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Remote sensing data is useful for selection of aquaculture sites because it can provide

water-quality products mapped over large regions at low cost to users. However, the

spatial resolution of most ocean color satellites is too coarse to provide usable data

within many estuaries. The Landsat 8 satellite, launched February 11, 2013, has both

the spatial resolution and the necessary signal to noise ratio to provide temperature, as

well as ocean color derived products along complex coastlines. The state of Maine (USA)

has an abundance of estuarine indentations (∼3,500 miles of tidal shoreline within 220

miles of coast), and an expanding aquaculture industry, which makes it a prime case-

study for using Landsat 8 data to provide products suitable for aquaculture site selection.

We collected the Landsat 8 scenes over coastal Maine, flagged clouds, atmospherically

corrected the top-of-the-atmosphere radiances, and derived time varying fields (repeat

time of Landsat 8 is 16 days) of temperature (100m resolution), turbidity (30m resolution),

and chlorophyll a (30m resolution). We validated the remote-sensing-based products at

several in situ locations along the Maine coast where monitoring buoys and programs

are in place. Initial analysis of the validated fields revealed promising new areas for oyster

aquaculture. The approach used is applicable to other coastal regions and the data

collected to date show potential for other applications in marine coastal environments,

including water quality monitoring and ecosystem management.

Keywords: remote sensing, Landsat 8, oyster aquaculture, atmospheric correction, habitat suitability index, sea

surface temperature, turbidity, chlorophyll

INTRODUCTION

Oyster aquaculture of the American oyster, Crassostrea virginica, is an expanding industry in
coastal Maine, USA, with landings worth $4.8 million dollars in 2015, up from $0.6 million in
2003 and increasing by 250% between 2011 and 2015 (Maine DMR commercial landings 2016,
www.maine.gov/dmr/). To meet the growing demand for high quality oysters, identification of
new sites with the most optimal biophysical conditions for oyster growth is needed. To decrease
the risk of choosing an unproductive site, it is crucial that growers have the right tools for site
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FIGURE 3 | (A) Landsat 8-derived turbidity along mid-coast Maine on July 14, 2013. (B) Type II linear regression (black line) between Landsat 8-derived turbidity and

turbidity measured by LOBO buoys. Vertical error bars are the standard deviation of a 5 × 5 pixel box centered at the in situ measurement. Horizontal error bars are

the standard deviation of turbidity for 4 h at each buoy. Dashed gray line is 1:1.

FIGURE 4 | (A) Landsat 8-derived chlorophyll-a along mid-coast Maine on July 14, 2013. (B) Type II linear regression (black line) between Landsat 8 derived

chlorophyll-a and chlorophyll-a measured by LOBO buoys. Vertical error bars are the standard deviation of a 5 × 5 pixel box centered at the in situ measurement.

Horizontal error bars are the standard deviation of chlorophyll-a for 4 h at each buoy. Buoy chlorophyll-a was calibrated with chlorophyll extraction samples. Dashed

gray line is 1:1.

a value of 1 represent waters where an oyster is likely to grow to
market size within 2 years:

OSI =
n
∑

i=1

SIi × wi (3)

where SIi is the value of the environmental variable i, wi is the
weight of the variable i, and n is the number of environmental
variables (three in our case). At any location where one of the

three indices reported poor conditions, the OSI was set to zero.
We combined images from each year during the same month to
create a monthly averaged index.

RESULTS

Validation with In situ Data
The Landsat 8 SST retrievals correlated well with in situ
temperatures (RMSD is 0.82◦C, RRMSD is 4%, r2 = 0.94)
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with, on average, 1◦C higher SST values than those measured
by the buoy sensors, especially in warmer waters (Figure 2).
However, variability of the buoy measurements is larger at higher
temperatures when horizontal gradients in temperature were also
larger.

The Landsat 8 turbidity estimates correlated well with in
situ turbidities (RMSD 0.49 NTU, RRMSD 3%, max absolute
deviation is 0.96 and maximal relative deviation is 15%,
r2 = 0.88), with an uncertainty of 0.5 NTU, on average
(Figures 3A,B). Uncertainties are larger at higher turbidities for
both the buoy and the satellite algorithm.

Landsat 8 based Chl a did not correlate well with in situ Chl
a (RMSD is 1.75 µg Chl l−1, RRMSD is 110%, max absolute
deviation is 3.14 µg Chl l−1, max relative deviation is 156%,
r2 = 0.31). Below 5 µg Chl l−1, the OC3 algorithm produced
higher Chl a values than those measured by the buoy sensors
(Figures 4A,B). Above 5 µg Chl l−1, the buoy measurements
were higher than the satellite-derived Chl a. Uncertainties are
larger at higher Chl a for the buoys and the satellite algorithm.
Out of the three parameters derived from Landsat 8, this
algorithm has the highest relative deviation of 156%, with an
average relative difference of 110%, which is significantly worse
than the average relative difference of 30% for chlorophyll
algorithms in the open ocean (but see Discussion).

Satellite Imagery for Oyster Growth
Conditions
Monthly maps of Oyster Suitability Index (Figure 5) were
created using averaged monthly satellite images (Section B
in Supplementary Material). Most existing oyster aquaculture
areas (indicated by red stars on Figure 5) fall within the
highest suitability index during the month of July. Suitability
maps for August and September exhibit a similar pattern of
ideal, moderate, and poor growing areas as the map for July
(Figure 5), but, in general, with slightly lower values due to
colder temperatures (average monthly temperatures were highest
during July). The Oyster Suitability Index map provides two
important findings: (1) it is consistent in its finding that the
Damariscotta River as a suitable place to grow oysters in
aquaculture and therefore an important test and verification
site for using remote sensing tools, and (2) it maps many new
locations along the coast that host similar conditions (Table B2 in
Supplementary Material).

DISCUSSION

Satellite Imagery
The correspondence between the Landsat 8 satellite-derived
products and in situ measurements demonstrates the capability
of generating SST, turbidity, and Chl a maps along the jagged
coast of Maine. While these data show encouraging results, there
are several factors from our study that could improve the present
algorithms. Stray light issues arise if the temperature from an
object outside of the field of view of the imager affects the pixel
within the field of view. Fortunately, most water along the coast
of Maine is vigorously tidally mixed (∼3m tidal range), and
thus data from the center of channels can be used to infer SST

FIGURE 5 | Oyster suitability map based on Landsat 8-derived SST, turbidity,

and chlorophyll-a. Map is an average of all images in the month of July. Yellow

areas indicate ideal conditions, green areas indicate moderate conditions, and

blue areas indicate poor conditions. Red stars indicate existing oyster farms.

Index criteria is given in Section B in Supplementary Material.

throughout those channels (Thornton and Mayer, 2015). Within
the estuaries, however, a TIRS pixel (which is three times as
wide as an OLI pixel) next to land may be incorrectly colder (if
the land is colder) or warmer (if the land is warmer). However,
our match-ups with temperature and turbidity products suggest
adjacency and stray light have not degraded the data significantly,
and differences are likely due to noise as opposed to systematic
bias.

Limitations in Validation Process
Validation of Landsat 8 products with in situ measurements is
necessary to assess the accuracy of the algorithms for retrieving
bio-physical products. Some of the discrepancy in matchups
between in situ data and satellite-derived products can be
explained, while others require further investigation. One reason
that Landsat 8 SST values may be higher than most buoy
measurements (Figure 2) is because the SST estimates come
from radiation emitted from the top few micrometers of the sea
surface, while the buoy sensors are located about 1.5m below
the surface. In the daytime images, the subsurface water is likely
cooler than the surface skin due to physical and environmental
factors (Donlon et al., 2002; Ward, 2006; Padula et al., 2010).
Despite this bias, the Landsat 8 SST (derived by regressing with
atmospherically-corrected AVHRR SST) performed well along
the coast of Maine and our results suggest that our approach
could be used as a tool for measuring SST where high spatial
resolution is desired.

A vigorous semi-diurnal tide characterizes the Damariscotta
River and delivers shelf water into the upper reaches of the
estuary. The tidal cycle was evident in the daily turbidity signal
(not shown) from the LOBO buoys: at low tide, there are elevated
levels of turbidity whereas at high tide there is less turbidity
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(due to the increase in turbidity from the mouth to the end of
the estuary). The horizontal error bars in Figure 3 represent the
variability during a 4-h period around each satellite overpass
time, and highlight the importance of simultaneous sampling
for in situ—satellite matchups. The turbidity algorithm performs
well within our uncertainties in this context.

Landsat 8-derived Chl a often differs significantly from the
LOBO buoy measurements. We note that there are significant
uncertainties associated with both measurement techniques
(Cullen, 2008). Landsat 8-derived Chl a is retrieved from Rrs
using an algorithm calibrated in the open ocean, whereas the
LOBO buoys measure Chl a fluorescence which is regressed
against chlorophyll measured on water samples. Estimating Chl
a from fluorescence is the most common way to measure Chl a
but is affected by several processes that contribute to uncertainty.
These include changes in fluorescence yield due to variability
in the algal taxonomy, nutrient stress, and photo-acclimation,
to name a few (Cullen, 1982). In addition, concentrations of
phytoplankton have been observed in the Damariscotta River
to vary on time scales of hours (Thompson and Perry, 2006)
potentially making mismatches in time problematic.

Non-photochemical quenching (NPQ; when phytoplankton
decrease their fluorescence at a maximum light harvesting
level, e.g., Cullen, 1982) contributes to variability. However,
we find nighttime measurements to be comparable to daytime
measurements (Figure B1 Supplementary Material) for the
Damariscotta River. Therefore, the offset in Chl a is likely
not due to errors induced by NPQ. Another potential error is
associated with the OC3 algorithm, which estimates Chl a as a
ratio of Rrs in the blue and green channels. The blue channel
is especially influenced by colored dissolved organic material
(CDOM). Independent changes of CDOM will affect the OC3
chlorophyll estimate (Siegel et al., 2005). Along the coast of
Maine, where there are coastal forests and marshes, CDOM
is in high concentration and variable (Roesler and Culbertson,
2016). In coastal areas and estuaries rich in CDOM it is likely
that absorption by dissolved organic matter would bias the
OC3 algorithm. It is likely that a local algorithm that takes
local CDOM concentration into account, could improve Chl a
retrievals from Landsat 8.

Oyster Suitability Index
The OSI provided in this paper is intended to supplement
other tools that determine optimal oyster growing areas. The
satellite images, due to their low temporal resolution, provide
a climatological monthly average of coastal temperature, which
does not resolve the day degree input necessary in models
for temperature-dependent shellfish growth. In addition, other
important environmental factors such as salinity, water depth,
bottom type, and water velocity (necessary for oyster growing),
are not considered (Theuerkauf and Lipcius, 2016). Organic
detritus is known to be an important component of bivalve
diets (Dame and Patten, 1981; Bayne et al., 1993; Barillé et al.,
1997), but currently cannot be measured using satellite imagery.
It is conceivable that detritus could be related to the ratio of
turbidity and Chl a, after light acclimation has been accounted
for. Our index therefore provides guidance on suitable water

quality conducive to rapid growth, but not sufficient information
to model site specific production capacity for suspended or
bottom culture.

Although, satellite thermal data is only sensitive to the
temperature of the top fewmicrometers of water, and ocean color
is sensitive only to one optical depth (which varies, but on the
Maine coast is usually the top 1 or 2 m), these data are relevant
to the whole water column if the water column is often vertically
well-mixed. Indeed, many estuaries on the Maine coast are well-
mixed (e.g., the Sheepscot and Medomak Rivers, Mayer, 1996;
Thornton and Mayer, 2015), which makes it relevant for our OSI
(Table B2 in Supplementary Material). Finally, local knowledge is
invaluable for the expansion of an existing industry on the coast
of Maine, and stakeholder input is essential for improving such
an index with local information such as site accessibility, town
ordinances, etc.

Future Work
Continued sampling during the spring and summer of 2017 will
provide a more complete dataset for optimizing Landsat-derived
products in Maine. A local algorithm for Landsat 8-derived Chl
a along the coast of Maine could be constructed with additional
in situ samples collected during satellite overpasses. There are
several approaches to tune a local algorithm. An empirical
approach, such as the OC3 algorithm, uses a relationship between
in situ measurements and ratios of the satellite sensor bands.
A second method involves using a generalized inherent optical
properties inversion (GIOP, Werdell et al., 2013). This method
solves for Chl a, SPM, and CDOMusing known spectral shapes of
optical properties (for phytoplankton and non-algal absorption
and backscattering by particles) and known values of absorbance
and backscattering of water (which are weak functions of salinity
and temperature). Databases of collection sites located in the
Damariscotta River and Harpswell Sound could tune the shapes
of IOPs for the GIOP algorithm and provide an estimate of Chl a
in these two estuaries. Furthermore, in situ samples from various
locations along the coast will validate the local algorithm so that
its use can be expanded from the Damariscotta River to other
places along the coast.

Obtaining more parameters from Landsat 8, such as colored
dissolved organic matter (CDOM), would provide additional
information to growers and ecosystem managers. Franz et al.
(2015) and Slonecker et al. (2015) describe the potential of
using Landsat 8 for remote sensing of CDOM in conjunction
with in situ measurements. A reliable CDOM product would
also improve the algorithm for Chl a, as the presence of
CDOM often contributes to an overestimation of Chl a.
Furthermore, high levels of CDOM are correlated with low
salinity in estuaries (Carder et al., 1989; D’Sa et al., 2002; Mayer,
pers. commun.). CDOM would therefore be helpful to identify
areas with significant freshwater influx because these often bring
concentrations of bacteria that negatively affect clamming and
other fisheries (Shumway et al., 1988; Kleindinst et al., 2014).

Validation of our OSI is provided by the fact that current
farms are all located where the OSI is high. Further validation
and refinement with direct measurements of oyster growth,
will likely improve on this OSI. Note: OSI does not include
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information about site closures, bottom depth, or residential
restrictions. Future work should include this information for a
more comprehensive index.

CONCLUSION

A satellite-derived Oyster Suitability Index can act as a powerful
tool for oyster aquaculture site selection and the expansion of
the shellfish farming industry. It shows that suitable biophysical
conditions for oyster growth exist in many areas of the Maine
coast. Suitability indices for other bivalve species, such asmussels,
scallops, and finfish along the coast, or other applications
requiring high spatial resolution, can be developed based on the
algorithms presented here.

Our results show that Landsat 8-derived data are useful
for retrieving SST, turbidity, and Chl a in coastal waters of
Maine, USA, and can be applied to other narrow estuaries
around the world. The novelty of using Landsat 8 in this
context offers a unique opportunity to map and monitor coastal
waters at an unprecedented spatial resolution. Inclusion of
data from other satellites with complimentary sensor suites
such as Sentinel 2A, and the recently launched Sentinel
2B, could improve both the spatial and temporal coverage
of coastal waters, as they will provide five-day or better
coverage and more visible bands to derive products with
(unfortunately, Sentinel 2A and B do not have thermal bands),
and be used to study oyster growing facilities (Gernez et al.,
2017). SST data from Landsat 8 is especially useful for
aquaculture site prospecting. We recommend adding thermal
bands to high resolution instruments on future missions. Future
work improving biogeochemical local algorithms, refining the
atmospheric correction, and adding other parameters such as
CDOM, will further advance the use of high resolution remote-
sensing for coastal applications.
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