for Tasman Bay shows a coincident reduction
in the deviance explained by a second model which used
a fixed coefficient (Table 2). Consequently, this method may
be appropriate for producing a useful model in the absence
of representative data, but should ideally be updated as
more representative data become available. Setting a bounded
maximum in the model also further reduces the degrees of
freedom for the fitting process, potentially further reducing over-
fitting. While a value of 10 mg chl-a/m? has been used in Tasman
Bay, it is possible that higher concentrations could also have
occurred but have not been recorded. Therefore, the use of
predetermined fixed coefficients appropriate to the environments
of the models (e.g., oligiotrophic coastal temperate, eutrophic
coastal tropical environments etc.) could be considered. For
example, the Hawkes Bay Exponential model also has an artificial
limit (14.79 mg chl-a/m?3; Table 4); while this is a reasonable
limit for this region, the model will not be able to resolve higher
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concentrations. Therefore, pre-classification of the environment
and the use of an appropriate coefficient for the environment
under consideration may be a worthwhile undertaking. The
use of predetermined coefficients has the potential to introduce
some bias to the tuning process, but the incorporation of this
prior knowledge could also yield some benefits to the models.
Consequently, while it is worthy of future research, it is not
possible to recommend this approach at this time.

The Effect of Spatial Smoothing on Model
Training

Despite the issues noted in the modeling of the Tasman Bay site,
the results of the effects of smoothing were consistently better
across both models and sites. Improved model fit to test data was

seen at the TASCAM and HAWAQi sites, with better performance
observed in both the RMSE and deviance explained performance
measures. However, the effect differed at the two sites, suggesting
that the benefits may vary. For this reason we would recommend
training both smoothed and closest-time models and selecting
the best performing model against independent data.

Accuracy of the Models

In considering the measured performance of the algorithms
against in situ sensor data, it is important to recognize that
the fluorescence data are themselves an estimate of the “true”
chl-a concentrations at the sites. The sensors in this study were
factory calibrated and new at the time of deployment and we
saw no evidence of issues that can affect the accuracy of in situ
fluorometric sensors (e.g., quenching, fouling etc.). However, the
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TABLE 6 | Model comparison with Hawke Bay water sample data; n = sample size and significance test results are shown in brackets.

Site n Model Intercept Slope Deviance explained RMSE (mg chl-a/m3) &(%) RCF (%)
3 37 Default OC3M 0.63(s) 0.13(s) 0.19 0.53 246 14
Local OC3M 0.41(s) 0.43(s) 0.26 0.32 83 4
Exponential 0.34(ns) 0.38(s) 0.25 0.37 123 14
4 34 Default OC3M 0.40(s) 0.13(ns) 0.68 0.76 2,054 15
Local OC3M 0.14(ns) 0.54(ns) 0.51 0.54 1,045 35
Exponential 0.08(ns) 0.47(ns) 0.5 0.65 1,615 29
5 30 Default OC3M 0.96(s) 0.06(s) 0.12 0.61 346 7
Local OC3M 0.09(ns) 0.64(ns) 0.31 0.31 97 43
Exponential 0o(ns) 0.56(s) 0.29 0.39 141 23
6 36 Default OC3M 0.95(s) 0.07(s) 0.12 0.75 3,784 14
Local OC3M 0.39(ns) 0.52(s) 0.23 0.57 2,203 36
Exponential 0.33(ns) 0.45(s) 0.21 0.62 2,925 33
7 33 Default OC3M 0.81(ns) 0.26(s) 0.35 0.52 240 21
Local OC3M —2.32(s) 2.16(s) 0.73 0.29 80 48
Exponential —2.52(s) 1.82(s) 0.8 0.34 109 45
8 36 Default OC3M 0.29(s) 0.16(s) 0.55 0.49 205 14
Local OC3M 0.29(s) 0.32(s) 0.54 0.27 69 44
Exponential 0.25(s) 0.28(s) 0.55 0.36 113 19
9 28 Default OC3M 0.93(s) 0.04(s) 0.01 0.84 767 4
Local OC3M 0.68(ns) 0.23(s) 0.02 0.58 288 25
Exponential 0.64(ns) 0.20(s) 0.02 0.65 381 11
Overall 234 Default OC3M 0.66(s) 0.13(ns) 0.2 0.65 1,121 13
Local OC3M —0.18(ns) 0.87(ns) 0.34 0.43 572 39
Exponential —0.35(ns) 0.78(ns) 0.37 0.5 768 25

For intercept, (s) indicates significantly different from O; for slope, (s) indicates significantly different from 1; for both, (ns) indicates not significant. RMSE and ¢ are defined in equations
(3) and (4); RCF is the relative central frequency (only sample size <10 were included for the model validation).

TABLE 7 | Summary of results of the two locally-tuned models for Tasman
Bay trained on closest-time data.

TABLE 8 | Summary of locally-tuned model output for the HAWQi
monitoring buoy trained on closest-time data.

Deviance explained

Deviance explained

Model Train Test Coefficient Estimate SE P Model Train Test Coefficient Estimate SE P

Local OC3M  0.49 0.26 ag -0.3313  0.025 <0.001 Local OC3M  0.87 0.28 ag 0.01274 0.0409 0.756
ay —0.8497 0.064 <0.001 a4 —2.95666 0.1995 <0.001
ap —-0.3866 0.130 0.003 a, —1.9285 0956  0.047
ag 0.4779 0.075 <0.001 ag 3.38598 0.735 <0.001
as 02391 0.058 <0.001 ay 404635 2.363  0.091

Exponential  0.37 0.41 a 16287 0.240 <0.001  Eyponential  0.68 0.73 a 16.6099 2.280 <0.001
k 1.0847 0.157 <0.001 P 04437 0.024 <0.001

SE, Standard error; p, probability.

quality of these underlying data is critical and the differences in
the resulting parameterization of the models suggests that there
are optical differences between sites. This does not appear to have
affected our results (and we aim to study the underlying optical

SE, Standard error; p, probability.

regimes in more detail in future), but we offer this modeling
approach as a first step to allow naive tuning of readily available
satellite data to existing datasets.

Frontiers in Marine Science | www.frontiersin.org

10

May 2017 | Volume 4 | Article 151


http://www.frontiersin.org/Marine_Science
http://www.frontiersin.org
http://www.frontiersin.org/Marine_Science/archive

Jiang et al.

Simplified MODIS Tuning for Chlorophyll-a

The accuracy of the local models in the present study
significantly improved on the results of the standard Case 1
OC3M algorithm, particularly in the case of Tasman and Hawke
bays. In Hawke Bay, the Local OC3M algorithm achieved an
average error of 32%. This is within the lower limit for the
margin of error set by NASA for retrieving chl-a of within 35%
accuracy for the global open oceans (Hooker et al., 1992; Le et al.,
2013). The Hawke Bay water sample dataset comparison showed
average errors in the range of 40-60%, but were of limited use
due to reasons stated previously (e.g., turbid near shore locations,
point-in-time samples). Despite the issues, it was interesting to
see that the model estimates for some of the Hawke Bay sites (e.g.,
sites 7 and 8; Table 6) still compared well to data. These results are
comparable to the accuracy achieved in other studies for turbid
waters (Le et al., 2013) and better than those reported by Shang
etal. (2014), where the average percent errors from locally-tuned
algorithms were typically in the range of 60-130%. Consequently,
the algorithms developed for the HAWQI site presented in this
study can be considered satisfactory for future use. Although the
Exponential model for the TASCAM site achieved a satisfactory
error metric, unfortunately a lack of representative data from a
wide range of conditions means that the model is likely only to be
accurate for low chl-a conditions. While we have only presented
results from two sites, the algorithm fitting approaches presented
here will be useful for other coastal water investigations.

The modeling approach presented here (i.e., Tasman Bay and
Hawke Bay) generally performed well at the locations and data
they were tuned to, but the application of the approach to another
region located in the North of New Zealand (the Firth of Thames;
Figure 1) was not successful. The Firth of Thames is a similar
environment to the Tasman and Hawke bays, but the main
difference was that Firth of Thames chl-a data was provided from
15m vertically-integrated seawater samples taken at fortnightly
and monthly frequencies (Jones et al., 2013). Despite a lack of
high temporal resolution fluorometric data, available data for
the Firth of Thames were plentiful and were comprised of lab
analyzed water samples for the period 2002 to 2013, which
equated to about 1,300 samples across five sites. The results of
Firth of Thames are not presented here, but we note that the
results of a similar study (Jones et al., 2013) yielded a model with
alow deviance explained (0.15).

We consider a likely explanation for the difficulty in training
accurate models at the Firth of Thames site was the lack of higher
frequency data available at that time. The field data for Tasman
and Hawke bays were collected continuously at least every hour
and could therefore either be smoothed to approximate the
spatial resolution of the satellite (i.e., 1 km?), or closely matched
in time. This was not possible with the data available in the
Firth of Thames. In this regard, it appears continuous buoy
data can facilitate local satellite algorithm development, ideally
with lab-processed data used to check sensor accuracy. The
difficulty of matching in-water data to satellite observations in
dynamic coastal regions has been extensively discussed (e.g.,
Gordon and Wang, 1994), with issues arising from both temporal
matchups and spatial variability at a subpixel (<300 m) level.
While temporal smoothing, or closer time matching, of the buoy
data does not solve all of these issues, it may help to match

spatial and temporal variability in regions where more restrictive
criteria (Bailey and Werdell, 2006; Kahru et al., 2014) would limit
potential matchups.

Uptake of Satellite Data in the New

Zealand Context

Several factors may have prevented wider application of the
freely accessible satellite data for coastal waters around New
Zealand. While chl-a data for Case 1 coastal waters are
readily available, our research shows these are not applicable
to the Case 2 coastal waters around New Zealand without
additional tuning. Several specific Case 2 algorithms have been
developed for other studies that have successfully improved
chl-a data retrieval for coastal waters (Ahn and Shanmugam,
2006; Cannizzaro and Carder, 2006; Shanmugam, 2011; Simon
and Shanmugam, 2012; Le et al., 2013). While these models
were successful, they are regionally specific and may be
complex to calibrate locally without specialist equipment and
additional targeted studies. Consequently we propose alternate
methods that may allow use of existing long-term datasets to
begin to unlock previously under-utilized historical data from
satellites.

Development of generalized algorithms applicable for coastal
waters in different regions requires not only an understanding of
the optical properties of phytoplankton, but also other particles
and dissolved material. This can be problematic, as it may involve
greater resource requirements; e.g., collection of concurrent in
situ measurements of pigment concentration and radiometric
reflectance (I0OCCG, 2000). As a result, the potentially invaluable
information provided by satellite reflectance has not been widely
utilized in New Zealand to date. It also seems that this is a
wider issue than just New Zealand, as recognized by Schaeffer
et al. (2013) who note that more effort is required to ensure that
managers are aware of the value in the data, and that real and
perceived hurdles need to be overcome to improve the uptake of
remotely sensed data.

Our study provides evidence of some successful outcomes
based on two case studies in New Zealand and that local
calibration of empirical chl-a algorithms from pre-processed
L2 data products is feasible in New Zealand coastal waters.
It also shows that these locally calibrated algorithms may be
validated in new regions with optically different properties.
Furthermore, the methods we have employed can be achieved
using readily accessible techniques and freely available software
reducing barriers to the use of the data.

Local calibration of chl-a model in coastal environments may
be more likely to succeed if the following recommendations are
considered:

e If possible, use high temporal resolution data (at least hourly)
to improve the availability of data for model training.

e In situ data should be collected across all seasons (i.e., a year)
to ensure a wide range of local optical conditions are observed
for model building.

e In situ collection depths are important, because satellite
sensors only provide optical information from surface waters.
Where coastal waters are turbid and stratified, measurements
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will need to be close to the surface, but if possible multiple
depths should be collected to assess vertical variability.
Bottom reflections in shallow water have the potential to
complicate algorithm development. Similar issues may also
occur in turbid waters, with Raman scattering of about
8% previously reported (Gupta, 2015). For this reason data
collection for algorithm development should be carried out
in optically deep waters (i.e., low reflection and scattering) if
possible.

Empirical fitting of the OC3M algorithm may be prone to
over-fitting when compared to a simpler exponential model
presented in this study. This could limit its use outside of the
training period and location; consequently testing on a leave-
out (or “test”) or completely independent dataset is highly
recommended.

The use of the simple exponential model approach is
recommended given it generally performed better than a
locally calibrated OC3M algorithm with the same data.

Even if a reasonable level of fit is achieved to reflectance ratio
data, assess the utility of the model for estimating the full range
of conditions in the region should be assessed, not just the
period of data for which the model was trained.

If high temporal resolution data are available, consider
averaging the data to match the spatial-scales for model
building and compare to a closest-time approach. While
our results differed between sites and the model applied,
smoothing generally improved our models when compared to
independent data.

Future Implications

Successful calibration of satellite data over ~1 year potentially
offers access to over a decade of data at daily (or more frequent)
temporal resolution. Using the methods presented here, long-
term trends in chl-a concentrations can be interrogated at sites
that have perhaps been poorly sampled in the past. Because chl-
a is a common indicator of primary production and symptoms
of eutrophication, this information can then provide important
insights into coastal health.

In the case of New Zealand, expansion of land-based farming
is leading to large changes in the flow of nutrients to coastal
environments (e.g., Heggie and Savage, 2009). These new
pressures have the potential to affect the health of downstream
coastal waters, but historical environment monitoring records
are limited in their spatial and temporal extent. In order to
allow for improved planning decisions on land and in the sea,
long-term reliable datasets at many locations will be required
to ensure that trends can be detected early and managed
appropriately. Consequently remotely-sensed satellite data will
play an increasingly important role in providing ongoing
information on the state of surface waters for New Zealand. The
initial studies presented here highlight that existing field datasets
may be able to help assist in unlocking satellite data for such
purposes. However, ideally empirical modeling methods (such
those presented here) should be continued to be improved upon,
as resources and data become available. This will ensure that
modeled datasets are robust outside of both the times and areas
that they are tuned for.

CONCLUSIONS

Simplified methods for regional tuning of satellite algorithms
that can produce comparable water quality results to in situ
samples are required to improve the uptake of satellite data for
coastal monitoring. This study presents results from the local
calibration and validation of two empirical algorithm approaches
for chl-a, including a simple exponential model developed for
this study. There appear to be benefits from the novel method
of training the models to spatially-matched data scales, which
suggests this approach is worth considering if the available data
are appropriate for this purpose. Key to this approach is the use
of high-frequency data from moored sensors, which can help to
overcome issues with match-up limitations that have previously
documented in highly dynamic coastal regions (Gordon and
Wang, 1994; Kahru et al., 2014).

Good performance of a simple empirical model trained
from high frequency data from moored sensors and standard
satellite reflectance products illustrates that local calibration and
operational use of readily available satellite data products for
coastal waters is feasible. Further research and data collection
will be required to more fully validate the methods presented
in this study, but we note that pragmatic advice to assist in the
application and use of satellite data in coastal waters is currently
limited which could restrict the uptake of these valuable datasets.
While successful calibration cannot always be guaranteed for
satellite datasets, we have identified simple steps that appear to
improve model performance.

AUTHOR CONTRIBUTIONS

W] undertook the majority of statistical analysis of this work,
the production of figures and initially suggested the use of
simpler models for development in this project consequently his
efforts have been recognized with primary authorship for this
paper. Recent health issues have limited WJ’s recent involvement
in this work, nevertheless he has read and accepted this
submission. BK has undertaken the majority of the writing
for this manuscript and has helped guide the development
of the work undertaken in the study. CC has contributed to
sections in this submission and acted in an oversight role. PB
was responsible for the data collection used in this study and
the methods associated with this submission. The efforts of
RK have mirrored that of CC and he has brought an large
amount background knowledge to this study. Early versions of
this manuscript also drew on RK’s extensive knowledge of US
datasets with which model were tested against truly independent
datasets. Although these data were ultimately removed, they
helped provide all authors with additional confidence to
progress with publishing this work and represent a significant
contribution.

FUNDING

Cawthron Institute Internal Investment Fund (Grant
Number 15954) provided the majority of funding for this
work.

Frontiers in Marine Science | www.frontiersin.org

12

May 2017 | Volume 4 | Article 151


http://www.frontiersin.org/Marine_Science
http://www.frontiersin.org
http://www.frontiersin.org/Marine_Science/archive

Jiang et al.

Simplified MODIS Tuning for Chlorophyll-a

ACKNOWLEDGMENTS

NASA and the team at the Ocean Biology Processing Group
(OBPG) are thanked for the provision of the MODIS satellite data
used in this study and the tools used to acquire these data. Kent
Headley, Paul Cohen, and the rest of the team at the Monterey
Bay Aquarium Research Institute are thanked for their time and
assistance in developing the technology used in the TASCAM and
HAWQI buoy platforms. Waikato Regional Council, particularly
Hilke Giles and the late Vernon Pickett are thanked for their
support of the initial research that was applied to the Firth
of Thames in which many of the methods developed in this
paper where initially established. The Hawke’s Bay Regional
Council, particularly Oliver Wade and Anna Madarasz-Smith
are thanked for the timely provision of data and support in the

REFERENCES

Ahn, Y. H., and Shanmugam, P. (2006). Detecting the red tide blooms from satellite
ocean color observations in optically complex Northeast—Asia Coastal waters.
Remote Sens. Environ. 103, 419-437. doi: 10.1016/j.rse.2006.04.007

Aiken, J., and Moore, G. (1997). MERIS algorithm Theoretical Basis Document:
Case 2 (S) Bright Pixel Atmospheric Correction, Rep. PO-TN-MEL-GS-0005,
Plymouth Marine Laboratory, Plymouth.

Bailey, S. W, Franz, B. A,, and Werdell, P. J. (2010). Estimation of near-infrared
water-leaving reflectance for satellite ocean color data processing. Opt. Express
18, 7521-7527. doi: 10.1364/OE.18.007521

Bailey, S. W., and Werdell, P. J. (2006). A multi-sensor approach for the on-orbit
validation of ocean color satellite data products. Remote Sens. Environ. 102,
12-23. doi: 10.1016/j.rse.2006.01.015

Bricaud, A., Babin, M., Morel, A., and Claustre, H. (1995). Variability in the
chlorophyll-specific absorption coefficients of natural phytoplankton: analysis
and parameterization. . Geophys. Res. 13, 321-13, 332. doi: 10.1029/95jc00463

Bricker, S., Ferreira, J., and Simas, T. (2003). An integrated methodology
for assessment of estuarine trophic status. Ecol. Model. 169, 39-60.
doi: 10.1016/S0304-3800(03)00199-6

Cannizzaro, J. P., and Carder, K. L. (2006). Estimating chlorophyll a concentrations
from remote-sensing reflectance in optically shallow waters. Remote Sens.
Environ. 101, 13-24. doi: 10.1016/j.rse.2005.12.002

Carder, K. L, Chen, F. R, Cannizzaro, J. P., Campbell, J. W, and
Michell, B. G. (2004). Performance of the MODIS semi-analytical
ocean color algorithm for chlorophyll-a. Adv. Space Res. 33, 1152-1159.
doi: 10.1016/50273-1177(03)00365-X

Darecki, M., and Stramski, D. (2004). An evaluation of MODIS and SeaWiFS
bio-optical algorithms in the Baltic Sea. Remote Sens. Environ. 89, 326-350.
doi: 10.1016/j.rse.2003.10.012

Franz, B. A., Kwiatkowska, E. J., Meister, G., and McClain, C. R. (2007).
“Utility of MODIS-Terra for ocean color applications,” in Proc. SPIE
6677, Earth Observing Systems, XII, 66770Q (San Diego, CA). Available
online at: http://spie.org/Documents/ConferencesExhibitions/SPIE-Optics-
and-Photonics-2007- Final.pdf

Giovanardi, F., and Vollenweider, R. A. (2004). Trophic conditions of marine
coastal waters: experience in applying the trophic index TRIX to two
areas of the Adriatic and Tyrrhenian seas. J. Limnol. 63, 199-218.
doi: 10.4081/jlimnol.2004.199

Gordon, H. R., and Wang, M. (1994). Retrieval of water-leaving radiance
and aerosol optical thickness over the oceans with SeaWiFS: a preliminary
algorithm. Appl. Opt. 3, 443-452. doi: 10.1364/20.33.000443

Gupta, M. (2015). Contribution of Raman scattering in remote sensing retrieval
of suspended sediment concentration by empirical modeling. IEEE J-STARS 8,
398-405. doi: 10.1109/jstars.2014.2361336

Heggie, K., and Savage, C. (2009). Nitrogen
Zealand coastal catchments receiving estuaries.

yields from New

to N. Z ]. Mar.

initial HAWQi model development. The Ministry for Business
Innovation and Employment Envirolink programme provided
support for aspects of the Hawke Bay research (Grant number:
1436-HBRC199). We wish to thank the Wilsons Bay Area A
Consortium for their provision of data used in Jones et al
(2013), while these data are not presented in this study it proved
helpful for identifying the shortcomings of coarse temporal
measurements in satellite model development. Preparation of
this paper was supported by the Cawthron Institute Internal
Investment Fund and the Ministry of Business Innovation
& Employment Catalyst Leaders Fund (Grant number: ILF-
CAW1601). Lastly we would like to thank Dr Paul Gillespie and
Gretchen Rasch for their valuable comments on the drafts of this
paper, and the efforts of peer reviewers and editorial staff that
have contributed to this publication.

Freshwater Res. 1039-1052. doi: 10.1080/00288330.2009.
9626527

Hooker, S. B., Esaias, W. E., Feldman, G. C., Gregg, W. W., and McClain, C. R.
(1992). An Overview of SeaWiFS and Ocean Color. NASA Tech. Memo., Vol.
104566. National Aeronautics and Space Administration, Goddard Space Flight
CenterGreenbelt, M. D.

IOCCG (2000). “Remote sensing of ocean colour in coastal, and other optically-
complex waters,” in Reports of the International Ocean Colour Coordinating
Group No. 3, ed S. Sathyendranath (Dartmouth, NS: IOCCG), 1-140.

IOCCG (2006). “Remote sensing of inherent optical properties: Fundamentals,
tests of algorithms, and applications,” in Reports of the International Ocean-
Colour Coordinating Group, No. 5, ed Z. P. Lee (Dartmouth, NS: IOCCG),
1-126.

Jones, K., Jiang, W. M., and Knight, B. R. (2013). A Review of Sources and
Applications of Satellite Data for Coastal Waters of the Waikato region. Prepared
for Waikato Regional Council. Cawthron Report No. 2334.

Kahru, M., Kudela, R. M., Anderson, C. R., Manzano-Sarabia, M., and Mitchell,
B. G. (2014). Evaluation of satellite retrievals of ocean chlorophyll-a in the
California Current. Remote Sens. 6, 8524-8540. doi: 10.3390/rs6098524

Le, C. F, Hu, C. M, English, D., Cannizzaro, J., Chen, Z. Q. Feng,
L., et al. (2013). Towards a long-term chlorophyll-a data record in a
turbid estuary using MODIS observations. Progr. Oceanogr. 109, 90-103.
doi: 10.1016/j.pocean.2012.10.002

Lorenzen, C. J. (1967). Vertical distribution of chlorophyll and phaeopigments:
Baja California. Deep-Sea Res. 14, 735-745.

MacKenzie, A., and Gillespie, P. (1986). Plankton ecology and productivity,
nutrient chemistry, and hydrography of Tasman Bay, New Zealand, 1982-1984.
N. Z. ]. Mar. Freshwater Res. 20, 365-395. doi: 10.1080/00288330.1986.9516158

Magnuson, A., Harding, L. W., Mallonee, M. E., and Adolf, J. E. (2004). Bio-optical
model for Chesapeake Bay and the Middle Atlantic Bight. Estuar. Coast. Shelf.
S. 61, 403-424. doi: 10.1016/j.ecss.2004.06.020

Moore, T. S., Campbell, J. W., and Dowell, M. D. (2009). A class-based approach to
characterizing and mapping the uncertainty of the MODIS ocean chlorophyll
product. Remote Sens. Environ. 113, 2424-2430. doi: 10.1016/j.rse.2009.07.016

Morel, A. (1988). Optical modeling of the upper ocean in relation to its
biogenous matter content(case I waters). J. Geophys. Res. 93, 749-710.
doi: 10.1029/jc093ic09p10749

Morel, A., Huot, Y., Gentili, A., Werdell, P. J., Hooker, S. B., and Franz, B. A.
(2007). Examining the consistency of products derived from various ocean
color sensors in open ocean (Case 1) waters in the perspective of a multi-sensor
approach. Remote Sens. Environ. 111, 69-88. doi: 10.1016/j.rse.2007.03.012

Moses, W. J., Gitlson, A. A., Berdnikow, S., and Povazhnyy, V. (2009).
Estimation of chlorophyll-a concentration in case II waters using MODIS
and MERIS data - successes and challenges. Environ. Res. Lett. 4, 1-8.
doi: 10.1088/1748-9326/4/4/045005

NASA (2013). Goddard Space Flight Center Ocean Biology Distributed Active
Archive Center. MODIS-Aqua Level 2 Ocean Color Data, Reprocessing version

43,

Frontiers in Marine Science | www.frontiersin.org

13

May 2017 | Volume 4 | Article 151


https://doi.org/10.1016/j.rse.2006.04.007
https://doi.org/10.1364/OE.18.007521
https://doi.org/10.1016/j.rse.2006.01.015
https://doi.org/10.1029/95jc00463
https://doi.org/10.1016/S0304-3800(03)00199-6
https://doi.org/10.1016/j.rse.2005.12.002
https://doi.org/10.1016/S0273-1177(03)00365-X
https://doi.org/10.1016/j.rse.2003.10.012
http://spie.org/Documents/ConferencesExhibitions/SPIE-Optics-and-Photonics-2007-Final.pdf
http://spie.org/Documents/ConferencesExhibitions/SPIE-Optics-and-Photonics-2007-Final.pdf
https://doi.org/10.4081/jlimnol.2004.199
https://doi.org/10.1364/ao.33.000443
https://doi.org/10.1109/jstars.2014.2361336
https://doi.org/10.1080/00288330.2009.9626527
https://doi.org/10.3390/rs6098524
https://doi.org/10.1016/j.pocean.2012.10.002
https://doi.org/10.1080/00288330.1986.9516158
https://doi.org/10.1016/j.ecss.2004.06.020
https://doi.org/10.1016/j.rse.2009.07.016
https://doi.org/10.1029/jc093ic09p10749
https://doi.org/10.1016/j.rse.2007.03.012
https://doi.org/10.1088/1748-9326/4/4/045005
http://www.frontiersin.org/Marine_Science
http://www.frontiersin.org
http://www.frontiersin.org/Marine_Science/archive

Jiang et al.

Simplified MODIS Tuning for Chlorophyll-a

2013.1, NASA OB.DAAC. Available online at: https://oceancolor.gsfc.nasa.gov/
(Accessed Nov 4, 2013).

O'Reilly, J. E., Maritorena, S., Siegel, D., and O’Brien, M. C. (2000). “Ocean
color chlorophyll a algorithms for SeaWiFS, OC2, and OC4: version
47 in SeaWiFS Postlaunch Technical Report Series, Vol. 11, SeaWiFS
Postlaunch Calibration and Validation Analyses, Part 3, eds S. B. Hooker
and E. R. Firestone (Greenbelt, MA: NASA Goddard Space Flight Center),
9-23.

O’Reilly, J., Maritorena, S., Mitchell, B. G., Siegel, D., Carder, K. L., Garver, S., et al.
(1998). Ocean color chlorophyll algorithms for SeaWiFS. J. Geophys. Res. 103,
24937-24953.

R Core Team (2014). R: A Language and Environment of Statistical Computing.
Vienna: R Foundation for Statistical Computing. Available online at:
http://www.R-project.org/

Ruddick, K. G., Ovidio, F., and Rijkeboer, M. (2000). Atmospheric correction of
SeaWiFS imagery for turbid coastal and inland waters. Appl. Opt. 39, 897-912.
doi: 10.1364/A0.39.000897

Schaeffer, B. A., Schaeffer, K. G., Keith, D., Lunetta, R. S., Conmy, R,
and Gould, R. W. (2013). Barriers to adopting satellite remote sensing
for water quality management. Inter. ]. Remote Sens. 34, 7534-7544.
doi: 10.1080/01431161.2013.823524

Shang, S. L., Dong, Q. Hu, C. M, Lin, G, Li, Y. H, and Shang, S.
P. (2014). On the consistency of MODIS chlorophyll a products in the
northern South China Sea. Biogeosciences 11, 269-280. doi: 10.5194/bg-11-2
69-2014

Shanmugam, P. (2011). A new bio-optical algorithm for the remote sensing
of algal blooms in complex ocean waters. J. Geophys. Res. 116, 1-12.
doi: 10.1029/2010jc006796

Simon, A., and Shanmugam, P. (2012). An algorithm for classification of algal
bloom using MODIS Aqua data in oceanic waters around India. Adv. Remote
Sens. 1, 35-51. doi: 10.4236/ars.2012.12004

Smith, V., Tilman, G., and Nekola, J. (1999). Eutrophication: impacts of excess
nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environ.
Pollut. 100, 179-196. doi: 10.1016/50269-7491(99)00091-3

Wang, M. and Shi, W. (2007). The NIR-SWIR combined atmospheric
correction approach for MODIS ocean color data processing. Opt. Express 15,
15722-15733. doi: 10.1364/0e.15.015722

Werdell, P. J., Bailey, S. W., Franz, B. A., Harding, L. W. Jr., Feldman, G. C,,
and McClain, C. R. (2009). Regional and seasonal variability of chlorophyll-a
in Chesapeake Bay as observed by SeaWiFS and MODIS-Aqua. Remote Sens.
Environ. 113, 1319-1330. doi: 10.1016/j.rse.2009.02.012

Zhang, A., Hess, K. W., and Aikman, F. (2010). User-based skill assessment
techniques for operational hydrodynamic forecast systems. J. Oper. Oceanogr.
3, 11-24. doi: 10.1080/1755876x.2010.11020114

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2017 Jiang, Knight, Cornelisen, Barter and Kudela. This is an open-
access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) or licensor are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with these
terms.

Frontiers in Marine Science | www.frontiersin.org

14

May 2017 | Volume 4 | Article 151


https://oceancolor.gsfc.nasa.gov
http://www.R-project.org/
https://doi.org/10.1364/AO.39.000897
https://doi.org/10.1080/01431161.2013.823524
https://doi.org/10.5194/bg-11-269-2014
https://doi.org/10.1029/2010jc006796
https://doi.org/10.4236/ars.2012.12004
https://doi.org/10.1016/S0269-7491(99)00091-3
https://doi.org/10.1364/oe.15.015722
https://doi.org/10.1016/j.rse.2009.02.012
https://doi.org/10.1080/1755876x.2010.11020114
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Marine_Science
http://www.frontiersin.org
http://www.frontiersin.org/Marine_Science/archive

	Simplifying Regional Tuning of MODIS Algorithms for Monitoring Chlorophyll-a in Coastal Waters
	Introduction
	Materials and Methods
	Satellite Data
	Field Data

	Results
	Six-Hour Mean Models
	Tasman Bay
	Hawke Bay

	Closest-Time Models
	Tasman Bay
	Hawke Bay


	Discussion
	Modeling Approaches
	The Effect of Spatial Smoothing on Model Training
	Accuracy of the Models
	Uptake of Satellite Data in the New Zealand Context
	Future Implications

	Conclusions
	Author Contributions
	Funding
	Acknowledgments
	References


