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In order to understand how mesozooplankton assemblages influenced phytoplankton in
coastal and estuarine waters, we carried out a monthly investigation on mesozooplankton
composition at two contrasting stations of Hong Kong coastal and estuarine waters
and simultaneously conducted bottle incubation feeding experiments. The assemblage
of mesozooplankton was omnivorous at both stations with varying carnivory degree
(the degree of feeding preference of protozoa and animal food to phytoplankton) and
the variations of carnivory degree were significantly associated with microzooplankton
biomass (ciliates for the coastal station, both ciliates and dinoflagellates for the estuarine
stations) and physical environmental parameters (primarily salinity). High carnivory
was primarily due to high composition of noctilucales, Corycaeus spp., Oithona
spp. and Acartia spp. Results of feeding experiments showed that grazing impacts
on phytoplankton ranged from —5.9 to 17.7%, while the mean impacts were just
<4% at both stations. The impacts were size-dependent, by which mesozooplankton
consumed around 9% of large-sized phytoplankton while indirectly caused an increase
of 4% of small-sized phytoplankton. Mesozooplankton clearance rate on phytoplankton,
calculated from the log response of chlorophyll a concentrations by the introduction of
bulk grazers after 1-day incubation, was significantly reduced by increasing carnivory
degree of the mesozooplankton assemblage. The mechanism for the reduction of
mesozooplankton clearance rate with increasing carnivory degree was primarily due to
less efficient of filtering feeding and stronger trophic cascades due to suppression of
microzooplankton. The feeding rates of mesozooplankton on microzooplankton were not
obtained in this study, but the trophic cascades indirectly induced by mesozooplankton
carnivorous feeding can be observed by the negative clearance rate on small-sized
phytoplankton. Overall, the main significance of this study is the empirical relationship
between carnivory degree and clearance rate, which allow researchers to potentially
predict the herbivory of mesozooplankton in the nature without conducting feeding
experiments.
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INTRODUCTION

Marine mesozooplankton are key trophic components in
transferring materials and energy from primary producers to
higher trophic levels and linking microbial food web to marine
classic food chain. Mesozooplankton are a diverse assemblage,
including herbivores, omnivores and carnivores, with broad
feeding spectra and flexible feeding strategies, they are also
important grazers for microbial components (e.g., diatoms,
flagellates, dinoflagellates, and ciliates; Kleppel, 1993; Gifford
et al., 2007). Some copepod species are able to prey on algal cells
attached to detritus or attack fecal pellets (Turner, 2004). Fine-
filtering feeders such as larvaceans and barnacle larvae might
be able to capture pico-sized particles (Scheinberg et al., 2005;
Vargas et al., 2006), while marine cladocerans and veliger larvae
are able to capture the smallest nanoflagellates (Katechakis and
Stibor, 2004; Vargas et al., 2006).

Mesozooplankton composition is affected by hydrological
conditions as well as food compositions, especially in coastal
and estuarine areas where water column is unstable and
plankton succession is frequent (Roman et al., 2000; Marques
et al, 2007; Chen et al, 2011). It has been reported by
many field studies that when omnivorous species dominate in
assemblage, mesozooplankton or copepods (a major group of
mesozooplankton) often prefer feeding on microzooplankton
to phytoplankton due to larger sizes and higher nutritional
quality of microzooplankton (e.g., Stoecker and Capuzzo, 1990;
Gifford, 1991; Fessenden and Cowles, 1994; Atkinson et al,
1996; Nejstgaard et al,, 2001; Zeldis et al., 2002; Calbet and
Saiz, 2005; Liu et al., 2005b; Gifford et al., 2007). Predation
on microzooplankton is also an important feeding strategy
of omnivorous species that are able to switch their feeding
behaviors to conquer food limitation or to survive during
nuisance phytoplankton blooms in coastal waters (Kigrboe et al.,
1996; Nejstgaard et al, 1997; Gifford et al., 2007). On the
other hand, microzooplankton are generally the main source of
phytoplankton loss at most marine systems (Calbet and Landry,
2004). The predation of mesozooplankton on these intermediate
grazers will inevitably cause a release of phytoplankton loss and
induce a trophic cascade effect on phytoplankton net growth
(Stibor et al., 2004; Sommer and Sommer, 2006). Such trophic
cascades in turn reduce the trophic effect of mesozooplankton in
controlling phytoplankton biomass.

Mesozooplankton feeding rate is the strength of trophic effect
of mesozooplankton on their prey. Clearance rate is a measure
of filtration rate of filtering feeders in cropping algal cells,
calculated from bottle incubation experiments (Frost, 1972). It
has been widely used to indicate the feeding rate per density
of grazers, since when the equations of Frost (1972) were
published. Clearance rate is often a functional response to prey
concentrations so that grazers will increase their search for those
preferred food items when such items are short in supply, while
decrease their feeding activities for those disliked ones. Therefore,
clearance rate can be a rough reference to indicate the feeding
selectivity of grazers among prey at a given incubation duration
(e.g., Atkinson et al., 1996; Liu et al., 2010). However, because of
the presence of an intermediate trophic level (microzooplankton)

and the effect of trophic cascades induced by simultaneous
mesozooplankton predation, clearance rate calculated from
bottle incubation method is actually the net strength of trophic
interaction caused by mesozooplankton feeding including both
direct consumption and indirect cascading. Cascading effects
can be apparent when cascading effect is stronger than direct
consumption that negative clearance rates are to be observed
(Nejstgaard et al., 2001).

Various biological factors (such as prey sizes and
concentrations, food  quality, feeding characteristics
of consumers, prey and predator diversity, and mixture of
trophic levels of grazers, etc.) contribute to of the strength of
trophic cascades in aquatic systems, among which the feeding
activities and taxonomy (high composition of omnivores and
carnivores) are the most important ones (Shurin et al., 2002;
Borer et al., 2005). For marine planktonic food web, the increase
of carnivorous feeding of mesozooplankton is the main reason
for driving trophic cascades (Sommer, 2008). For omnivorous
species, their effects on phytoplankton depend on their carnivory
degrees (the degree of feeding preference of protozoa and animal
food to phytoplankton). Thus, as for the entire assemblage
of mesozooplankton, higher composition of omnivorous and
carnivorous species would result in higher trophic cascades
and lower direct consumption on phytoplankton. However, the
omnivory degree of an omnivorous species or assemblage is so
far hard to quantify (Stevens et al., 2004a,b). Traditional method
to measure mesozooplankton predation requires incubation and
expertise to count microzooplankton, which is time-consuming
(e.g., Atkinson et al., 1996; Zeldis et al., 2002; Gifford et al., 2007).

In this study, we aim to investigate how omnivorous
mesozooplankton assemblages influence phytoplankton of
different sizes and what the magnitudes of grazing impacts
are. We hypothesize that mesozooplankton clearance rates on
phytoplankton should decrease with increasing proportion
of predators or increasing net carnivory degree of the entire
mesozooplankton assemblage. To achieve our objectives, we
conducted mesozooplankton feeding experiments monthly in
a coastal site and an estuarine site of Hong Kong waters to
measure feeding rates of mesozooplankton on phytoplankton
of different sizes. As a direct measurement of mesozooplankton
carnivory degree is not possible, we adopted an alternative
approach to estimate the carnivory degree by assigning a rough
estimation of a carnivory degree (0, 0.25, 0.5, 0.75, and 1) to each
mesozooplankton species based on previous published feeding
strategies and habits, in an attempt to obtain a relationship
between the carnivory degree of a mesozooplankton assemblage
and its clearance rates on phytoplankton of different sizes.
Results of this study will provide insight information of how
variations of carnivory degree of mesozooplankton assemblages
affect the structure of marine planktonic food webs.

MATERIALS AND METHODS

Sampling and Analysis

We carried out monthly samplings of plankton biomass together
with mesozooplankton feeding experiments (bottle incubation
method) at two contrasting stations of Hong Kong coastal
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waters (mesotrophic vs. eutrophic). Samples of seawater and
mesozooplankton were collected from two contrasting sites of
Hong Kong coastal waters (Figure 1) on a roughly monthly
basis at two periods from May 2007 to February 2008 and from
February 2009 to February 2010 (total 20 months for each site).
The western estuarine site (22° 21.324’ N, 113° 56.783' E) is
located at the edge of the Pearl River estuary on the west side
of Hong Kong (hereafter, WE). The ecosystem of this site is
significantly influenced by the Pearl River, the second largest
river in China in terms of freshwater discharge. The influence is
particularly strong, bringing a great amount of nutrients during
wet season when southwest monsoon is prevailing. The eastern
coastal-oceanic site (22° 20.453' N, 114° 17.703" E) is located
in Port Shelter on the east coast of Hong Kong (hereafter, EO),
which is affected by shelf and oceanic waters from the South
China Sea. Nutrients at eastern coastal water are generally lower
than the western estuarine water, until a coastal current rich in
nutrients intruding during early winter when northeast monsoon
is prevailing (Yin, 2002; Chen et al., 2009 and Chen et al., 2011).
Water depth of both sites is about 17 m.

Temperature and salinity were recorded with a multi-probe
sensor YSI6600 (YSI Inc.). Ambient seawater was collected by
immersing a 20-1 polycarbonate carboy below the water surface.
Concentrations of chlorophyll a (Chl a) in different size fractions
of phytoplankton were determined by filtering duplicate 250-
500ml of seawater from the carboy onto 20 and 2 pm PC
membrane filters (5 wm for the second sampling period) and
GF/F glass-fiber filters by a cascading filtering device under
low vacuum pressure. After extraction with 90% acetone, Chl a
was analyzed by a Turner Design fluorometer. For determining
microzooplankton biomass, 100 ml seawater was taken from the
carboy and fixed with 5% acidic Lugol’s solution Cell numbers
and bio-volumes of ciliates and dinoflagellates were analyzed
under an inverted microscope and then converted to biomass
based on empirical formulas (Putt and Stocker, 1989).

Mesozooplankton was collected by towing a plankton net
(0.5m diameter, 167 pm mesh size) equipped with a digital
flow meter (HYDRO-BIOS) in the upper part of the water
column (usually from about 10m to surface with a speed of
about 0.5m s~!). The contents of the cod-end were transferred
into plastic bottles and adjusted to a volume of 500 ml using
prescreened seawater. Mesozooplankton samples were preserved
with formalin (4%final concentration) for identification and
counting. Another net tow was operated at the same way to
capture live mesozooplankton for grazing experiments. Live
animals were immediately placed into a cooler filled with
surface seawater and took back to laboratory for further process
within 1 h.

Mesozooplankton Grazing Experiments

The procedure of mesozooplankton grazing experiments had
been described by Liu et al. (2010). Briefly, ambient seawater
from the carboy was prescreened through a 200 wm mesh to
remove mesozooplankton and siphoned into five 2.4 1 PC bottles
(3 treatments and 2 controls). Live mesozooplankton in the
cooler were gently mixed and an aliquot (50-100ml) of live
mesozooplankton was added to each of the three treatment

bottles, respectively. Duplicate mesozooplankton aliquots of the
same volumes were filtered onto pre-weighed PC membrane
to determine dry weight of grazers added to each treatment
bottle. Nutrients (10 pmol 17! NaNO3 and 1 wmol 1=! KH,POy,)
were added to all bottles to promote phytoplankton growth and
eliminate the effect of mesozooplankton excretion. All bottles
were then capped and incubated for 24 h in an out-door
incubator cooled by running seawater.

At the end of incubation, mesozooplankton were removed
from the bottles. Final Chl a concentrations of each size fraction
(<2 pm, 2 ~ 20 wm, >20 wm) in all bottles were determined as
described above. The changes of Chl a concentrations during the
incubation were applied to calculate mesozooplankton clearance
rate (F,1-mg~!-d~!) based on equations of Frost (1972):

ke — ky
= —X

F
dw

|4

where dw (mg) is the dry weight of mesozooplankton that was
added into the treatment bottles; V (1) is the volume of bottles;
ke (d71) and k¢ (d71) are the chlorophyll a-based growth of
phytoplankton in controls and treatments, which are calculated
by the following equation:

Ce
k=(n )t

where Cy and C, are the concentrations of Chl a (ug~l_1)
at the beginning and the end of the incubation, respectively;
t (d) is the time of incubation. In case of contamination by
abundant large-sized phytoplankton (>20 wm) in net tow in a
few special months, we calibrated the initial concentration of Chl
a by measuring the Chl a concentration in the mesozooplankton
aliquots. To provide the information of the certain amount of
Chl a (ug) that was ingested by a unit of mesozooplankton (mg)
per day (d), we calculated the ingestion rate (I, jLg-mg~!-d~!) of
mesozooplankton on phytoplankton by the following equation:

I'=F x Cpean

where Ciean (g17!) is the mean Chl a concentration of
phytoplankton during the incubation period and can be
calculated through:

Ce_CO
InC,—InCp’

Cmean =

Daily grazing impacts (GI, %) of mesozooplankton on
phytoplankton were calculated based on the in situ ingestion rate
per phytoplankton standing stock as the following equation:

w
Gl = x t x 100

0
Mesozooplankton Identification and the

Criteria for Determining Carnivory Degree
For identification and quantitative analysis of mesozooplankton,
duplicate 5-50 ml of the preserved samples were settled
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FIGURE 1 | Map of Hong Kong waters showing two stations, WE in western estuarine waters and EO in eastern coastal water. Circle around Hong Kong indicate the
Special Administrative Regions of China.

in a HYDRO-BIOS plate chamber and analyzed under a
stereomicroscope to species level when possible. Abundant
species and non-abundant species were counted separately.

The carnivory degree of a mesozooplankton assemblage that
was added to grazing treatments was determined by weighted-
average of the carnivory degree of each species. In order to
quantify the degree of carnivory of individual species, we
manually established five levels of carnivory degree (0, 0.25, 0.5,
0.75, and 1) based on their feeding behavior and dietary habits
in natural environments according to the previously published
reports and reviews. Generally, the criteria to define the dietary
habits of a species in this study only considered the relative
importance of phytoplankton, microzooplankton and metazoans
(including larvae and eggs) in diets. Other food sources like
detritus and copepod fecal pellets were not considered in this
approach. Basically, the carnivory degree of an individual species
was referred to the efficiency of predating heterotrophic grazers,
ranging from herbivores (inefficient predators), omnivores (less
efficient) and carnivores (high efficient). Details of feeding mode,
carnivory degree of individual species and represent literature
sources are shown in Table 1.

The feeding mechanism of herbivores was primarily filtering
feeding using fine filtering appendages to capture small-
sized particles. Since large-sized particles including most
microzooplankton, zooplankton eggs and copepod nauplii are
not their food source, we defined the carnivory degree of
herbivores as 0. Carnivores (carnivory degree = 1) in this
study were defined rather broad, referring to those species that
mainly use positive ambush feeding mode to capture mobile
protozoans and animals. Omnivores have a diverse feeding mode,
including filtering feeding, ambush feeding and switching feeding
behavior between filtering and ambush feeding. We defined three
different levels of carnivory degree for omnivores, depending
on of the levels of heterotrophs in their diets. Species that
primarily apply filtering feeding behavior and prefer small-
sized phytoplankton at most time have a carnivory degree of
0.25. Only a small part of microzooplankton is occasionally
ingested by these species. Filtering feeders that have no apparent
preference on either phytoplankton or microzooplankton have
a carnivory degree of 0.5. They generally apply filtering feeding
behavior with coarse filtering appendages, so the size range of
their diets is rather broad. Species that can positively switch

Frontiers in Marine Science | www.frontiersin.org

4 June 2017 | Volume 4 | Article 186


http://www.frontiersin.org/Marine_Science
http://www.frontiersin.org
http://www.frontiersin.org/Marine_Science/archive

Chen et al.

Mesozooplankton Feeding on Phytoplankton

TABLE 1 | Carnivory degree of mesozooplankton species in Hong Kong coastal and estuarine waters.

Feeding strategies

Feeding habits

Carnivory degree

Represent literature

Copepods

Nauplius Filtering Herbivory 0 Turner, 1984

Acartia spp. Filtering-ambush Omni-Carnivory 0.75 Kierboe et al., 1996; Rollwagen Bollens and
Penry, 2003

Acartiella sinesis Filtering-ambush Omni-Carnivory 0.75 Refer to other Acatiellae Acartia

Acrocalanus spp. Filtering Herbivory 0 Calbet et al., 2000

Calanus sinicus Filtering Omnivory 0.5 Turner, 1984; Huo et al., 2008

Calanoides carinatus Filtering Herbivory 0 Pasternak and Schnack-Schiel, 2001; Irigoien
et al., 2005

Canthocalanus pauper Filtering Herbivory 0 Timonin, 1971

Clytemnestra rostrata Unknown Omnivory 0.5 Refer to other harpacticoids Microsetella

Centropages orsinii Filtering-ambush Omnivory 0.5 Turner, 1984; Calbet et al., 2007

Corycaeus spp. Ambush Carnivory 1 Turner, 1984; Landry et al., 1985

Euterpina acutifrons Filtering Omnivory 0.5 Sheldon et al., 1986; Sautour and Castel, 1993

Metacalanus aurivillii demersal filtering Herbivory 0 reviewed by Bradford-Grieve, 2004

Microsetella spp. Ambush-cruising Omnivory 0.5 Koski et al., 2005

Oithona spp. Ambush Carnivory 1 Kierboe et al., 2009

Oncaea spp. Ambush Omnivory 0.5 Paffenhofer, 1993; Metz, 1998

Pachysoma punctatum Unknown Omnivory 0.5 Refer to other Oncaeidae

Paracalanus spp. Filtering Herbi-Omnivory 0.25 Paffenhdfer, 1984; Suzuki et al., 1999

Parvocalanus crassirostris Filtering Herbi-Omnivory 0.25 Calbet et al., 2000

Pontella Ambush Carnivory 1 Ohtsuka and Onbé, 1991

Sapphirina sp. Parasitic feeding on tunicates Carnivory 1 Heron, 1973

Macrosetella gracilis Attaching to Trichodesmium colony Omnivory 0.5 Roman, 1978

Subeucalanus subcrassus  Filtering-ambush Omni-Carnivory 0.75 Verity and Paffenhdfer, 1996

Temora spp. filtering Omnivory 0.5 Dam and Lopes, 2003

Tortanus forcipatus Ambush Carnivory 1 Ambler and Frost, 1974

Cladocerans

Evadne tergestina Filtering Omnivory 0.5 Kleppel et al., 1988

Penilia avirostris Filtering Herbivory 0 Atienza et al., 2006

Podon schmackeri Filtering Herbivory 0 Kim et al., 1989

Appendicularians Filtering using mucopolysaccharide house  Herbivory 0 Deibel, 1986

Salps Filtering using mucous net Herbivory 0 Madin, 1974

Barnacle larvae Filtering Herbivory 0 Turner, 1984

Decapod larvae Filtering Omnivory 0.5 Le-Vay et al., 2001

Polychaete larvae Cruising and filtering Omnivory 0.5 Fauchald and Jumars, 1979

Synchaeta spp. Filtering Herbivory 0 Egloff, 1988

Chaetognaths Ambush Carnivory 1 Szyper, 1978

Jellyfish lavae Ambush Carnivory 1 Hansson and Kierboe, 2006

Echinoid larvae Filtering Herbivory 0 Strathmann, 1971

Bivalve larvae Filtering Herbivory 0 Raby et al., 1997

Gastropod larvae Filtering Herbivory 0 Turner, 1984

Fish larvae Cruising and filtering Carnivory 1 Hunter, 1980

Noctiluca scintillans Engulfment Omni-Carnivory 0.75 Sekiguchi and Kato, 1976; Quevedo et al., 1999

Feeding strategies and feeding habits are determined according to literature.

their feeding modes from filtering feeding to ambush feeding
have a carnivory degree of 0.75. For example, Acartia species
ingest more microzooplankton than phytoplankton in most cases
to conquer food limitation or to fulfill nutritional requirement
according to many studies (e.g., Kiorboe et al., 1996; Rollwagen

Bollens and Penry, 2003; Yang et al., 2010), thus we defined this
group as omnivorous species with a high carnivory degree (0.75).

Because we only focus on the ingestion on phytoplankton
and microzooplankton, species that simultaneously apply other
feeding behaviors were also assigned to category of omnivores
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or carnivores, depending on what trophic levels they generally
influence. For example, detritivorous feeders like cyclopoid
species Oncaea and harpacticoid species Microsetella primarily
feed on particles attached to marine snow (Metz, 1998; Koski
et al,, 2005), while they are also able to capture algae and motile
heterotrophs (Paffenhofer, 1993), so they were considered as
omnivores with a carnivory degree of 0.5. Macrosetella gracilis
has a unique feeding behavior by attaching to Trichodesmium
colony and feeding on individual particles associated with the
colony, including Trichodesmium cells, ciliates and hydroids, etc.
(Roman, 1978). Thus, the carnivory degree of M. gracilis was
defined as 0.5. Other detritivorous cyclopoid species like Oithona
spp. and Corycaeus spp. were defined as carnivorous species
since ciliates and heterotrophic dinoflagellates can be their major
food items although they are able to ingest other forms of
particles such as fecal pellets and detritus aggregates (Turner,
1984). The carnivory degree of parasitic species Sapphirina sp.
was defined as 1, since this species influences and even kills
their host tunicates (Heron, 1973). Noctiluca scintillans were also
considered as omnivores with high carnivory degree (0.75), since
they are important predators of copepods and able to ingest
ciliates, dinoflagellates and diatoms as well (Sekiguchi and Kato,
1976; Quevedo et al., 1999).

Data Analysis

Means were compared by independent t-test and one-way
ANOVA wusing SPSS 16.0. To explain the variations of
mesozooplankton carnivory degree, we performed generalized
additive models (GAM) tests to reveal the partial effects of
predictors including physical-chemical parameters (temperature
and salinity) and biological parameters (size-fractionated Chl a
concentrations and biomass of ciliates and dinoflagellates). The
GAM tests were performed using the mgcv package in the version
2.14.0 of R software (The R Development Core Team, 2009). We
used Gaussian family (normal distribution) and cubic regression
spline to smooth the predictors, with a freedom of 3.

RESULTS

Temperature, Salinity and Chlorophyll a
Concentrations

The seawater conditions for mesozooplankton grazing

experiments exhibited large variations of temperature, salinity
and chlorophyll a concentrations, since the experiments were
carried out across two sampling years. Seawater temperature
ranged from 15.0 to 30.6°C, while the difference between the two
stations was small (Figure 2A). Salinity was apparently different
between the two stations (Paired-¢-test, t = 3.877, p = 0.001).
The salinity of WE, located at the edge of Pearl River estuary,
was apparently lower than EO and there was a drop in April
when the wet season (April to September) began (Figure 2B).
The lowest value of surface water reached 8.8 ppt in June.

Chl a concentrations ranged from 0.7 to 17.4 pg 17!, and
did not show the same patterns in the two sampling years
(Figure 2C). In the first sampling year (2007-2008), Chl a
concentrations were apparently higher at WE than EO (Paired-
t-test, t = 2.665, p = 0.026), except the winter (December to

February) during which an increase was observed in EO but not
in WE. The difference between the two stations was insignificant
at most months during the second sampling year (Paired-¢-
test, p > 0.05), except September (the end of wet season).
The seasonal variability of phytoplankton composition based on
sizes was complex at both stations (Figure 3), yielding variable
food conditions for mesozooplankton. Overall, the patterns were
rather contrasting between two sampling years at both stations.
The percentage of large-sized phytoplankton (>20 pm) in total
Chl a were 53 & 23% and 35 & 20% (mean = sd) in the first and
the second sampling year, respectively. The relationship between
concentrations of >20 wm Chl a and total Chl a was highly
correlated (Linear regression, R* = 0.957, p < 0.001), suggesting
that the variation of total phytoplankton abundance was mainly
due to the variation of large-sized phytoplankton (>20 pm).
Small-sized phytoplankton (<2 pm) only dominated during the
early summer of EO and early winter of WE at the first sampling
year; whereas they dominated at most months of the second
sampling year except September of WE.

Mesozooplankton Carnivory Degree

The net carnivory degrees of mesozooplankton assemblage
ranged from 0.16 to 0.75 (Figure4), indicating that
mesozooplankton assemblage were overall omnivorous but with
feeding selectivity (either phytoplankton or microzooplankton).
The difference between the two stations was not significant
(Paired-t-test, p > 0.05), but the variation trend was not
consistent between years. A slight increase of carnivory degrees
from summer to winter was observed for the first sampling
year for both stations, while there was a decrease for the second
sampling year at the same period for WE and a decrease
starting at autumn for EO. Overall, a gradient of carnivory
degree was achieved for treatments of mesozooplankton feeding
experiment. In half of treatments (months), carnivory degrees
of grazer assemblage were smaller than 0.5; whereas the degree
was around 0.5 in a quarter of treatments and was >0.5 in the
rest.

Looking at the composition (percentage in abundance),
species with carnivory degree <0.5 generally dominated in grazer
assemblages for most months, primarily due to Parvocalanus
crassirostris, Paracalanus spp. and their developmental forms,
marine cladocerans, and tunicates. In several cases during the
winter at PM7, the assemblage were dominated by noctilucales
with carnivory degree >0.5. High carnivory degree during
autumn in the second sampling year was primarily due to
contributions of Acartia erytharea and Corycaeus spp. The
dominance of highly carnivorous species was different between
years at WE where noctilucales dominated in the first sampling
year while Acartia spinicauda and Acartiella sinesis dominated in
the second sampling year.

Generalized additive models analyses revealed that
the variations of mesozooplankton carnivory degree were
significantly and nonlinearly correlated with variable factors
(Table 2). The deviances explained by the models were 92.9 and
73.4% for EO and WE, respectively. Generally, mesozooplankton
carnivory degree increased with increasing salinity and ciliate
biomass, while they decreased with increasing dinoflagellate
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FIGURE 2 | Temporal variation in environmental variables in Hong Kong coastal waters: (A) temperature, (B) salinity and (C) Chl a concentration.

biomass (Figure 6). Overall, carnivory degree was independent
on Chl a concentrations and the percentage of large-sized
phytoplankton (>20 wm). While the percentages of middle-
and small-sized phytoplankton significantly contributed to
explain the deviance of mesozooplankton carnivory degree.
The partial effects were high when the percentage of middle-
sized phytoplankton in total phytoplankton was around
30% and the percentage of small-sized phytoplankton was
low. This situation primarily occurred during the winter
(Figure 3).

At WE, mesozooplankton carnivory degree increased with
increasing dinoflagellates, decreased with increasing Chl a

concentrations and was independent on temperature (Figure 6).
The partial effect by salinity generally increased until when
salinity reached 25. The partial effect by ciliates on the variation
of mesozooplankton carnivory had a U-shaped relationship with
ciliate biomass. It was contrasting to EO if only considering
the lower scale of biomass (0-40 g 171) that the partial
effect of ciliates decrease at WE until when ciliate biomass
was larger than 40 g 17!, The partial effect by large-sized
phytoplankton (>20 pm) on mesozooplankton carnivory degree
declined when the percentage of large-sized phytoplankton
was <0.5, while the effect increased when the percentage
was >0.5.
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FIGURE 4 | Temporal variation in mesozooplankton carnivory degree.

Mesozooplankton Clearance Rate mesozooplankton assemblage on phytoplankton, representing
Calculated from the change of Chl a concentrations, a net effect of mesozooplankton feeding on phytoplankton (a
mesozooplankton clearance rate in this study is the clearance of ~ balance of direct herbivory and indirect trophic cascades). Our
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result showed that mesozooplankton clearance rate on total
phytoplankton ranged from —0.3 to 1.1 I mg~! d~! and from
—0.2to 1.1 1mg~! d~! at EO and WE, respectively (Figure 7A).

TABLE 2 | Coefficients (F) and significance levels (p) of the effects of variable
predictors on mesozooplankton carnivory using Generalized additive model test.

Predictors EO WE
F P F P

Temperature 14.4 <0.001 2.2 n.s.
Salinity 58.5 <0.001 5.6 0.007
Chla 1.2 n.s. 9.1 0.004
Large 2.2 n.s. 12.5 <0.001
Middle 69.7 <0.001 5.3 0.011
Small 69.1 <0.001 1.5 n.s.
Ciliates 27.6 <0.001 13.3 <0.001
Dinoflagellates 42.2 <0.001 7.7 0.002

Predictors include temperature, salinity, biomass of ciliates and dinoflagellates, Chl
a concentrations of large-sized (Large), middle-sized (Middle) and small-sized (Small)
phytoplankton. n.s. means no significance.

No significant difference of mesozooplankton clearance rates
between the two stations was found (Paired-t-test, p > 0.05).
Seasonal pattern was also unclear. Nevertheless, negative
clearance rates were only observed during the winter. Peaks
of clearance rates were primarily observed during the spring.
The clearance rates on different size fractions of phytoplankton
were significantly different (one-way ANOVA, p < 0.001),
indicating that mesozooplankton had strong feeding selectivity
based on prey sizes. Generally, clearance rates on large-sized
phytoplankton were higher than those on middle- and small-
sized phytoplankton (Figure8). Median rates on middle-
and small-sized phytoplankton was close to or less than zero,
indicating that the grazing effects due to mesozooplankton was
minor or negative on these size-spectra of phytoplankton (note
that negative grazing rate causes increase of phytoplankton).
Due to the negative clearance rates on small phytoplankton, the
median rates for total phytoplankton were smaller than those on
the large-sized phytoplankton.

Overall, the variations of clearance rates were independent
to variations of total Chl a concentrations at both stations
(Figure 9), until the concentration was higher than 10 ug 17! at
WE where a functional response of clearance rate occurred. The
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relationship between clearance rate and total Chl a concentration
suggested that food condition for mesozooplankton at most cases
was overall unsaturated.

Mesozooplankton clearance rates were significantly correlated
with mesozooplankton composition (Figure 9B) and carnivory
degree (Figure 9C). Generally, the clearance rates decreased
when the percentage of species with high carnivory degree
(such as Acartia, Corycaeus, Oithona, and Noctiluca) in
total mesozooplankton assemblage increased (Figure 11).
On the other hand, the rates increased with increasing
percentage of species with low carnivory degree (such as
Penilia, Appendicularians, and barnacle larvae). The rates were
not influenced by percentage of species with intermediate
carnivory degree (such as Temora and Centropages). The
relationship between clearance rates and the net carnivory
degree of the entire mesozooplankton assemblage, shown in
Figure 9C, indicated that mesozooplankton clearance rate or
grazing rate was reduced by increasing carnivory degree (Linear
regression, R2= 0.2, p = 0.004). This pattern was consistent
between stations, despite of different dominant high carnivorous
species.

Mesozooplankton Ingestion Rate and

Grazing Impacts
The specific ingestion rate of mesozooplankton (the rate for
a given amount of mesozooplankton community) on total
phytoplankton Chl a ranged from —1.165 to 3.638 and from
—1.707 to 8.418 ug mg~! d7! at EO and WE, respectively
(Figure 7B). Rates were apparently higher during the wet season
at WE in the first year associated with high Chl a concentrations
(Figure 2C).

Averaged daily grazing impacts on total phytoplankton Chl
a standing stock were 3.8% (ranging from —0.8 to 16.2%)
and 3.2% (=59 ~ 17.7%) at EO and WE, respectively
(Figure 11). There was not a significant difference between
the two stations (Independent t-test, p > 0.05). For different
size fractions, grazing impacts on large-sized phytoplankton
were significantly higher than middle-sized and small-sized
phytoplankton for both stations (one-way ANOVA, p < 0.001;
Figure 11), suggesting an apparent size-selectivity. Mean impacts
on large-sized phytoplankton were 8.3% (—0.5 ~ 25.3%) and
9.7% (—0.4 ~ 39.3%) at EO and WE, respectively. Higher
values and peaks of grazing impacts on large-sized phytoplankton
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primarily occurred during late autumn and winter at EO, while  if only large-sized phytoplankton (>20 jum) were considered, the
occurred during summer at WE. Mesozooplankton grazing had ~ mean impacts were much higher (8.3 to 9.7%), which suggests
minor mean impacts on middle-sized (1.4 & 4.4% for EO and  an increase of mid- and/or small-sized phytoplankton due to
—0.1 & 3.1% for WE) and negative mean impacts small-sized  ineflicient ingestion of mesozooplankton on small cells and
phytoplankton (—0.3 & 3.1% for EO and —3.8 & 9.9% for WE)  possible trophic cascading due to mesozooplankton feeding on

at both stations. microzooplankton grazers.
The overall net effect of mesozooplankton feeding on
DISCUSSION phytoplankton in marine environment is counter-balanced
by two opposite effects: direct consumption and indirect
The Net Effect of Mesozooplankton cascading (nutrient recycling is not considered here; Calbet
Feeding on Phytoplankton and Landry, 1999). The trophic interactions are particularly

In this study, we measured relatively low daily grazing complexinsubtropical coastal and estuarine environments where
impacts (mean impacts around 3%) of mesozooplankton on  planktonic abundances, compositions and mesozooplankton
phytoplankton, which is a result of phytoplankton ingested by ~ feeding preferences are temporally variable because of dynamic
mesozooplankton and indirect increase of phytoplankton due  hydrographic conditions (Gifford et al., 2007 and this study).
to trophic cascading induced by mesozooplankton grazing on  Factors that regulating the feeding rates of mesozooplankton
microzooplankton grazers at both a coastal and an estuarine  in dynamic environments generally include abundance of
stations. Abundance of mesozooplankton was not the reason  food items that affects the functional response of grazers,
for causing such low impacts, since we had reported that prey particle size and palatability that affects the feeding
mesozooplankton abundance in these two stations were generally ~ selectivity of grazers, characteristics of grazers (size and feeding
higher, especially during some specific seasons like late spring  behavior), physical environmental parameters (temperature and
and summer (Chen et al., 2011). The mean impacts were similar ~ salinity) and turbulence (Kiorboe and Saiz, 1995; Bamstedt
to that in the shelf water (5%) and oceanic water (3.7%) of the et al, 2000; Levinsen et al, 2000). Our result showed that
adjacent northern South China Sea (Chen et al,, 2015). However, = mesozooplankton clearance rate (feeding rates per biomass) was
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overall independent of total abundance of phytoplankton in
terms of chlorophyll a concentrations in Hong Kong coastal
and estuarine waters (Figure 9A), indicating that the food
concentrations were generally unsaturated and were not a
critical factor to influence mesozooplankton clearance rates
except in 2 months (August 2007 and September 2009) during
which phytoplankton (mainly diatoms) bloom occurred after a
maximum river discharge. The filtration activities by filtering
feeders were substantially reduced in responding to the extremely
high concentrations of particles during blooms due to functional
response (Frost, 1972, 1977).

The grazing impacts of mesozooplankton on total
phytoplankton can be counter balanced by trophic cascades,
referred by negative clearance rates, especially when trophic
cascade effect was greater than direct grazing rate because
that the suppression of microzooplankton would in turn cause
an increase of phytoplankton (Nejstgaard et al., 2001; Liu
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FIGURE 9 | Relationship between mesozooplankton clearance rates and
phytoplankton Chl a concentrations in the two stations of Hong Kong waters:
EO and WE

and Dagg, 2003; Olson et al., 2006). The cascading effect was
generally neglected for mesozooplankton feeding until when
an attempt to calculate the real mesozooplankton grazing
rate on phytoplankton by correction factor was published by
Nejstgaard et al. (2001). Overall, trophic cascades induced by
marine mesozooplankton are still not received much attention
due to difficult quantification (Froneman, 2002; Stibor et al.,
2004; Sommer and Sommer, 2006; Zollner et al., 2009). Chen
and Liu (2011) attempted to quantify the trophic cascading rate
by investigating the difference of microzooplankton grazing rate
caused by copepod predation through laboratory simulation.
However, it is still hard to be applied in field studies unless
parallel dilution experiments measuring microzooplankton
grazing rates and microzooplankton cell counting are also
carried out, which requires a large expenditure of labor.
Nevertheless, our results showed that mesozooplankton
clearance rates on total phytoplankton were overall positive,
indicating that the loss (direct consumption) were generally
greater than the compensation (trophic cascades). This result
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confirmed the traditional view that mesozooplankton were acting
as potential grazers to control phytoplankton total biomass,
primarily those of large-sized phytoplankton and to shape the
prey structure by stimulating small-sized phytoplankton.

The Effect of Mesozooplankton

Size-Selective Feeding

We found a significant size-selectivity of mesozooplankton
feeding, which caused a greater clearance rate and a
grazing impact on large-sized phytoplankton than those on
middle-sized phytoplankton and a negative impact on small-
sized phytoplankton (Figures8, 10). A major proportion
of mesozooplankton filtering-feeder species exhibit size-
selective feeding behavior and prefer large-sized phytoplankton,
determined by limits of feeding appendages. Our results showed
that large-sized phytoplankton (>20 pm) (mainly diatoms and
dinoflagellates) were generally cleared by mesozooplankton with
high rates, which had also been reported by many field studies in
coastal and estuarine waters (e.g., Liu and Dagg, 2003; Liu et al.,
2010). Therefore, the general role of mesozooplankton in natural
seawaters was to directly consume large-sized phytoplankton
(mostly diatoms and autotrophic dinoflagellates), which made
the consumers important in the classic food chain, in addition to
regulating microbial food web.

It was only when the microzooplankton assemblage were
predominated by heterotrophic dinoflagellates which are able
to consume prey like chain-forming diatoms with size similar
to predators (Jacobson and Anderson, 1986 and Jeong et al.,
2004) and the suppression of such heterotrophic dinoflagellates
by copepods would eventually cause trophic cascades on
chain-forming diatoms (Chen and Liu, 2011). Therefore, the
strength and importance of trophic cascades on this size
fraction of phytoplankton were dependent on the abundance
and composition of microzooplankton in addition to the
feeding preference of mesozooplankton assemblage (herbivores
or omnivores).

On contrary, instead of direct consumption, the phenomena
of trophic cascades were generally the case for small-sized
phytoplankton (<5 pwm) referred by negative mesozooplankton
clearance rate measured by this study (Figure 8). Generally,
small-sized phytoplankton (<5 wm) were the preferential food
items for microzooplankton, while they were generally too small
to be directly ingested by the majority of mesozooplankton
species (Calbet and Landry, 1999; Froneman, 2002; Liu and
Dagg, 2003; Liu et al.,, 2005a and this study). A parallel study
of our research through HPLC pigment analysis also showed
that the clearance rates of mesozooplankton on small-sized
phytoplankton, green algae and Synechococcus, were generally
negative due to trophic cascades (Liu et al., 2010).

However, positive clearance rates on small-sized
phytoplankton were also occasionally found at specific months,
associated with high abundance of fine-filtering feeders like
tunicates and barnacle larvae, which played a similar role of
microzooplankton. In our sampling waters, barnacle larvae
were mainly abundant during the period after the maximum
river discharge when phytoplankton became bloom (Chen et al.,
2011). Tunicates, mainly larvaceans, were abundant during
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winter and spring at the coastal stations and abundant at the
month of the maximum river discharge (Chen et al,, 2011).
We believe that the role of larvaceans in direct consumption
in other months was overall limited by low abundance and
copepod carnivorous predation on eggs and adults of larvaceans
(Sommer et al., 2003; Lopez-Urrutia et al, 2004). Another
factor that contributed to clear small-sized phytoplankton in
mesozooplankton feeding bottles was a top-down control by
elevated heterotrophic nanoflagelates through trophic cascades.
This two-level trophic cascading effect was also demonstrated by
mesocosm studies that mesozooplankton predation decreased
microzooplankton abundance causing a trophic cascading
on heterotrophic nanoflagelates and such trophic cascades
further extended to the level of the food of heterotrophic
nanoflagelates (Zollner et al., 2003, 2009). However, this kind
of two-level trophic cascade will be dampened to null by high
diversity of small-sized of phytoplankton and compensation of
anti-predation for a longer incubation time-scale, suggested by
Zollner et al. (2009).
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For middle-sized phytoplankton (mainly nanoflagelates and
single cell diatoms), the mean clearance rates on were
close to zero at both waters (Figure8), indicative that
the effects of direct consumption and trophic cascades on
this size fraction of phytoplankton were almost equivalent
because they were vulnerably ingested by both trophic levels
of grazers (mesozooplankton and microzooplankton). The
mesozooplankton in this study occasionally exerted high grazing
pressures on nanoflagelates when fine-filtering feeders such as
copepod copepodites, marine cladocerans and veliger larvae were
abundant in the assemblages during summer period (July to
September) at the coastal stations (EO).

The Effect of Mesozooplankton Carnivory

The key finding of this study was that the variations of
mesozooplankton clearance rates or grazing impacts were
significantly influenced by the variations of carnivory
degree (the level of ingesting protozoan and animal prey)

of mesozooplankton assemblage in Hong Kong coastal waters
(Figures 9B,C), which in turn were influenced by interactive
effects of planktonic abundances and physical environmental
parameters (Table 2, Figures 5, 6). This result demonstrated
that the flexibility of feeding behavior of mesozooplankton was
an important factor to regulate the trophic interactions. The
net carnivory degree of an assemblage was balanced from the
composition of species with different feeding behaviors. High
composition of relatively herbivorous species (carnivory degree
<0.5) generally caused an increase of clearance rate, while high
composition of relatively carnivorous species (carnivory degree
>0.5) caused a decrease (Figure9B). Moreover, carnivorous
and omnivorous species survived well by raptorial feeding
behavior during blooms, preying on aggregates and motile
organisms such as heterotrophic dinoflagellates and ciliates for
better nutrition, since these food items might be well coupled
with bloom organisms directly or indirectly. For example, we
observed a quite high composition of Oithona (15.6%) at the
first-year bloom (Chen et al., 2011) and high composition
of Acartia (18.2%) at the $$$second-year bloom (data no
shown). Although microzooplankton might contribute less than
phytoplankton to mesozooplankton diets in terms of ingestion
rates in rich food conditions (Calbet and Saiz, 2005; Liu et al.,
2005b), our result suggested that carnivorous feeding was always
a reason for the reduction of the clearance rate of phytoplankton
by mesozooplankton assemblage even during phytoplankton
bloom in addition to functional response. Preference on
microzooplankton by copepods during phytoplankton bloom
and associated trophic cascades were also reported in other
coastal and estuarine waters (e.g., Fessenden and Cowles, 1994;
Liu et al., 2005a).

The mechanism that increasing carnivory degree of
omnivorous mesozooplankton assemblage reduces the net
clearance rates is primarily a combination of a weakening
direct consumption and enhancing indirect trophic cascades
on phytoplankton. It is difficult to separate whichever was
more important because they usually take place simultaneously
due to the fact that in a highly carnivorous assemblage, more
individuals feed in ambush mode, while fewer individuals feed in
suspension-filtering mode. In situations that mesozooplankton
assemblage were highly carnivorous, motile organisms like
ciliates and dinoflagellates are cleared with high rates, while
most non-motile phytoplankton were simultaneously cleared
with low rates (Zeldis et al., 2002; Gifford et al., 2007). On the
other hand, a relatively herbivorous assemblage dominated by
marine cladocerans, tunicates and suspension-feeding copepods
clear more phytoplankton than microzooplankton (Sommer and
Stibor, 2002). While some omnivorous species like Temora and
Centropage are generalist grazers that clear both groups of prey
equivalently (Kozlowsky-Suzuki et al., 2006); increasing of their
percentage in assemblage does not change the clearance rates.

Our generalized additive model tests confirmed that
the variations of mesozooplankton carnivory degree were
significantly associated with microzooplankton at both stations
in addition to physical environmental parameters, while the
trend of partial effects of predictors were a little different between
the two stations. At the coastal station (EO), mesozooplankton
carnivory degree was primarily increased by increasing ciliate
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biomass, suggesting that ciliates might be the most important
trophic intermediates in mesotrophic conditions as foods for
Corycaeus spp., Oithona spp. and noctilucales. Dinoflagellate
biomass at this station had a negative effect and caused a
decline of carnivory degree, suggesting that they were not
the critical protozoan food for carnivorous species. However,
a parallel study had shown that autotrophic dinoflagellates
were significantly preferred by mesozooplankton assemblage
compared to other phytoplankton food (Liu et al, 2010),
suggesting that dinoflagellates at EO were probably autotrophic.
Total Chl a concentrations were overall low at EO, so that
the variations of phytoplankton levels had no effect on
mesozooplankton carnivory. On the other hand, variations of
total Chl a concentrations were large at the estuarine station
(WE) that the increase of phytoplankton level overall caused
a decline of mesozooplankton carnivory. Both ciliates and
dinoflagellates at this estuarine station were important to
increase mesozooplankton carnivory, while they might serve at
different situations. For example, dinoflagellates associated with
diatom blooms during wet season were probably important for
high carnivorous species like A. spinicauda and A. sinesis, while
ciliates may be important for noctilucales, Corycaeus spp. and
Oithona spp. similar to that of the coastal stations. Size-structure
of phytoplankton community in terms of size-fractionated Chl a
may also affect mesozooplankton carnivory degree. The increase
of percentage of middle-sized and small-sized phytoplankton
during summer at the coastal stations appeared to favor
herbivorous species like marine cladocerans and tunicates. The
increase of percentage of large-sized phytoplankton such as
chain-forming and blooming diatoms in the estuarine stations
was linked to the occurrence of heterotrophic dinoflagellates and
indirectly increased mesozooplankton carnivory degree.

Another potential factor that also contributed to lower the
clearance rates of mesozooplankton was the low temperature in
winters, during which the metabolic activity of mesozooplankton
was reduced by low temperature. Nevertheless, the partial effect
of temperature (GAM, F = 5.0, p = 0.008) was much less than
the partial effect of carnivory (GAM, F = 26.9, p < 0.001) based
on results of GAM analysis.

The shortcoming of this study is that we used a coarse
determination of feeding habits of mesozooplankton assemblage
by multiplying a set ratio of individual carnivory with percentage
of each individual in the assemblage. We believed that even
for individuals, their carnivory degree could change with food
and environmental conditions from seasons to seasons, at least
for those generalist feeders and for those species that are able
to switch feeding behaviors. For example, Kiorboe et al. (1996)
showed that Acartia were able to switch feeding behaviors from
filtering feeding to ambush feeding depending on phytoplankton
concentrations. Thus, the real carnivory degree of such species is
difficult to determine. Feeding behaviors of decapod larvae are
diverse (including herbivorous, omnivorous, and carnivorous;
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