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The endosymbiosis between cnidarians and dinoflagellates of the genus Symbiodinium

is key to the high productivity of tropical coral reefs. In this endosymbiosis, Symbiodinium

translocate most of their photosynthates to their animal host in exchange for inorganic

nutrients. Among these, carbon dioxide (CO2) derived from host respiration helps to meet

the carbon requirements to sustain photosynthesis of the dinoflagellates. Nonetheless,

recent studies suggest that productivity in symbiotic cnidarians such as corals is

CO2-limited. Here we show that glucose enrichment stimulates respiration and gross

photosynthesis rates by 80 and 140%, respectively, in the symbiotic upside-down jellyfish

Cassiopeia sp. from the Central Red Sea. Our findings show that glucose was rapidly

consumed and respired within the Cassiopeia sp. holobiont. The resulting increase of

CO2 availability in hospite in turn likely stimulated photosynthesis in Symbiodinium.

Hence, the increase of photosynthesis under these conditions suggests that CO2

limitation of Symbiodinium is a common feature of stable cnidarian holobionts and that

the stimulation of holobiont metabolism may attenuate this CO2 limitation.
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INTRODUCTION

Despite being surrounded by highly nutrient-poor (oligotrophic) waters, tropical coral reefs are
among the most productive marine ecosystems (Hatcher, 1988). Reef ecosystems are sustained
by an efficient uptake, retention, and reuse of nutrients on all levels of biological organization
(Hatcher, 1990; Wild et al., 2004). In particular, the symbiosis between cnidarian hosts and
endosymbiotic algae of the genus Symbiodinium facilitates the recycling of nutrients as it sustains
primary productivity in the absence of major nutrient sources (Muscatine and Porter, 1977;
Rädecker et al., 2015). In this symbiosis, Symbiodinium translocate most of their photosynthates
to the cnidarian host that in turn provides inorganic nutrients derived from its metabolism
(Muscatine et al., 1989). Thereby, this tight nutrient-exchange relationship, particularly in stony
corals, is the functional basis for the ecological success of tropical coral reefs over millions of years.

Being surrounded by host membranes, Symbiodinium rely on their host to fulfill their
photosynthetic carbon dioxide (CO2) requirements. The supply of CO2 to the symbiont
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is controlled by two major processes: (1) CO2 is produced during
holobiont respiration (Muscatine et al., 1989). (2) Active carbon
concentrating mechanisms (CCMs) by the host facilitate the
uptake of dissolved inorganic carbon from surrounding seawater
(Furla et al., 2000).

Despite these processes, several studies suggest that
productivity in Symbiodinium may be carbon-limited even
in stable symbiotic systems (Muscatine et al., 1989; Herfort et al.,
2008; Klein et al., 2017). Hence, understanding the processes and
environmental controls of in hospite CO2 availability is crucial
for our understanding of the cnidarian—alga symbiosis.

To address this issue, we experimentally tested whether
photosynthesis of Symbiodinium in hospite is carbon-limited.
Specifically, we investigated photosynthetic activity during
glucose-stimulated holobiont respiration in the upside-down
jellyfish Cassiopeia sp.. Unlike most other Scyphozoa, Cassiopeia
spp. are mixotrophic, i.e. draw energy and nutrients from
both heterotrophic and autotrophic sources (Rahav et al.,
1989; Muscatine, 1990), as they form a close endosymbiotic
relationship with Symbiodinium. Thereby, Cassiopeia spp. offer
distinct advantages for the study of the cnidarian—alga
symbiosis, similar to the Aiptasia model system (Baumgarten
et al., 2015). For instance, they are easy to rear in aquaria cultures,
are non-calcifying, havemotile medusa stages and can be infected
with various algal symbionts (Klein et al., 2017). Using this
emerging cnidarian model system allowed us to tackle the issue
of CO2 limitation in the cnidarian—Symbiodinium symbiosis in
a straightforward experiment.

METHODS

Collection and Maintenance
A total of 14 individuals of Cassiopeia sp. (mean bell diameter
of 6.9 ± 0.3 cm) were collected with a dip net in the KAUST
Harbor Lagoon, Saudi Arabia (N22◦18′18.63′′, E39◦6′10.45′′) in
the Central Red Sea in September 2014. After collection, animals
were immediately transferred to 2 recirculation aquaria (each
filled with 20 L of ambient seawater) and acclimated to aquaria
conditions for 7 days (salinity of 40, 28◦C, 12:12 h light/dark
cycle with ∼100 µmol m−2 s−1). Stability of water parameters
was ensured by exchanging 50% of aquaria seawater daily.

Incubations and Glucose Enrichment
Following acclimation, net photosynthesis and respiration
rates of animals were directly assessed from oxygen (O2)
evolution/depletion measurements in 2 h light and dark
incubations in 1 L gas-tight glass chambers, respectively. During
these incubations, half of the animals were incubated in ambient
seawater freshly enriched with glucose (500mg L−1). The other
half of the animals served as a control and were incubated in
ambient seawater. To correct jellyfish O2 fluxes for planktonic
background metabolism, two seawater controls (i.e., ambient
seawater without jellyfish) were included for each treatment.
Importantly, the dissolved organic carbon concentrations used
here do not reflect naturally occurring ambient reef water
conditions (Vaccaro et al., 1968; Kline et al., 2006). Rather,
the level of enrichment was chosen to avoid glucose depletion

over the course of the incubation and to ensure that effects
of increased carbon availability were not buffered within the
holobiont framework, in order to gain mechanistic insights into
the cnidarian—alga symbiosis.

O2 fluxes were assessed based on differences in O2

concentrations before and after the incubation using
an optical oxygen multiprobe (WTW, Germany). O2

production/consumption rates were corrected for seawater
controls and normalized to bell surface area of animals and
incubation time. Gross photosynthesis rates were calculated
based on differences in O2 fluxes during light and dark
incubations (gross photosynthesis = net photosynthesis +

|respiration|). Differences between treatments for the individual
response parameters were tested for significance using an
unpaired Student’s t-test with a significance level (α) of 0.05.

RESULTS AND DISCUSSION

Glucose enrichment stimulated respiration rates in seawater
during both light and dark incubations (Supplementary
Table S1). Still, seawater respiration rates were ∼5-fold
below Cassiopeia sp. respiration rates at all times. Holobiont
respiration rates of Cassiopeia sp. increased by ∼80% under
glucose-enriched conditions compared to untreated controls
[t(13) = 5.27, P < 0.001, Figure 1]. Despite this increase in
respiratory O2 consumption, net photosynthesis rates during
glucose-enriched conditions showed a significant increase of
nearly 400% compared to controls [t(13) = 3.08, P = 0.008].
Consequently, gross photosynthesis rates increased by ∼140%
under glucose-enriched conditions compared to untreated
controls [t(13) = 4.94, P < 0.001].

FIGURE 1 | Effect of glucose enrichment (500mg L−1) on gross and net

photosynthesis as well as respiration rates in Cassiopeia sp. from the Central

Red Sea. Net photosynthesis and respiration rates were derived from oxygen

(O2) flux measurements in light and dark incubations, respectively. Gross

photosynthesis was calculated based on the differences in O2 fluxes during

light and dark incubations. All data are shown as mean ± SE. Asterisks

indicate significant differences between groups (**p < 0.01; ***p < 0.001).
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Glucose enrichment, hence, not only stimulated respiration
rates but also caused a stark increase in photosynthetic activity in
the mixotrophic cnidarian holobiont Cassiopeia sp.. The increase
in respiration rates indicates that glucose was rapidly taken up
and consumed (i.e., respired) within the holobiont (Pogoreutz
et al., 2017). Given our current understanding of cnidarian
holobionts, there is no reason to assume that glucose enrichment
directly affected photosynthetic activity in Symbiodinium. Rather,
the observed increase in net and gross photosynthesis can
be attributed to an increase in CO2 availability in hospite,
stemming from increased respiration in the Cassiopeia holobiont
and seawater planktonic communities within the incubation
chamber. In the case of Cassiopeia sp. this CO2 limitation may
be potentially attenuated by their continuous pumping motion
facilitating increased gas exchange with the surrounding seawater
(Wild and Naumann, 2013).

On a broader scale, these results could have implications
for our understanding of the mechanisms underlying the
cnidarian—alga symbiosis. The observation of glucose-
stimulated photosynthesis implies that productivity of
Symbiodinium in hospite may be tightly limited by CO2

derived from holobiont metabolism.
Wooldridge (2009) proposed that a failure of coral CCMs

during heat stress may ultimately result in a CO2 limitation
of photosynthetic dark reactions in Symbiodinium, ultimately
leading to coral bleaching. Direct empirical evidence for this
theory is missing to date. Our results, therefore, add to a growing
emerging body of work suggesting that Symbiodinium may be
CO2-limited even in stable symbiotic systems (Muscatine et al.,
1989; Herfort et al., 2008; Buxton et al., 2009; Klein et al., 2017).
Hence, environmental stressors which alter metabolic processes
in the holobiont may indeed lead to severe CO2 limitation as
predicted by Wooldridge (2009). Furthermore, we could show
that the stimulation of host heterotrophy may attenuate CO2

limitation in Symbiodinium. In this context, several studies
reported that increased heterotrophic feeding may mitigate the
effects of thermal stress in reef-building corals, resulting in

increased bleaching resilience (Grottoli et al., 2006; Baird et al.,
2009; Houlbrèque and Ferrier-Pagès, 2009; Ezzat et al., 2016).
While this effect was mostly attributed to a compensation of
autotrophic with heterotrophic energy sources by the host, here
we show that heterotrophy may also increase bleaching resilience
by increasing CO2 availability in hospite.

Taken together, our study highlights that the role of CO2

availability within the cnidarian—algae symbiosis deserves
further in-depth assessment. Further work will be necessary
to understand the effects of environmental conditions on CO2

availability in hospite, along with their implications for the
cnidarian—alga symbiosis.
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