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The concentrations of dissolved copper (Cud), copper-binding ligands, thiourea-type

thiols, and humic substances (HSCu) were measured in estuarine waters adjacent to

Sapelo Island, Georgia, USA, on a monthly basis from April to December 2014. Here

we present the seasonal cycle of copper speciation within the estuary and compare

it to the development of an annually occurring bloom of Ammonia Oxidizing Archaea

(AOA), which require copper for many enzymes. Two types of complexing ligands (L1 and

L2) were found to dominate with mean complex stabilities (log K′
CuL) of 14.5 and 12.8.

Strong complexation resulted in lowering the concentration of free cupric ion (Cu2+) to

femtomolar (fM) levels throughout the study and to sub-fM levels during the summer

months. A Thaumarchaeota bloom during this period suggests that this organism

manages to grow at very low Cu2+ concentrations. Correlation of the concentration of

the L1 ligand class with a thiourea-type thiol and the L2 ligand class with HSCu provide an

interesting dimension to the identity of the ligand classes. Due to the stronger complex

stability, 82–99% of the copper was bound to L1. Thiourea-type thiols typically form Cu(I)

species, which would suggest that up to ∼90% copper could be present as Cu(I) in

this region. In view of the very low concentration of free copper (pCu > 15 at the onset

and during the bloom) and a reputedly high requirement for copper, it is likely that the

Thaumarchaeota are able to access thiol-bound copper directly.

Keywords: copper speciation, cathodic stripping voltammetry, humic substances, thiols, thiourea, organic ligands,

thaumarchaeota, ammonia-oxidizing archaea

INTRODUCTION

Free Cu2+ is well-known for its toxicity to marine microorganisms (Anderson and Morel,
1978; Sunda and Guillard, 1976). The toxicity threshold varies between species with pM
concentrations found to affect cyanobacteria (Brand et al., 1986), well below typical ambient
concentrations of dissolved Cu. The speciation of dissolved copper in seawater is usually
dominated by organic ligands (Moffett and Dupont, 2007), forming relatively stable complexes
with around 99% of the dissolved Cu. The oxidation state of organic copper is generally
implied to be Cu(II) at natural pH (Leal and van den Berg, 1998) as inorganic copper(I) is
unstable in seawater in spite of stabilization by chloride complexation (Nelson and Mantoura,
1984) and is oxidized to copper(II) in a matter of minutes by dissolved oxygen (Sharma
and Millero, 1988). Nevertheless around 10% of the dissolved copper in ocean surface
waters has been shown to be Cu(I) (Moffett and Zika, 1988) and potentially up to 80%
Cu(I) in estuarine waters (Buerge-Weirich and Sulzberger, 2004). Concentrations of copper
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complexing organic ligands in seawater and their complex
stability constants (log K′

Cu2+L value, based on Cu2+ and L′ and
abbreviated here to log K′

CuL) are typically measured by titrations
with copper, using cathodic stripping voltammetry (CSV) and
competitive ligand equilibration (CLE-CSV; van den Berg, 1984;
Donat et al., 1994). Ocean and coastal waters contain ligands with
a large range of complex stabilities, that have for now been sub-
divided into at least two distinct ligand classes (L1 and L2), with
log K′

CuL1 = 13–16 and log K′
CuL2 = 10–13 (Moffett et al., 1990;

Laglera and van den Berg, 2003; Buck and Bruland, 2005; Bundy
et al., 2013; Muller and Batchelli, 2013).

Complexed copper is considered less bioavailable and thus
less toxic than free Cu2+ (Donat et al., 1994; Moffett et al.,
2012; Oldham et al., 2014). Several marine microorganisms have
been shown to release copper-binding ligands, such as thiols
or phytochelatins, in response to copper (Rijstenbil et al., 1998;
Leal et al., 1999; Gordon et al., 2000; Dupont and Ahner,
2005), and are therefore a source of thiols in the water. Thiols
are organo-sulfur compounds containing the—SH functional
group important for metal detoxification in cell metabolism,
forming part of a variety of biogenic sulfur species in the marine
environment (Radford-Knoery and Cutter, 1994; Tang et al.,
2000). Typical thiols include glutathione (GSH), cysteine and
their dimers (e.g., oxidized glutathione, GSSG), as well as larger
GSH-cysteine chains (phytochelatins) andmercapto compounds.
Reduced sulfur substances (RSS) describe a wider group, which
also contains dimethyl sulfide (DMS), thioureas, and thioamides
(Laglera and Tovar-Sanchez, 2012). Although, thioureas and
thioamides may not technically be considered thiols due to
favoring the thione form, we will include them in the discussion
of thiols within this paper. Thiols have been shown to occur in
estuarine (Dryden et al., 2007), coastal (Tang et al., 2000), and
open ocean waters (Le Gall and van den Berg, 1998; Dupont
et al., 2006; Swarr et al., 2016), suggesting that they could play
a major role in the ocean biogeochemistry of copper. As well
as cell exudates, sources of thiols include pore waters (Zhang
et al., 2004) and sewage effluents (Dryden et al., 2007). RSS
typically form Cu(I) complexes (Leal and van den Berg, 1998;
Konigsberger et al., 2015) although Cu(II)-thiolates have been
generated artificially (Kitajima et al., 1990). Different thiols bind
copper with a range of log K′

CuL values, typically log K
′
CuL = 12–

14 (Laglera and van den Berg, 2003) in salinities from estuarine
to seawater. Unidentified thiols from hydrothermal vents have
been measured with log K′

CuL values of 12.5–13.5 (Sander et al.,
2007) and other natural ligands, suspected to be unidentified thiol
compounds, have been measured with log K′

CuL values of 14–16
(Laglera and van den Berg, 2003).

Humic substances are another source of copper-binding
ligands with a complex stability of log K′

CuL = 12–13.5 (Kogut
and Voelker, 2001; Whitby and van den Berg, 2015). Humic
substances occur in abundance in estuarine and coastal waters
(Muller and Batchelli, 2013), accounting for up to 40–60% of
DOM (McKnight and Aiken, 1998), with around 4–20% of
DOM as humic acid and the majority as fulvics and non-humic
material (Sholkovitz, 1976). Humics form 5–25% of dissolved
organic carbon (DOC) in the surface ocean (Benner, 2002). The
fraction of terrestrial humics which survives estuarine mixing is

important for transporting dissolved trace metals, such as copper
and iron, to coastal and open ocean waters (Laglera et al., 2011;
Misumi et al., 2013; Bundy et al., 2015).

Although, potentially toxic, copper is important in many
cellular processes, such as in iron uptake (Peers et al., 2005;
Maldonado et al., 2006), even substituting for iron in biochemical
pathways of iron-limited Thalassiosira oceanica (Peers and
Price, 2006). Ionic copper [as Cu(I) or Cu(II)] is required in
enzymatic pathways related to oxidation-reduction reactions
such as polyphenol (Arnon, 1949) and ammonia oxidation.
Genomes of ammonia-oxidizing archaea (AOA) contain many
Cu-dependent metalloenzymes (Amin et al., 2013) with inferred
high copper requirements. They differ in this regard from
ammonia oxidizing bacteria (AOB), which use Fe-dependent
metalloenzymes for many of the same functions. AOA are one of
several organisms demonstrated in culture studies to be limited
by the availability of copper (Amin et al., 2013), along with
methane oxidizing archaea (Glass and Orphan, 2012) and some
phytoplankton (Annett et al., 2008; Guo et al., 2010; Walsh et al.,
2015). AOA are significant contributors to nitrification and thus
to the global nitrogen cycle (Francis et al., 2005; Beman et al.,
2010) contributing significantly to nitrous oxide (N2O) fluxes
(Santoro and Casciotti, 2011). They are the dominant ammonia
oxidizers in the pelagic ocean, accounting for up to 40% of
total picoplankton cells in the mesopelagic ocean (Karner et al.,
2001) and Antarctic winter populations (Church et al., 2003).
Thaumarchaea are responsible for a major fraction of carbon
fixation below the euphotic zone (Herndl et al., 2005; Ingalls et al.,
2006) and in Antarctic coastal waters during winter (Tolar et al.,
2016b).

The main objective of this study was to assess Cu speciation,
the ligand identity and possible impact on phytoplankton and
AOA growth in estuarine waters. Waters adjacent to Sapelo
Island, Georgia, were selected for this study, as they are the
location of a regular bloom of Thaumarchaeota, a phylum of the
Archaea, which bloom annually from July to September in this
region (Hollibaugh et al., 2014).

METHODS

Sample Collection
Surface samples were collected monthly from April to December
2014 from 6 stations along the Duplin River, D1–D6 from
the RV Salty Dawg, except November, which was not sampled.
Additional samples from the Doboy Sound (GCE 4, 5, 6) and
the major freshwater end-member of the marsh complex (the
Altamaha River, STN 10) were collected at the beginning of
the study, in April 2014 (Figure 1). Samples were collected
directly into sample bottles (acid-soaked, 2,000mL amber HDPE,
rinsed three times with sample) from a depth of ∼20 cm below
the surface by reaching overboard and filling the bottle with
the mouth pointed upstream while the vessel motored slowly
forward. The samples were filtered on the same day as collection
through 47mm diameter, 0.22µm filters (Millipore, GVWP)
held in a Nalgene polycarbonate filtering apparatus, which had
been soaked in 0.1M HCl and rinsed with sample 3 times before
use. The filtrate was poured into acid soaked and filtrate-rinsed
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FIGURE 1 | Map of the sampling locations in the estuary of the Duplin River (D1–D6) sampled April–December 2014. Additional stations were regular sampling

stations GCE 4–6 in the Doboy Sound and the freshwater end-member (STN 10) in the Altamaha River sampled in April 2014. Elevations in the DEM are in meters

relative to mean sea level. DEM plot courtesy of Dr. Daniela Di Iorio/GCE-LTER.

bottles (500 or 1,000mL fluorinated polyethylene, FLPE) that
were frozen at −80◦C immediately after filling to be shipped by
courier from GA to the UK for analysis. Once reaching the UK
they were stored at −20◦C. Upon thawing, samples were swirled
gently before use, stored in the dark at 4◦C and analyzed within 3
days of defrosting.

The filters were removed from the filter rig using plastic
forceps and placed into Whirl-Pak bags with 1 mL of lysis
buffer, then frozen and stored at −80◦C until DNA extraction.
Additional samples for DNA analysis were collected weekly from
a dock at Marsh Landing (31.4179◦, −81.2962◦; adjacent to
Station 1) for another project. Although, efforts were made to
collect samples at low tide, there is some variation in the tidal
stage at the time of sampling. Samples from July and August were
collected during the ebb just before low tide; June, October, and
December samples were collected at the lowest point in the tide;
samples from April and May were collected at the very beginning
of the flood tide and September samples were collected midway
through the flood tide.

Equipment and Reagents
The measurements of dissolved copper and complexing ligands
were performed by voltammetry as described previously
by Whitby and van den Berg (2015). The voltammetric
measurements were carried out using a µ-Autolab III
potentiostat (Ecochemie, Netherlands) connected to a 663
VA stand (Metrohm) with a hanging mercury drop electrode
(HMDE). The set-up included an Ag/AgCl reference electrode
with a 3 M KCl salt bridge and a glassy carbon counter electrode,
and solutions were stirred with a rotating polytetrafluoroethylene
(PTFE) rod. We use a glassy carbon counter electrode as

platinum counter electrodes are likely to release platinum ions
into solutions (van den Berg et al., 1988). The software was
modified to discard 2, instead of the usual 4, drops of mercury
between scans to minimize mercury usage. Voltammetric scans
used the differential-pulse mode for CSV and the square-wave
mode for anodic stripping voltammetry (ASV). The deposition
time was between 10 and 30 s for CSV and up to 2.5 min for
ASV. Quartz (silica) and PTFE voltammetric cells were cleaned
using 0.1 M HCl (trace metal grade) and rinsed with deionized
water followed by UV-digested sample before determination.
The UV-digestion apparatus contained a high-pressure, 125-W
mercury-vapor lamp (van den Berg, 2014), either positioned
horizontally above a sample aliquot or surrounded by four 30-mL
quartz sample tubes with PTFE caps. The stock borate/ammonia
pH buffer (1 M boric acid/0.3 M ammonia) used in all CSV
measurements was UV-digested to remove organic matter and
contaminating metals were removed by leaving overnight with
100µM manganese dioxide (MnO2) (van den Berg, 1982)
followed by filtration (0.2µm).

Total Dissolved Copper
Seawater was UV-irradiated (UVSW) in a conditioned quartz
voltammetric cell for 45 min and left to cool. The dissolved
copper was determined either by CSV in the presence of 20µM
salicylaldoxime (SA) and 0.01 M borate/ammonia pH buffer
(pHNBS 8.15) (Campos and van den berg, 1994), or by ASV at
pH 2 (June, September, and December samples), or both for
inter-comparison. For CSV measurements, the sample was UV-
irradiated in the voltammetric cell at the original sample pH,
and measured at a deposition potential of −0.15 V, a deposition
time of 30 s, and a 1-s potential jump to −1.2 V to desorb any
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residual organicmatter prior to the scan. For ASVmeasurements,
the sample was UV-irradiated and measured at pH 2, using a
deposition potential of −0.9 V for 120 or 300 s, followed by 10 s
at −1.4 V. Measurements using ASV were found to agree with
CSV measurements within the standard deviation of 3 repeat
measurements, and additional comparisons on NASS-6 reference
material (National Research Council Canada) using ASV were
within 5% of the certified value.

Complexing Capacity Titrations
The concentration of copper complexing ligands in each sample
was determined by CLE-CSV with ligand competition against
SA (Campos and van den berg, 1994). Samples were diluted
to 50% for the titrations, to reduce organic interference and
lower the concentration range of copper additions, similar to
previous studies on estuarine waters (Abualhaija et al., 2015).
Dilution was with UV digested sample or, when sample was
limited, a mixture of MQ with UV digested Atlantic seawater,
combined so as to equal the salinity of the sample being titrated.
The starting concentration of Cu in each titration was therefore
equal to, or lower than, the concentration of the sample and was
accounted for within the calculation. The ligand concentrations
were corrected to account for dilution, but the log K′

CuL values
were not affected since the salinity was maintained.

For each titration, 80 mL of sample and 80 mL UVSW
were transferred to a 250-mL Teflon bottle (Nalgene), and 0.01
M borate buffer and 20µM SA added. Aliquots of 10 mL
seawater, mixed with buffer and SA, were pipetted into 14 25-
mL polystyrene (Sterilin) vials with polyethylene lids. The vials
were conditioned with UVSW followed by conditioning with
diluted sample before initial use. They were rinsed with MQ
between different samples but not between titrations of the same
sample to minimize de-conditioning. Copper was added to each
vial in steps of progressively increasing concentration, typically
from 0 to 200 nM. The usual increments were 0, 5, 10, 15, 20,
25, 30, 40, 50, 75, 100, 125, 150, 200 nM Cu. These were then
left to equilibrate overnight prior to analysis. The addition of
SA in excess prior to the addition of Cu(II) minimized the risk
of oxidizing natural thiols by the Cu(II) added during titrations
as it kept the concentration of Cu2+ low (Moingt et al., 2010).
Similarly, we kept samples in the dark when not in use and
equilibrated titrations overnight to minimize exposure to light
and reduce the risk of photooxidation (Laglera and van den Berg,
2006). The labile copper concentration (i.e., that which bound
with the added SA) in each cell was then determined by CLE-
CSV using a 15 s deposition time. The deposition potential was
−0.15 V, followed by a 9 s quiescence period at 0 V from where
the scan was initiated. No potential jumps were made for the
measurement of labile copper. Two fresh copper additions were
made at the end of each titration (usually two additions of 50 nM
copper) and measured immediately to calibrate the sensitivity of
the titration curve, but these were not used in data fitting.

Humic Substances and Thiols
Copper-binding humic substances (HSCu) were determined by
CSV at a deposition potential of +0.05 V, after saturation with
copper (50–100 nM) in the presence of borate buffer (pHNBS

8.15) (Whitby and van den Berg, 2015), with a deposition time of
between 10 and 30 s depending on the concentration. Reference
humic acid used for calibrations was Suwannee River humic acid
[SRHA, International Humic Substances Society (IHSS) Standard
II 2S101H], which was dissolved in MQ water to a concentration
of 0.1 g L−1 and stored in the dark at 4◦C when not in use.
Samples were diluted 90% with UVSW to minimize interference
by organic matter and to remain within the linear range (2 mg/L
HS in the presence of 50 nM Cu with a 15 s deposition time). A
1-s potential jump from 0 to −0.2 V and back (without stirring)
was used to remove possible iodide interference, and scans were
initiated from 0 V. A background subtraction was performed
on each scan, consisting of the subtraction of a 1-s scan, which
provides a flat baseline for more accurate measurement of the
HSCu peak and accounts for any diffusion-current from excess
inorganic copper. Concentrations of HSCu calibrated on the scale
of mg HA L−1 were converted to the nM scale by multiplying
with the binding capacity of 18 nmole Cu mg−1 HSCu(Whitby
and van den Berg, 2015). The humic standard was used without
purification since HSCu measurements were performed in the
presence of excess copper.

Stock thiourea (TU) and thioacetamide (TA) (both reagent
grade, Fluka) standard solutions were prepared by dissolution in
MQ to a concentration of 0.1 M and kept in the dark at 4◦C,
with dilutions prepared to 10−5 M for thiol measurements. Thiol
measurements were modified from existing methods (Laglera
and van den Berg, 2003; Laglera and Tovar-Sanchez, 2012) and
were made in the presence of borate buffer. The deposition
time was between 10 and 30 s depending on the concentration.
Measurements were performed without addition of Cu or SA,
with a deposition potential of +0.05 V, and a 1-s potential
jump to −0.2 V to eliminate iodide interference as in HSCu
measurements; although the background subtraction described
by Laglera and Tovar-Sanchez (2012) was not employed. Under
these conditions we found that thiourea and thioacetamide had
the same sensitivity and produced the same thiol concentration in
samples, as opposed to differing sensitivities observed when using
a deposition potential of −0.1 V (used in earlier work on thiols;
Laglera and van den Berg, 2003). Thiol analyses were performed
without sample dilution.

Detection Window
At the competing ligand concentration of 20µM SA, the
detection window is centered at an α-coefficient (log αCuSA) of
5.6, strong enough to compete with ligands occurring at 10’s of
nM with complex stability (log K′

CuL) of 12–15. We attempted to
use a lower detection window to detect weaker ligands (by using
1 and 2 µM SA, log αCuSA ∼ 4), but titrations were not successful
due to interference from the HSCu peak at around the same
potential as the Cu-SA peak (at around−0.2 V), evenwith sample
dilution. Data were interpreted using the van den Berg/Ruzic
linearization procedure (Campos and van den berg, 1994) within
ProMCC software (Omanovic et al., 2015). Log K′

CuL values are
provided on the basis of Cu2+ and L′:

K′
CuL = [CuL]/([Cu2+] [L′])
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where [L′] is the concentration of L not complexed by Cu. [L′]
is affected by side-reactions with major cations and H+, and the
K′ values are therefore conditional on the experimental salinity
and pH.

Thaumarchaea Quantification
Thaumarchaea abundance was determined by quantitative
PCR. Microbial biomass was collected by filtration through
0.22 µm pore size, 47 mm diameter Durapore filters, and
frozen at −80◦C until processed. Samples of the filtrate were
frozen at −80◦C for nutrient analysis. Lysozyme, proteinase
K, and sodium dodecyl sulfate (SDS) were used to extract
deoxyribonucleic acid (DNA) from the filters; the extract was
then purified with phenol:chloroform and concentrated by
precipitation with ethanol as described previously (Bano and
Hollibaugh, 2002). Marine group I Archaea (Thaumarchaeota)
16S rRNA (rrs) and Archaea ammonia monooxygenase
subunit A (amoA) genes were quantified using primers
ARCHGI334F/ARCHGI554R/TM519AR (Suzuki et al., 2000)
and Arch-amoA-for/Arch-amoA-rev (Wuchter et al., 2006),
respectively, and protocols described previously (Kalanetra et al.,
2009; Tolar et al., 2013) with an iCycler iQTM Real-Time qPCR
detection system (BioRad).

Data Archiving
Copper speciation data collected during this study are archived
in theGCE-LTER (http://gce-lter.marsci.uga.edu) data repository
under catalog number CHM-OTH-1702, and water quality and
qPCR data under catalog number MIC-GCED-1702. Additional
data from the study site are available from GCE-LTER (Stations
ML, “Marsh Landing”; and GCE10, “Hunt Camp”) and from
the Sapelo Island National Estuarine Research Reserve at
http://cdmo.baruch.sc.edu/get/export.cfm.

RESULTS

Hydrography
The Duplin River (31.4167◦, −81.2974◦) is a tidal creek
within the Sapelo Island National Estuarine Research Reserve.
It separates Sapelo Island from the salt marshes bordering
the mainland, but is not a true river. The tidal influence is
predominantly from the south-western side where the Duplin
River meets Doboy Sound (Figure 1). The Duplin River drains
an extensive area of salt marsh through a network of smaller
channels. It is also influenced by freshwater inputs from rivers
and groundwater from Sapelo Island as well as water draining
from the salt marsh at low tides (>2m mean amplitude). The
area is thus a complex network with multiple end-member
mixing. Surface water salinity along the Duplin (stations D1–
D6) ranged from 13 to 30 during the period studied, with
salinity generally lowest in the April samples and highest in
September (Supplementary Figure 1A). As well as variation
in tide level between sampling months, April experienced the
heaviestmonthly rainfall, with amajor event occurring on the day
of sampling (NOAA, 2015). Surface water temperature increased
steadily from April to August, with highest surface water

temperatures of ∼30.4◦C, decreasing to ∼14◦C in December
(Supplementary Figure 1B).

Dissolved Copper
The broad salinity range encountered during the study resulted
in a wide range of Cud concentrations, since at salinities below
20 the flocculation of Cud and humic substances increases with
increasing salinity, although this is followed by little removal
above salinity 20 (Sholkovitz, 1976). Cud generally decreased with
increasing salinity: from a mean along the Duplin River (stations
D1–D6) of 25 nM in April (wide range of Cud: 7.1–65 nM across
salinity 13–17) to a mean of 4.5 nM in October (Cud range:
2.9–6.1 nM, at higher salinities of 27–28; Supplementary Figure
2). Increased rainfall, particularly during a major storm event
in April, could have played a role in the higher concentrations
encountered in April, as intense rainfall events at low tide
can cause increased erosion leading to elevated trace metal
concentrations (Moskalski et al., 2013; Guan et al., 2015). Cud
was relatively constant with a mean of 6.1 nM between July
and September (Cud range 3.6–9.6 nM, salinity range 21–30),
decreasing in October and increasing by December.

Identifying CSV Peaks
Preliminary CSV measurements of samples from the Duplin
River estuary showed the presence of a voltammetric peak at
∼−0.5 V (Supplementary Figure 3), corresponding with the peak
potential for sulfide and certain thiols (Al-Farawatii and van
den Berg, 1997; Laglera and van den Berg, 2003; Laglera and
Tovar-Sanchez, 2012). Stability of this peak over multiple repeat
scans indicated that it was not sulfide (Al-Farawatii and van
den Berg, 1997). We compared cysteine, thiourea, thioacetamide,
methanethiol, allylthiourea, and both oxidized and reduced
forms of glutathione to the natural peak to determine which
would be most suitable as a model thiol compound. We found
that thiourea and thioacetamide behaved most similarly to
the natural thiol peak in terms of peak shape, position and
appearance, and standard additions increased the size of the
natural peak, supporting other work on coastal waters where
thiourea and thioacetamide were also found to be the best
candidates (Al-Farawati and van den Berg, 2001; Laglera and
van den Berg, 2003). The voltammetric peak measured for this
type of species is that of mercury-bound sulfide (Hg-thiol), and
is not due to the reduction of copper stabilized as a copper-
bound thiol as for glutathione (Le Gall and van den Berg, 1993) or
cysteine (van den Berg et al., 1988), which occur at more positive
potentials and have a broader peak appearance. Measurements
of the natural thiols were therefore made without any addition
of Cu(II), eliminating the risk of thiol oxidation by added Cu(II)
(Moingt et al., 2010).

The optimum deposition potential for the natural thiol peak
was found to be +0.05 V. At this potential the sensitivity of
the analysis for thiourea was found to be the same as that
for thioacetamide, with standard additions of either compound
giving the same concentration (on the molar scale) compared to
differences noted at lower (negative) deposition potentials. The
signals from various thiols are known to coalesce into one signal
at deposition potentials between +0.02 and +0.07 V (Laglera
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and Tovar-Sanchez, 2012). Since differences in the sensitivity of
thioacetamide and thiourea occur at lower potentials (Laglera
and Tovar-Sanchez, 2012), we tested the effect of lowering the
deposition potential on the response of thiourea, thioacetamide,
and the natural thiol in our samples. Lowering the deposition
potential from +0.05 V to −0.1 V caused only a minor decrease
(4%) in the sensitivity of the natural thiol but the sensitivity for
the thioacetamide dropped by 80%, and the thiourea became
undetectable. The difference in the sensitivity behavior of the
different model thiols at the electrode compared to the natural
thiol peak suggests that the natural thiol may be more similar
chemically to thioacetamide than thiourea, but is not identical
to either of these, although surface-active materials in the sample
(such as HSCu) may affect this analysis. Since both thiourea and
thioacetamide gave the same response with standard additions
at +0.05 V, this deposition potential was chosen. Despite the
deposition potential demonstrating that the natural peak was
more similar to thioacetamide rather than to thiourea, thiourea
was selected as the standard in order to be comparable to
other work, since measurements reported in thiourea (TU)
equivalents are generally more common. Since at +0.05 V
the same concentration was measured whether using standard
additions of thiourea or thioacetamide, the choice of standard
had no effect on our measurements of thiol concentrations.

Copper-Binding Ligands
Two ligand classes were detected at all stations across all
months, with log K′

CuLvalues differing by more than a unit
between the distinct classes. The ligand concentrations in
Duplin River waters ranged from 16 to 51 nM for L1 (72 nM
in the Altamaha river end-member) and 30 to 112 nM for
L2 (163 nM in the end-member) (Figures 2A,B). The ligand
concentrations were inversely related with increasing salinity
during individual sampling events (Figures 2A,B) with the
seasonal effects imposing scatter on plots of the combined data.
The overall variation we observed was therefore a combination of
salinity and seasonal effects.

The mean log K′
CuL1 across the studywas 14.5 ± 0.3, with log

K′
CuL1 ranging from 14.0 to 15.2 and varying by a combination of

salinity and seasonal effects (Figures 3A,B). The mean value for
log K′

CuL2 was 12.8± 0.4 with log K′
CuL2 ranging from 12.1 to 13.4

(Figures 3A,B). Fitting the log K′
CuL values as function of salinity

to a simple model based on Mg-ion competition:

Log K′
CuL (Sal) = Log K′

CuL (Sal = 0) − log αMgL;

shows that a decrease in the complex stability with increasing
salinity (Figure 3B) can be explained by competition with
major cations. Here the complex stability for any given salinity
[K′

CuL(Sal)
] was calculated from that at zero salinity by subtracting

a side-reaction coefficient for Mg2+ (log αMgL), computed using
non-linear data fitting (Figure 3B). Because the concentration of
Mg2+ is 5 times greater than that of Ca2+, we assumed that Mg2+

would be the dominant competing cation, but the competition
could also include Ca2+ or a combination of the two. Increases
in log K′

CuL1 and log K′
CuL2 during August–December in the

higher salinity (25–30) range (Figure 3B) are not consistent

with expectations from the model: the sampling bias toward
higher salinity in these months (Supplementary Figure 1) should
have given lower log K′

CuL values. The high values we found
suggest that different ligands with stronger binding constants
were dominant during this period.

Composition of the Ligand Classes
Since thiols and humic substances are likely candidates for
copper-binding ligands, their concentrations were compared to
those of the individual ligand classes (L1 and L2) and their
sum, as obtained from titrations. The sum of the concentrations
of thiourea-type thiol and humic substances correlated very
well with the sum of L1 and L2 (LT) across the seasonal cycle
(Figure 4A) with a slope of 0.89 ± 0.08, ρ = 0.82 (where
ρ is Spearman’s rank correlation coefficient), suggesting they
represent the key complexing agents. The concentration of the
thiourea-type thiol correlated well with the concentration of
L1throughout the study (Figure 4B),with a slope of 1.11 ± 0.13,
ρ = 0.85, suggesting L1 is primarily a thiourea-type thiol. The
concentration of HSCu correlated well with L2 (Figure 4C), with
a slope of 0.85 ± 0.08, ρ = 0.70, suggesting that HSCu is a
good model for L2 in these waters. For all three correlations,
p < 0.0001, n= 41.

Titration of Mixtures of Model Ligands
Mixtures of thiols and humic substances added to UVSW were
titrated with copper to evaluate whether we could reproduce
titration results from samples using model ligands. Thiourea and
SRHA were added to a UV-digested sample of salinity 18.5 (May
D5) to a concentration of 10 nM and 1mg L−1, respectively
[equivalent to 18 nanomole (mg HA)−1 Cu-binding capacity;
Whitby and van den Berg, 2015). Ligand titrations of the mixture
showed the presence of two copper binding ligands: L1 = 10.9 ±
0.6 nM and L2 = 19.1 ± 0.4, in good agreement with the added
concentrations of thiourea and humic acid. The data fit for the
model ligand titration is shown in Supplementary Figure 5. The
stability constant obtained for L2 in the model ligand titration,
log K′

CuL2 = 12.3 ± 0.4, agreed well with log K′
CuL expected for

humics in seawater, and is also similar to that for the L2-ligands
within the samples. The stability constant for L1 from the model
ligand titration, log K′

CuL1 = 14.9 ± 0.4, was also similar to log
K′
CuL1 of the samples.
Titrations of higher concentrations of thiols (30 nM thiourea)

and humic-type ligands (3.5mg L−1 SRHA) were found to cause
the plots of reactive copper vs. added copper to level off at
Cu levels >40 nM. This behavior implies electrode saturation
by Cu-SA at an unexpectedly low copper level, suggesting a
surfactant effect on the electrode of the naturally occurring
humic substances or thiol species causing electrode saturation.
The same behavior was observed in titrations of UVSW with a
higher concentration (50 nM) of thioacetamide (without humic
substances). Interestingly, this phenomenon in the synthetic
ligand mixtures replicated that seen in titrations of actual
samples before dilution to 50%, suggesting that it may be a
common problem in titrations of estuarine waters containing
high concentrations of thiol-type ligands and humics.
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FIGURE 2 | The variation in ligand concentration with salinity for (A) the L1 ligand class and (B) the L2 ligand class. Both L1 and L2 generally decreased with

increasing salinity from April to October though the data are affected by localized inputs. The GCE stations and the freshwater end-member (STN 10) sampled in April

are included.

FIGURE 3 | The trend in log K′
CuL1

and log K′
CuL2

(A) over the seasonal cycle from April to December and (B) with salinity. The dotted lines in (B) show the modeled

trend with salinity for log K′
CuL1

and log K′
CuL2

. Plot (B) includes the freshwater end-member station 10 sampled in April.

Thaumarchaeota
The abundance of Thaumarchaeota was low and stable through
the spring and early summer, then increased dramatically
from July, with peak abundance in August at all 6 stations
(Figures 5A,B), dissipating by September. The pattern seen in
average monthly data (gene copies L−1) from 6 stations along
the Duplin River (taken simultaneously with samples used for
metal speciation) is consistent with data from weekly samples
taken at the mouth of the Duplin River (Marsh Landing, shown
in Supplementary Figure 6) and is therefore not an artifact
of our sampling regime. Comparison of the time course of
Thaumarchaeota abundance to that of [Cu2+] (Figure 5) shows
that the Thaumarchaeota abundance started to increase when
[Cu2+] decreased, with the bloom occurring during the period
of lowest of Cu2+ concentration (Figure 5A). Calculation of
the distribution of copper between L1 and L2 showed little

variation during the study (Figure 5B) with 90–99% of the
copper always bound with L1, suggesting that the concentration
of free inorganic copper was the only variable during this period
of possible relevance to the bloom of Thaumarchaeota.

DISCUSSION

Seasonality in the Data
The salinity in our samples showed a systematic seasonal increase
from April to September (Supplementary Figure 1A). Salinity
ranged from 13 to 18 in April to 23–27 in August, and 27–
31 in subsequent months. The ligand concentrations ranged
from 16 to 51 nM (L1) and 30 to 112 nM (L2) over the study.
High concentrations of both L1 and L2 in the low-salinity,
riverine, end-member (STN 10) demonstrate a contribution
of the freshwater source to the relationship between ligand
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FIGURE 4 | The relationship between the concentrations of (A) [Thiol+HS] against the total ligand (LT ), (B) thiourea-type thiols against L1, and (C) HSCu against L2.

Thiol measurements are in thiourea equivalents (nM) and HSCu are on the nM scale by multiplying with the binding capacity of 18 (Whitby and van den Berg, 2015).

April data includes the freshwater end-member station 10 sampled in April.

FIGURE 5 | The variation in Thaumarchaea abundance each month sampled compared to (A) the concentration of Cu2+, shown in femtomolar and (B) the %

distribution of copper bound to L1 and L2. Each data point shown is the average of 6 separate sample-stations, and the standard deviations are shown.

concentration and salinity (Figure 2), with the effect of local
freshwater inputs superimposed on this broader scale pattern.
The composition of Duplin River water cannot be modeled by
conservative mixing between fresh and seawater, as variation
in the strength and location of freshwater inputs violates
the assumptions of a 2-member mixing model (Smith and
Hollibaugh, 1993). Localized inputs on the Duplin River cause
major deviations in the salinity plots and, since sampling was
conducted over several months, it is not possible to derive a single
theoretical dilution line.

Despite the complexity of the system, L1 was generally
conservative with salinity except in September and October. In
June and September L1 demonstrated large variability between
stations of similar salinity, ranging from 34 to 49 nM at Sal
21 to 22, and 16.6 to 33.6 nM at Sal 29.6 to 29.9. These large
differences between stations of almost identical salinity indicate

that local processes, such as contributions from pore waters or
from temporally varying processes linked to biological activity,
affected conditions at individual stations. This suggests that as
well as a freshwater source, L1 is both produced and utilized
along the estuary and, as a result, local concentrations may vary
seasonally. This is consistent with the identification of L1 as
a thiol-type species, since sediment and pore waters are likely
sources of thiols (Kiene et al., 1990; Zhang et al., 2004), which
have been shown to diffuse out of sediments in similar shallow
water marshes (Chapman et al., 2009).

Comparison of the data (Figure 4C) showed HSCu to
correspond with L2 (slope 0.85 ± 0.08). Most of the humic
material along the estuary likely originates from terrestrial
material delivered to the study area by the Altamaha River,
although marine-derived humics may also be present from
exchange with coastal waters. The concentration of both L2
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and HSCu decreased with increasing salinity in April, October,
and December (Supplementary Figure 4), consistent with a
dominant terrestrial origin of these humic-type ligands and
similar to that found in other estuaries such as that of the Mersey
Estuary (Supplementary Figure 4). Between May and September,
concentrations of L2 and HSCu either remained constant or
increased with increasing salinity >25. This suggests a mid-
estuarine source of L2 and HSCu, which could be from increased
fluxes of sedimentary organic carbon into the estuary, potentially
partly linked to higher bioturbation by fiddler crabs and other
invertebrates during summer. Published records show DOC
concentrations range from around 3.0 to 9.0 mg/L along the
estuary and are not conservative with salinity (Hodson, 2005;
Medeiros et al., 2017). Like L2, the concentration of humic
substances was generally highest in spring and generally constant
from September to December, with elevated concentrations
relative to salinity in August.

Potential Issues of the Detection Window
and Freezing Temperature
A high detection window was necessary in order to resolve strong
ligands in this work because the HSCu peak interfered with
the peak for CuSA at lower SA concentrations despite sample
dilution. The high detection window may have impacted the
detection of weaker ligands if these are out-competed by the
added ligand (SA). At the detection window used here (20 µM
SA, αCuSA = 105.6) competing ligands are required to bind copper
with αCuL >> 103.6 to have an effect of >>1%, and preferably
nearer 104 to take variability of the data into account. The L1-
type ligands had values for log K′

CuL1 >14, which means values
for αCuL1 > 106 at the 10 nM level, and the L1 species were
easily detectable. The L2 type ligands had values for log K′

CuL2
> 12.1, giving values for αCuL2 > 104.1, sufficiently strong for
detection at the 10 nM level. The actual concentrations of L2 were
well above the 10 nM level (Supplementary Table 1), and values
for log K′

CuL2 averaged 12.2–13.0, therefore L2 was also readily
detected at this high detection window. However, putative (L3)
ligands with significantly lower complex stabilities (log K′

CuL3 <

11) would have caused relatively minor competition against the
SA unless at levels of L3 > 10−7 M, therefore these were not
detected in this work.

A secondary methodological issue is that samples were frozen
at −80◦C immediately after filling to be shipped by courier from
GA to the UK for analysis. Once reaching the UK they were
stored at −20◦C. It has been shown that open ocean samples
stored at −80◦C can provide different results in comparison
to samples that were not frozen or that were stored at −20◦C
(Buck et al., 2012) and this must be considered in relation to
the ligand data presented here. Buck et al. (2012) found that
samples from the chlorophyll a maximum frozen at −80◦C
underestimated [L] compared to unfrozen samples, but found the
same log Cu2+ (14.56 and 14.51, respectively). They also reported
that [L] was overestimated and log K′

CuL1, was underestimated
if deep-water (3,000 m) samples were frozen, although again
this resulted in similar log Cu2+ values (e.g., 13.1, 12.5, and
12.7 for unfrozen, frozen at −20◦C and at −80◦C, respectively).

Since the composition of DOC from estuarine waters is likely
more similar to productive surface waters than to old, deep
water, we would therefore most likely be underestimating the
ligand concentration and overestimating log K′

CuL, resulting in
an overestimation (or no change) in our estimate of Cu2+

concentrations.

Complex Stabilities and Possible
Competition Effects
The two ligand classes were distinguished on the basis of an
average difference in complex stability (log K′

CuL) of 1.7 log
units, with log K′

CuL1 ranging from 14 to 15.2 (mean 14.5)
and log K′

CuL2 ranging from 12.1 to 14 (mean 12.8). The large
ranges for the complex stabilities suggest that either there are
more ligands within each group (e.g., substituted thiols and
reduced sulfur compounds or different compounds within the
humic species), that data are affected by competing reactions,
or both. Competition is an aspect that has not been considered
experimentally in this work. This competition could be a result
of different metal ions binding the same ligand, thus lowering
the apparent complex stability. Several metals, like iron, copper,
cobalt, and aluminum are known to bind humic substances
in seawater and will therefore compete (Yang and van den
Berg, 2009; Abualhaija et al., 2015; Whitby and van den Berg,
2015). It is not yet known whether this affects the apparent
complex stability significantly. Studies on SRHA standards have
demonstrated that the degree of competition between copper
and calcium for binding sites in humic substances is weaker
than expected (Averett et al., 1994), potentially due to the
larger ionic radius of calcium, or because calcium binds more
strongly to functional groups containing oxygen, whereas copper
forms stronger complexes with sulfur and nitrogen (Nieboer and
Richardson, 1980).

Variation in the complex stability could also be due to
a seasonal change in the composition of the components
contributing to each ligand class; for example, humic material
with higher log K′

CuL2 may be more common later in the
year. Similarly, the composition of the compounds contributing
to the thiol peak may change, either through variation
in the type of compounds released biologically across the
season or by modification of the chemical structure of the
compounds over time. For example, thiols can be microbially
transformed from one type to another: glutathione can be
transformed into mercaptoacetate and mercaptoethanol via
cysteine and 3-mercaptopyruvate (Kiene et al., 1990). Although,
voltammetry can distinguish between some similar thiols (such
as glutathione and cysteine) it lacks resolution to conclusively
distinguish between other similar compounds (e.g., thiourea
and thioacetamide) unless the deposition potential is varied in
detail (Laglera et al., 2014). The natural thiols detected here
could therefore be a mixture of thiols with similar peaks varying
seasonally, and/or include degradation products of localized algal
blooms, and include different sulfur species. Furthermore, a
small contribution from a low concentration of a very strong
ligand such as a chalkophore (Kim et al., 2004) would not
be identified but could exaggerate the apparent value for log
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K′
CuL1. Chalkophores are high affinity, copper-complexing agents

secreted by specific bacteria forming very strong Cu(I) complexes
(Hakemian et al., 2005; El Ghazouani et al., 2012). Chalkophores
may be an important ligand in copper complexation, but very
little is currently known about the predominance and significance
of chalkophores in the marine environment. Models suggest they
can outcompete complexation by fulvic-type material (Kraemer
et al., 2015). As with any speciation method, CLE-CSV can only
detect a certain fraction of the entire pool of ligands, limited by
the detection window (Wells et al., 2013; Monticelli and Caprara,
2015), which can span 2–3 orders of magnitude in αCuL (Apte
et al., 1988). This, and the fact that ligands with similar log K′

CuL
are difficult to resolve within a detection window, mean that
unresolved species lead to weighted averages of all ligands within
that window (Miller and Bruland, 1997). Therefore, the presence
of a very strong ligand at low concentration could exaggerate the
values for log K′

CuL1 even if L1 was mostly comprised of a slightly
weaker ligand. This may explain the higher than expected log
K′
CuL1value for the thiol.

Composition of the Ligand Classes
A study on the Elizabeth River in Virginia measured six different
thiol compounds with concentrations varying seasonally
(Dryden et al., 2007). They did not test for thiourea or
thioacetamide, but found that mercaptosuccinic acid and
2-mercaptoethanol (which we did not test) correlated with
the ligand concentration. It is possible that mercaptosuccinic
acid could be contributing to the thiol peak observed in our
samples, but not 2-mercaptoethanol as its peak potential is more
positive and similar to that of cysteine (Casassas et al., 1985).
The thiol concentration in the Elizabeth River, particularly
mercaptosuccinic acid, was also found to be highest in June
similar to our findings, as well as being high in October.

Previous studies in estuarine waters have suggested that thiols
likely contribute to the weaker L2 ligand class, which binds 3–23%
of copper (Laglera and van den Berg, 2003) with lower log K′

CuL
values than those observed here (Luther et al., 1991; Walsh and
Ahner, 2013). Our results show the concentration of the natural
thiol best correlates with that of the L1 ligand class with a high log
K′
CuL1, although as discussed this may be the weighted average of

thiols plus other very strong ligands present at low concentration.
Another study of copper complexation in organic-rich estuarine
waters also detected two similar ligand classes with log K′

CuL
values of log K′

CuL1 of 14.9–15.9 (present at a concentration of
<4 nM) and log K′

CuL2 of 11.8–12.7, at concentrations of 50–
170 nM (Muller and Batchelli, 2013). Muller and Batchelli (2013)
concluded that humic substances made up the stronger ligand
class (as opposed to L2 as we suggest) based on the riverine source
and estuarine mixing behavior of their L1 ligand class. The L1
and L2 ligand classes in our study were of similar concentration
to one another and a reasonable correlation (though weaker)
can also be drawn between L1 with humic substances and L2
with the thiol concentration. However, Suwannee River humics
(SRHA) have a log K′

CuL = 12 (Whitby and van den Berg, 2015),
too low to account for L1, and SRHA is likely a good candidate
for the humics since the Altamaha and Suwannee rivers are
geographically close, drain similar terrestrial environments and

are chemically similar (Annett et al., 2008). Furthermore, the
results of the model ligand titration suggest that within a mixture
of humic acid and a thiourea-type thiol, the concentration of
thiourea corresponds to L1 and humics to L2 providing further
support for our interpretation of the composition of the ligand
classes in the samples.

The correlation of the thiourea-type thiol and HSCu with
L1and L2, respectively, suggests that on average thiols could
make up ∼40% and humics around 60% of the total available
copper ligands (LT) measured at this detection window in the
estuarine waters around Sapelo Island, potentially in addition to
low concentrations of very strong ligands incorporated into L1 or
much weaker ligands not detected. The percentage distribution of
strong and weaker ligands is similar to that found in the Mersey
Estuary where humics were around 69% of total available copper-
binding ligands (Abualhaija et al., 2015), whereas thiols have
previously been found to account for ∼15% of the total ligand
in the Elizabeth River (Dryden et al., 2007).

Although, both ligand classes were in excess of copper with
the bulk of the ligand pool composed of L2, calculation of
the speciation of copper over L1 and L2 showed that the
distribution of copper was 82–99% associated with L1(as CuL1).
CuL1 generally decreased with increasing salinity across the
period studied, whereas the resulting percentage bound to L2
(CuL2) generally increased with increasing salinity, noticeably
increasing during the course of the Thaumarchaeota bloom.
Due to the presence of the strong L1-ligands, the free cupric
ion concentration was also extremely low throughout the study.
Concentrations of Cu2+ ranged from 0.9 to 7.5 fM and generally
increased with increasing salinity, despite Cud decreasing with
increasing salinity. The concentration of Cu2+ in the Duplin
River decreased from a mean of 3.8 ± 2.2 fM in April (range
2.6–7.5 fM) to a minimum of 0.4 ± 0.1 fM in August (range
0.2–0.5 fM) during the peak of the Thaumarchaeota bloom
(Supplementary Figures 6A,B).

Previous measurements suggest that thiols bind copper as
a Cu(I) species (Leal and van den Berg, 1998; Konigsberger
et al., 2015; Barman et al., 2016). From our assumption
based on the correlation between thiourea-type thiols and
L1, an important deduction from this work is that most of
the copper in these coastal waters would appear to occur
in the reduced form of Cu(I). Copper is thought to occur
predominantly as Cu(II) in natural waters containing dissolved
oxygen, with around 10% of inorganic copper in surface seawater
as Cu(I) due to its stabilization as a chloride species and
photochemical effects (Nelson and Mantoura, 1984; Jones et al.,
1985; Moffett and Zika, 1988). Our data may suggest that
this Cu(I) fraction is much greater, and may in fact dominate
the copper chemistry in our samples in the form of a Cu(I)-
thiol species. This is consistent with findings along the Scheldt
Estuary, where the fraction of Cu(I)/Cutot ranged from 5 to 80%,
depending on a combination of salinity (chloride stabilization)
and thiol complexation (Buerge-Weirich and Sulzberger, 2004).
The tendency for thiol species and Cu(I) to occur in these
waters is further enhanced at low concentrations of dissolved
oxygen during the summer, which happens regularly at the
Marsh Landing site (Hollibaugh et al., 2014) (data from
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Sapelo Island National Estuarine Research Reserve archived at
http://cdmo.baruch.sc.edu/get/export.cfm). It should be noted,
however, that recent work using a fluorometric method and
direct titration of thiols with Cu(I) (Walsh and Ahner, 2013) has
indicated that some Cu(I)-thiol complexes may be considerably
weaker than previously suggested by electrochemical techniques
(e.g., Leal and van den Berg, 1998), and therefore not stable in
natural seawater systems. Further work is necessary to determine
the actual significance of Cu(I) organic complexes in oceanic and
estuarine regimes.

Implications for Thaumarchaeota
A major finding of our study is that the Thaumarchaeota
in the Duplin River were found to grow and even thrive
(ammonia oxidation rates >100 nmol L−1 d−1, Tolar et al.,
2016a,c) at extremely low Cu2+ concentrations, sub-10−15 M,
well below Cu2+ concentrations thought to be limiting ([Cu2+]
< 10−12.7 M; (Amin et al., 2013)). During this study there
was no obvious limitation of ammonia oxidation as a result of
the low Cu2+ concentrations, in contrast to previous reports
for Cu2+ concentrations >6 × 10−15 M in the presence of
strong copper-binding ligands (Jacquot et al., 2014). Work with
the Thaumarchaeote Nitrosopumilus maritimus strain SCM1
has suggested possible copper limitation when [Cu2+] < 0.2
pM (Amin et al., 2013), whereas our work demonstrates that
closely related (>99% 16S rRNA similarity) Thaumarchaeota
apparently grow well at 1/1,000th this concentration of Cu2+.
These comparisons suggest that there is either large variability in
the copper requirements between different strains, which seems
unlikely given the fundamental roles played by Cu-containing
metalloenzymes in AOA (Walker et al., 2010), or that some forms
of complexed copper are available to Thaumarchaeota. Although
Cu2+ was extremely low, the concentration of Cud was much
higher than Cu2+, with mean Cud 6.7 nM in August. During the
bloom, up to 99% of copper was bound to the strongest L1 ligand,
with log K′

CuL1 as high as 15.2, suggesting that its dissociation
is kinetically slow. It is therefore likely that Thaumarchaeota are
indifferent to the low Cu2+ concentration and are able to access
the strongly complexed copper directly.

One explanation for the difference observed in natural
samples compared to laboratory experiments may be the use
of artificial ligands such as EDTA to induce Cu2+ limitation.
Thaumarchaeota may not be able to access EDTA-bound Cu(II),
however it is plausible that they have mechanisms for obtaining
naturally complexed copper [such as thiol-bound Cu(I)]. Coastal
and oceanic phytoplankton species have been demonstrated to
access Cu bound within strong organic complexes (Guo et al.,
2010) and some open ocean phytoplankton can acquire copper
complexed with natural and artificial ligands with log K′

CuL up
to 15.8 (Semeniuk et al., 2015). A study on San Francisco Bay
found copper to be 99% complexed, at log K′

CuL =12.1, and
suggested that this complexation was dominated by the presence
of anthropogenic EDTA in those waters (Bedsworth and Sedlak,
1999). Microcosm experiments on a diatom bloom within those
samples revealed that this complexed Cu was largely unavailable
to the species studied (Beck et al., 2002) despite the relatively
low log K′

CuLvalues. Furthermore, diatoms and coccolithophores

demonstrate reduced growth rates when cultured in the presence
of EDTA (Muggli and Harrison, 1996), and Amin et al. (2013)
report that EDTA concentrations of 11–100 µmol L−1 proved
lethal to N. maritimus.

Cu uptake has been shown to be controlled by the oxidation
state of the metal and by the metal:ligand ratio, rather than by the
concentration of inorganic species of Cu in solution (Semeniuk
et al., 2009). The speciation of Cu will affect its availability to
microorganisms depending on whether uptake is as Cu(I) or
Cu(II), as the uptake may involve a change in oxidation state with
associated reaction rates. It is unclear whether Thaumarchaeota
are acquiring the thiol-bound copper [as Cu(I)], or the humic-
bound copper [as Cu(II)]. Although, in terms of availability it
should be easier to access the more weakly bound, L2-complexed
copper, we hypothesize that the Thaumarchaeota are accessing
the more strongly bound, L1-complexed copper, thought to be
thiols, as this is the more abundant fraction. This is consistent
with uptake studies showing that addition of Cu(I) ligands
enhanced Cu uptake in presence of organically bound Cu(II),
suggesting that the mechanism for Cu(II) uptake may even rely
on the enzymatic reduction of Cu(II) to Cu(I) (Semeniuk et al.,
2015). Cu(II) is reduced to Cu(I) within 2–40 min by Cu(I)
binding thiols like glutathione and cysteine (Leal and van den
Berg, 1998). Cu-limitation has been demonstrated to increase
rates of cell surface reduction of Cu(II) to Cu(I) in Emiliania
huxleyi (Walsh et al., 2015). They demonstrated that cysteine
can increase the bioavailability of copper to copper-limited cells
through the reductive release of Cu(I) fromCu(II) ligands such as
EDTA. This mechanism may be relevant in Duplin River waters
where free copper is very low but L1-bound copper, thought to
be thiol-bound and potentially amounting to up to 99% of the
dissolved copper, is relatively abundant.

The mechanism for copper uptake by Thaumarchaeota is
not fully understood. The bloom starts when the free Cu′ is
already very low (Figure 5A), indicating that the availability of
inorganic Cu′, whether as Cu(I) or as Cu(II), is not important.
We hypothesize that the copper arrives at the cell as a Cu(I)-
thiol species, where there is a direct exchange of copper to Cu-
binding groups on the cell wall, allowing active transport of
the copper into the cell through a high affinity transporter, as
described for E. huxleyi (Walsh et al., 2015). We suspect that the
low Cu2+ is not driven directly by the Thaumarchaeota through
production of L1, but rather that L1 is released independently,
likely by other microorganisms in the water column or from the
sediment and pore waters. Other work has demonstrated that the
Thaumarchaeote N. maritimus SCM1 did not release strong Cu-
binding ligands when under low copper stress (Amin et al., 2013)
and the concentration of L1 does not correlate with the onset of
the bloom.

Possible Sources of the Ligands
The concentrations of both L1 and L2 were high in the freshwater
end-member suggesting a terrestrial or freshwater source for
both ligand classes, but both also displayed addition and removal
processes along the estuary. Other species that bloom in the
area include numerous bacteria (Fallon et al., 1986; Gifford
et al., 2011, 2013), diatoms (Williams, 1964; Pomeroy et al.,
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1981), green algae and euglenoids as well as dinoflagellates
(Berman, 1983). The dinoflagellate Amphidinium carterae, more
common in coastal regions, has been found to produce very
strong ligands (Croot et al., 2000) and dinoflagellates, specifically
Kryptoperidinium sp., have been documented to bloom in August
in the Duplin River (Berman, 1983). A study on the seasonal cycle
of copper speciation within a fjord in Sweden also found stronger
ligands in the summer months (log K′

CuL 12.9–14.2) causing a
pCu of 11.7–13.8 (Croot, 2003). The L1 ligands measured in
the fjord were thought to be related to the seasonal cycle of
Synechococcus blooming in the area at this time, and which are
known to produce L1 ligands (Moffett et al., 1990; Moffett, 1995).
Synechococcus are the second most abundant bacterioplankton
fraction in waters offshore of the Duplin River in summer (Lu
et al., 2015). As well as water column sources for ligands, likely
sources of thiols are benthic microbes and sulfur-containing
amino acids within the sediment (Kiene et al., 1990; Chapman
et al., 2009), whilst the humics in this type of environment
are likely products of relatively recent degradation of local
plant matter (Averett et al., 1994) such as fungal breakdown
of lignocellulose (Newell, 2001; Buchan et al., 2003). Spartina
alterniflora and many of the higher plants in the marsh also
release dimethylsulfoniopropionate (DMSP) (Bacic et al., 1998;
Kiehn and Morris, 2010), which can add be an additional source
of thiols.

CONCLUSION

Our study indicates that thiols and humic substances are
the dominant ligands for copper within the Duplin River
estuary, and waters around Sapelo Island. The evidence suggests
that around 90% of Cud is complexed to strong L1 ligands,
thought to be a thiourea-type thiol based on the correlation
with the concentration of L1. Although, this work contributes
to our understanding of the identity of the ligand classes,
combining this work with additional ligand characterization
methods would better identify the nature of the thiols and
other compounds dominating Cu complexation in these waters.
The good agreement between LT and [thiols + HSCu], as well
as the success of the model ligand titration in distinguishing
between model compounds as two separate classes, is consistent
with previous studies suggesting that thiols and HSCu are
the dominant ligand types responsible for controlling copper
speciation in estuarine environments and can induce very low

concentrations of Cu2+. However, low concentrations of a very
strong ligand could be contributing to the high log K′

CuL1 values
we found and influencing the Cu2+ concentration. It is likely
that low-oxygen sulfur-containing muds are a source of the thiols
and further investigation into this process would add to our
understanding of this complex system.

A key finding of this study is that Thaumarchaeota that bloom
regularly at the study site do not appear to be limited by low
inorganic copper availability and are capable of growth and
activity at free Cu2+ concentrations of 0.4 × 10−15 M (pCu
15.4), previously thought to be limiting. It is likely that, since
Thaumarchaeota appear to have a high copper requirement, they
have developed pathways for obtaining copper from strongly
bound species. Based on our data, we hypothesize that the
Thaumarchaeota are utilizing complexed copper, possibly as
thiol-bound Cu(I). Future studies could focus on Cu availability
to natural populations of Thaumarchaeota in a laboratory setting,
using natural ligands to induce limitation rather than artificial
compounds such as EDTA.
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