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Recent years have seen a rapid expansion in the ability of earth system models to

describe and predict the physical state of the ocean. Skilful forecasts ranging from

seasonal (3 months) to decadal (5–10 years) time scales are now a reality. With the

advance of these forecasts of ocean physics, the first generation of marine ecological

forecasts has started to emerge. Such forecasts are potentially of great value in the

management of living marine resources and for all of those who are dependent on the

ocean for both nutrition and their livelihood; however, this is still a field in its infancy. We

review the state of the art in this emerging field and identify the lessons that can be

learnt and carried forward from these pioneering efforts. The majority of this first wave of

products are forecasts of spatial distributions, possibly reflecting the inherent suitability

of this response variable to the task of forecasting. Promising developments are also

seen in forecasting fish-stock recruitment where, despite well-recognized challenges

in understanding and predicting this response, new process knowledge and model

approaches that could form a basis for forecasting are becoming available. Forecasts of

phenology and coral-bleaching events are also being applied to monitoring and industry

decisions. Moving marine ecological forecasting forward will require striking a balance

between what is feasible and what is useful. We propose here a set of criteria to quickly

identify “low-hanging fruit” that can potentially be predicted; however, ensuring the

usefulness of forecast products also requires close collaboration with actively engaged

end-users. Realizing the full potential of marine ecological forecasting will require bridging

the gaps between marine ecology and climatology on the one-hand, and between

science and end-users on the other. Nevertheless, the successes seen thus far and

the potential to develop further products suggest that the field of marine ecological

forecasting can be expected to flourish in the coming years.
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INTRODUCTION

Rapid recent advances in observing and modeling the earth
system have driven a quiet revolution in our ability to forecast
the evolution of our planet’s weather and climate (Bauer et al.,
2015). Some of the most impressive results have been seen in the
oceanic domain (Meehl et al., 2014), where the slow dynamics
and long memory of the ocean readily lend themselves to forecast
timescales dramatically longer than in the atmosphere. Skilful
forecasts on the annual and even decadal scale of sea surface
temperature (SST) and upper ocean heat and salt content (Smith
et al., 2007; Keenlyside et al., 2008; Doblas-Reyes et al., 2011;
Corti et al., 2012;Matei et al., 2012b; van Oldenborgh et al., 2012),
the Atlantic Meridional Overturning Circulation (e.g., Matei
et al., 2012a), net primary productivity (e.g., Séférian et al., 2014),
the north Atlantic sub-polar gyre (e.g., Wouters et al., 2013), and
the uptake of CO2 from the atmosphere (e.g., Li et al., 2016)
have all been demonstrated thus far, and this list is expected to
continue to grow.

This newfound predictive skill of the ocean represents a
tremendous opportunity for society as a whole, and particularly
for the parts of it that are most closely linked to the ocean. The
high variability of living marine resources is widely recognized as
arising in part from interactions with the physical environment
(e.g., temperature, salinity, currents) (Drinkwater et al., 2010;
Hollowed et al., 2013; Petitgas et al., 2013). This variability
manifests itself not just in terms of productivity (e.g., yield
of fisheries) but also in terms of spatial distribution (e.g.,
shifts of fish into new jurisdictions) and the timing of key
events (e.g., migrations, spawning), and even propagates further
into the human systems dependent on the ocean (e.g., fishing
practices, community revenue, and employment associated
with commercial and recreational fisheries). In principle, the
predictability of the physical system could allow much of this
variability to be foreseen: such predictions could be used to
both adapt to and mitigate the worst impacts of variability
for individual stakeholders and society alike, and to optimize
monitoring, exploitation, and management of these resources
(Hobday et al., 2016; Tommasi et al., 2017a).

Unfortunately, generating such forecasts of biological systems
is not entirely straightforward. Most climate models only
produce forecasts of physical variables, such as temperature,
salinity, and ocean currents, rather than the variables of
direct interest to marine resource management and ecosystem
applications. An intermediate “translation” step is therefore
usually required, where biological models convert forecasts of the
physical environment to forecasts of the biological environment.
However, the biological knowledge required to make this linkage
is often either poor, or entirely absent; fisheries scientists,
for example, have been trying to generate environmentally-
driven predictions of fish stock recruitment for close to a
century now with little success (e.g., Myers, 1998). In fact,
just 15 out of 1,250 fish stocks globally (<2%) incorporate
any form of environmental information in the generation of
their tactical advice and management (Skern-Mauritzen et al.,
2016). Nevertheless, the first generation of forecast products
for applications to marine living resources is now appearing,

starting in Australia nearly a decade ago (Hobday et al., 2011;
Eveson et al., 2015) and more recently in North America
(Table 1).

Here we take stock of the progress made thus far in applied
forecasting of marine ecological quantities, with a view toward
the next steps. We focus our review away from the predictability
of the physical components of the system, for which the reader
is referred to numerous reviews already covering the topic
(Meehl et al., 2014; Bauer et al., 2015; Stock et al., 2015) and
thus do not comment on the improvements needed for the
physical side of marine prediction models. We also restrict
our focus to applications of relevance to the management and
exploitation of living marine resources and therefore exclude
human-health related forecasts (e.g., of harmful algal blooms
(e.g., NOAA, 2016), outbreaks ofVibrio sp.) andmarine pathogen
outbreaks (e.g., Constantin de Magny et al., 2009; Maynard
et al., 2016). Instead, we focus here on examples of forecast
products relating to living marine resources, covering their
productivity, spatial distribution and phenology and associated
human systems in turn. The strengths, weaknesses, lessons
learned, and future prospects of each of these types of forecasts
are examined. We then synthesize these experiences into a set
of recommendations to facilitate the field’s future advancement,
including the identification of research priorities. Through this
review, we lay out a roadmap for the future development of this
new and promising field.

WHAT FORECAST PRODUCTS EXIST?

As a starting point for this review, we have collated and
summarized currently available forecast products relating to
living marine resources (Table 1, Figure 1). We collected forecast
products that the authors were familiar with, and complemented
this with a brief literature search: while this is by no means
an exhaustive list, we believe that it nevertheless covers the
majority of products available today. We restricted the results
to examples of products that are currently being produced
and updated regularly and that are publicly available. Long-
term biological responses to a changing climate were excluded
as they are projections rather the predictions: instead the
focus was on nowcast-to-decadal scale forecasts. We also
only focus on products where environmental or ecological
factors outside the system of interest drive the forecast,
thereby excluding persistence forecasts and projections based
on population dynamics (as is common in e.g., fisheries
management). Similarly, we restrict the focus to situations where
there are specific ecological forecasts made. As a result, some
examples of environmentally-informed fisheries management
in which the management might be informed based on
relationships between a physical variable and a biological
response (eg., Skern-Mauritzen et al., 2016), but where these
relationships are not (yet) used in forecasting stock dynamics,
are excluded.

The results provide several clear insights into the current state
of forecasting of livingmarine resources. Firstly, there are distinct
spatial patterns in the distribution of these forecast products,
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TABLE 1 | Overview of operational nowcast and forecast ecological products for application in the management of living marine resources found by the authors.

Key Forecast product Basis for forecast How far into the future is the

forecast made?

1. Name/forecasted variable 1. which physical variables are used?

2. URL (if appropriate) 2. how are they generated/forecast?

3. References 3. how are physics and biology linked?

PRODUCTIVITY

1 Returns of Salmon along US West Coast

http://www.nwfsc.noaa.gov/research/divisions/fe/

estuarine/oeip/g-forecast.cfm

(Burke et al., 2013; Pacific Fishery Management Council,

2016)

1. Ensemble of ecosystem indicators combined using

PCA.

2. Observations

3. Empirical relationship between returns and

environment indicators

∼1 year

SPATIAL DISTRIBUTIONS

2 WhaleWatch—distribution and numbers of blue whales

in California current

http://www.westcoast.fisheries.noaa.gov/whalewatch/

(Hazen et al., in press)

1. SST, chlorophyll-a, SSHa standard deviation,

bathymetry, standard deviation of bathymetry

2. Satellite data observations

3. Satellite-telemetry-based habitat model

Near real-time

3 TurtleWatch—spatial areas where there is a high risk of

loggerhead turtles bycatch

http://www.pifsc.noaa.gov/eod/turtlewatch.php

(Howell et al., 2008, 2015)

1. SST

2. Satellite data observations

3. Empirical model

Near real-time

4 Great Australian Bight tuna distributions

http://www.cmar.csiro.au/gab-forecasts/

(Eveson et al., 2015)

1. SST

2. Satellite data

3. Empirical model

Forecast from 0 to 3 months ahead

5 SE Australia long-line tuna fishery

http://www.afma.gov.au/fisheries-services/sbt-zones/

(Hobday et al., 2011)

1. SST and Temperature at depth

2. Satellite and ocean model data

3. Empirical model

Forecast from 0 to 3 months ahead

6 California Sardine distribution

http://www.nanoos.org/products/j-scope/forecasts.php

(Kaplan et al., 2016; Siedlecki et al., 2016)

1. SST, salinity, chlorophyll

2. Dynamical biogeochemical downscaling of global

forecast system

3. Empirical habitat model

Skilful up to a 5-month lead time

PHENOLOGY

7 Timing of Gulf of Maine lobster landings

http://www.gmri.org/lobster-forecast

(Mills et al., in review)

1. 50-m ocean temperature

2. Observations from coastal buoys in NERACOOS

network

3. Empirical model

Landings forecast based on

temperatures 3–4 months prior

8 Columbia river salmon run timing

http://www.cbr.washington.edu/inseason

(Anderson and Beer, 2009)

1. Oceanic upwelling, Columbia river flows, timing of

juvenile arrival

2. Observations

3. Empirical regression model of timing

Up to 3 months ahead, updated daily

during run

OTHER

9 Coral Reef Watch’s Heat Stress Outlook

http://coralreefwatch.noaa.gov

(Liu et al., in review)

1. Global daily SST forecast up to 9 months.

2. Accumulated heat stress conducive to mass coral

bleaching is predicted and bleaching risk is forecasted

based on an established relationship between the

amount of accumulated heat stress and severity of coral

bleaching

3. Anomalously warm temperatures above coral’s

tolerance level cause heat stress potentially leading to

mass coral bleaching

Weekly and composite forecast up to

4 months; updated weekly

The geographical location of these products is mapped in Figure 1 using the number in the “Key” column. Products are grouped into broad categories reflecting the response variable

being forecast.

with themajority occurring in North America (Figure 1). Models
also tended to be almost exclusively empirical (correlative) in
nature: a notable exception are the forecasts of the intensity and
spatial distribution of coral bleaching (forecast product 9), which
have a strong mechanistic underpinning. Variables predicted
could otherwise be grouped into predictions of productivity,
spatial distribution or phenology: of these, forecasts of spatial
distributions were clearly the most common. We examine these
products in more detail below.

PREDICTING PRODUCTIVITY CHANGES

Changes in the productivity of fisheries result from changes in
all processes that affect current and future exploitable biomass
and fishery yields (e.g., growth, survival, and reproduction).
The relative importance of these factors is strongly linked to
the life-history and fishery of the stock. For long-lived and
late-maturing species that have fisheries targeting many age-
groups (e.g., temperate-boreal gadoids and flatfishes), changes in
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FIGURE 1 | Map of known examples of marine ecological nowcast and forecast products listed in Table 1. Details of these products are given in this table for the

corresponding number. Note that the Coral Reef Watch forecast product (number 9, blue circle) covers the globe between 45◦N and 45◦S (dotted blue box).

growth and mortality of fish currently in the water are critical:
in these cases young fish are recruited to the fishery at age 2 or
later, and their impact on yield therefore occurs 1–2+ generations
into the future (Basson, 1999; Brander, 2003; Planque et al.,
2003; Tommasi et al., 2017a), while recruitment forecasts do
not become useful until 5–10+ years into the future (Basson,
1999; Brander, 2003; Planque et al., 2003). Forecasting changes
in growth and natural mortality 1–5 years ahead would be of
more immediate benefit to the management of such species. For
shorter-lived species, and those captured at young ages (e.g.,
sardine, anchovy, sprat, sandeel, and capelin), however, the need
for predictability is reversed: fisheries for these stocks often
depend on a very small number of age groups (e.g., 1–2) and large
inter-annual variations in year-class strength are more important
for the future fishery yields than changes in growth andmortality.

Recruitment forecasting, however, has been, and still is, a
major challenge in fisheries oceanography and management
(Houde, 2008; Hare, 2014). Numerous published relationships
between recruitment and environmental variables have broken
down when updated with new data (Myers, 1998), and
few such relationships are used in operational fisheries
management (Skern-Mauritzen et al., 2016). However, links
between recruitment and the environment are nevertheless
well-recognized: for example, environmental variability has
been shown to be more influential in the recruitment of
many fish stocks than spawner biomass (Szuwalski et al.,
2015), and explains more variation in productivity than either
density-dependent or random processes (Vert-pre et al., 2013).
Advances in recruitment process modeling also demonstrate the
sensitivity of recruitment to oceanographic variability, including
how environmental conditions affect larval food resources and
mortality rates (Daewel et al., 2015).

In addition, there are (at least) two broad patterns
in recruitment-environment relationships that could provide
potential avenues for future forecasting attempts. First, some
of the published relationships re-evaluated by Myers (1998)
continued to be valid with updated data: those cases tended to
be stocks located near limits of species ranges where recruitment
processes for those stocks might be particularly sensitive to
environmental variations (Myers, 1998). Subsequent updates of
previously published relationships for stocks near range limits
have also remained valid (Lindegren et al., 2010; Margonski et al.,
2010; MacKenzie et al., 2012). Second, biogeographic patterns
in the recruitment-environment (temperature) relationship
for stocks throughout a species range indicate increases in
recruitment for stocks located in cold regions and decreases
for stocks in warm regions when temperatures rise (Brander,
2000; Mueter, 2002; MacKenzie and Köster, 2004; Mantzouni
and Mackenzie, 2010). Both of these patterns demonstrate some
persistent environmental impacts on recruitment and suggest
that there may be forecast potential for recruitment in some
stocks. Moreover, as recruitment process knowledge increases,
this potential is likely to increase in the future.

The future sustainability of all fisheries depends on successful
recruitment: clearly, a prolonged decline or downward shift
in production of recruits will eventually erode the basis for
a fishery and require fishery management actions to prevent
local collapse or extinction. Multiple fishery management
decisions and strategies such as short-term yield forecasts,
fishery, and biomass reference points, recovery plans, and long-
term climate change impacts on yields, therefore depend on
assumptions (expectations) of future recruitment. Several stocks
recognize this fact in their management, and while they do
not forecast recruitment directly, exploitation is nevertheless
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adjusted according to the state of the environment: see (Skern-
Mauritzen et al., 2016) for an overview of these stocks. The
management of such stocks is therefore potentially amenable
to forecast information: for example, the harvest guideline for
Pacific sardine, already influenced by sea surface temperature
(SST), has been shown to be more effective when informed
by short-term recruitment forecasts driven by seasonal SST
predictions (Tommasi et al., 2017b). Improvements in the
reliability and timing of forecasts of recruitment could therefore
have major impacts on different aspects of fishery management
across the diverse spectrum of time scales and life-histories
(Tommasi et al., 2017a).

While recruitment forecasts would be a key component in
forecasting productivity changes, forecasted changes in growth or
mortality rates would also be beneficial for fishery management.
Changes in biological parameters depend on changes in the
biota, not only the abiotic properties of the oceans. For example
variations in growth, condition, fecundity, and recruitment can
all be influenced by availability of prey and predators, how
the prey and predators overlap in time and space (Neuenfeldt
and Beyer, 2006) and the relative size distributions of the prey
and predators (Golet et al., 2015). New operational forecast
models that link the spatial distributions of interacting species
(competitors, prey-predators) and use these distributions to
forecast feeding, growth and mortality rates could thereby
generate forecasts of productivity changes. Indeed, existing
multispecies assessment models (e.g., ICES, 2017) contain all of
these elements and could therefore be extended into the future
to predict productivity changes. Such a step would represent a
major scientific advance toward developing and implementing
integrated ecosystem-based approaches to management.

In summary, developing productivity forecasts requires
identification of the relevant scales and life-histories where
predictive skill is needed and available. For example, a
zooplankton abundance or a mean temperature averaged over
a specific depth range in a specific place and time may be
more relevant for larval fish mortality or juvenile growth rates
than averaged over some other (e.g., larger) scale. Acquiring
the scale-relevant knowledge will require process-oriented field,
experimental, and modeling studies. However, recognizing and
exploiting the (rare) situations where predictive skill is needed
and available and linking them to fishery management systems
may lead to valuable new marine ecological forecast products.

PREDICTING SPATIAL DISTRIBUTION
CHANGES

Within fisheries management, questions around the productivity
(and thus quotas and sustainability) of a fish stock typically
gather substantial attention and energy, both from the scientific
community and the general public. However, the distribution of
the resource in both time and space ultimately sets the framework
within which fisheries operate and is thus a second question of
critical importance to both fishers and managers.

The first wave of marine ecological forecast products to
become fully operationalised has been strongly biased toward
prediction of spatial distributions. Seasonal forecasts of the

spatial distribution of southern bluefin tuna in the Great
Australian Bight (Eveson et al., 2015) have been used to support
the strategic planning of fisheries in this region for nearly
a decade (Hobday et al., 2016) and were amongst the very
first such forecast products to become operational. Distribution
forecasts are also actively used in this region in a dynamic
management context to close areas with the aim of avoiding by-
catch (Hobday et al., 2011). In the United States, nowcasts of sea
turtle distributions in the Pacific Ocean north of the Hawaiian
Islands were amongst the first dynamic spatial management
applications (Howell et al., 2008), and forecasts of the spatial
distribution of sardines and blue whales in the California Current
ecosystem have recently followed (Kaplan et al., 2016; Hazen
et al., in press).

The relative success of spatial distribution forecasts most
likely reflects a number of features that make this response
variable well-suited to prediction. Spatial distribution studies
typically have access to a relative wealth of observational
data from scientific surveys, fisheries and other sources (e.g.,
Eveson et al., 2015 used tagging data) that allow relationships
between the environment and the organism to be well-
characterized. In contrast, recruitment studies are limited to
one realization per year, with a typical time series being
<30 years (Ricard et al., 2012). Furthermore, many living
marine resources actively respond to environmental variability by
shifting their distribution, either to avoid unfavorable conditions
(e.g., temperatures that are too warm/cold) or to seek out optimal
conditions (e.g., to reproduce or feed). In many cases, these
constraints have a physiological basis (e.g., thermal or salinity
tolerances) making for particularly robust and mechanistically-
rooted links between the environment and the distribution.
Finally, at least some, although not all, of the variables by which
organisms sense and modulate their spatial distributions, such as
temperature and salinity, are also the variables that are predicted
directly by forecast systems, simplifying the “translation” from
physics to biology tremendously.

Nevertheless, the ability to forecast spatial distributions is
also subject to several important limitations. While we observe
and are interested in distribution (where the organisms actually
are), current forecasting systems are centered on the idea of
habitat or ecological niche (where they could potentially be).
However, these concepts are not interchangeable, and many
processes (often outside of the modeling framework) govern the
subset of potential habitats that are utilized and thereby yield
the distribution (Dormann, 2007; Araújo and Peterson, 2012;
Urban et al., 2016). For example, the dynamics of movement and
migration can be important or even dominating: inter-annual
shifts in the distribution of herring in the NE Atlantic of up to
several thousand kilometers have been shown to be driven by the
peculiarities of schooling dynamics (Huse et al., 2010). Similarly,
two regions of space that are environmentally comparable may
both offer suitable habitat, but one may be inaccessible due to
the presence of environmental or physical barriers or extreme
distances (Briscoe et al., 2017). Life-history dynamics are also
critical to consider (Petitgas et al., 2013), as distributions at
a given time point are strongly determined by both what has
gone before and the need to close the life-cycle. Furthermore,
not all of the variables that are potentially important in
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shaping distributions are currently measured or forecasted: the
distributions of relevant predators, prey, and competitors are also
critical (Elith and Leathwick, 2009). Correlative niche models
using definitions of habitat based on the variables that we can
observe and forecast are therefore inherently weakened by their
narrow view of the processes shaping distribution (Warren, 2012,
2013; McInerny and Etienne, 2013).

Future research can help improve upon these early products.
An important step in this direction is moving toward more
mechanistic representations of distribution by increasing the
biological realism of themodels (Urban et al., 2016) e.g., explicitly
incorporating movement and life-cycle with the limitations
imposed by habitat. Suitable frameworks for this type of work
already exist within the marine community (Lehodey et al., 2008;
Ito et al., 2013) and operational applications are now being
developed (Gehlen et al., 2015). Such a transition from empirical
towardmoremechanistic models would parallel the development
pathway seen in terrestrial distribution modeling (Guisan and
Zimmermann, 2000; Pearson et al., 2014).

Realizing the full potential of spatial distribution forecasts,
will require close collaboration between developers and end-
users. Spatial forecasts are already being used for dynamic spatial
management (Hobday et al., 2011) based on close interaction
with managers and fishers (Hobday et al., 2016). The use of
forecast information to design monitoring programmes is also a
particularly obvious application, as there are few barriers between
the forecast developers and the scientists performing the surveys.
However, the most important application will likely continue
to be in direct collaborations with the fishing and shipping
industries to forecast the distribution of both target and non-
target/protected species. In these cases, where forecast users have
an economic incentive to increase their effectiveness, a high
degree of flexibility to use such information, and in some cases
a legal imperative, it is not unreasonable to expect substantial
growth in the number, and variety of spatial forecast products in
the near future.

PREDICTING PHENOLOGICAL CHANGES

Physical forcing of ecosystem dynamics, particularly in high
latitude environments, varies seasonally, and animal populations
have adapted their phenology (i.e., the timing of life history
events) to follow peaks in the seasonal cycles of physical drivers
(e.g., temperature) and prey abundance. Variability in phenology
affects the reproductive success of marine species (Hjort, 1914;
Cushing, 1990; Platt et al., 2003; Durant et al., 2007) and
influences their availability to fisheries.

Several examples of phenological forecasts now exist. For
instance, the availability of lobsters to the Maine fishery varies
between years following temperature-driven changes in their
molting and inshore migration phenology (Mills et al., 2013).
In 2012, during a marine heatwave, temperatures warmed 3
weeks earlier than normal, and lobster landings subsequently
also increased sharply 3 weeks early, leading to a large influx
of lobster, and a subsequent drop in price and economic
challenges for the fishers (Mills et al., 2013). This event motivated
the development of a forecast for the timing of the lobster
fishery, which has been provided to the industry since 2015

to improve their operational planning and climate-readiness
(Mills et al., in review). Timing forecasts of anadromous fish
migration are also available (Anderson and Beer, 2009; Burke
et al., 2013; Pacific Fishery Management Council, 2016). Other
types of forecasts can also have a strong temporal element
without being explicit forecasts of phenology, e.g., forecasts of
seasonally-dependent high mortality conditions such as disease
outbreaks (Maynard et al., 2016) or coral-bleaching risk (Liu
et al., in review).

A successfully adopted ecological forecast is one that clearly
addresses stakeholders’ needs (Hobday et al., 2016). Phenological
processes are non-linear, and subtle changes in climate drivers
can lead to marked changes in the timing of management- and
industry-relevant biological events. Since stakeholders are aware
of and affected by the timing of certain ecological events at
short time scales, phenological forecasts may be more easily
adopted as compared to other types of ecological forecasts. On
the other hand, because phenological events are discrete and non-
linear, forecast errors are more evident. Binning the forecast into
longer temporal bins (e.g., weekly instead of daily) and using
probabilistic predictions can help reduce this problem (Mills
et al., in review).

A forecast also needs to be skilful in order to be considered
successful (Murphy, 1993). Seasonal forecasts of SST have skill
in some regions at the coastal scales relevant to stakeholders’
needs (Stock et al., 2015), but seasonal prediction skill of
other phenologically-relevant physical variables (e.g., onset of
upwelling) has not been adequately assessed (Tommasi et al.,
2017a). Furthermore, biogeochemical forecasts (e.g., nutrients,
chlorophyll, primary production) are still experimental but show
some potential (Séférian et al., 2014; Li et al., 2016; Siedlecki
et al., 2016). Thus, phenological forecasts that depend on
temperature-driven physiological mechanisms (e.g., Liu et al.,
in review) may more quickly be operationalized than those
requiring predictions of prey conditions.

Another challenge in the development of phenological
forecasts is the limited availability of long time series
of high-temporal-resolution data needed to quantify
phenological changes. Integration of phenological forecasts
into fisheries opening/closure decisions, survey planning, coastal
management, or industry operations will require maintenance
and expansion of observing systems for continuous-high
resolution climate and biological data. Ensuring spatial
constancy is also critical in this context, to allow spatial and
temporal shifts to be separated from each other (de Keyzer
et al., 2017). In addition, an improved process understanding
of the drivers of phenological changes, assessment of physical
prediction skill with a phenology focus (i.e., timing of specific
events), and development of seasonal biogeochemical forecast
capabilities will all represent valuable advances.

PREDICTING THE HUMAN PART OF THE
SYSTEM

While our survey of existing marine ecological forecast
products revealed examples of forecasts of species distribution,
productivity, and phenology, it did not reveal any examples of
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forecasts of the human part of the system. However, without an
understanding of the human responses to changes in a system,
unanticipated consequences can occur, such as shifts in fishing
effort following declaration of marine protected areas (e.g., Ward
et al., 2001; Abbott and Haynie, 2012), concentration of fishing
effort in particular areas (e.g., Parnell et al., 2010), changes
in illegal behavior (Österblom and Bodin, 2012), and quota
shifts (Emery et al., 2014). Here we examine the potential for
developing such forecasts.

Unfortunately, even defining the human component is
challenging, which partly explains why exploration of future
human behaviors and responses has received considerably
less attention than biological responses. The human part of
the marine system may include direct participants in marine
activities (e.g., fishers, tourists), downstream participants (e.g.,
fish processors), resource managers, and policy makers. The
human system may also include the economic market (e.g.,
Mullon et al., 2017), or non-consumptive actors (Sanchirico et al.,
2013; e.g., Tracey et al., 2013). Defining the relevant human
sub-system is the first challenge.

Including humans is seen as an important challenge when
modeling marine systems (e.g., Fulton, 2010), and this will
increase further in importance when forecasting ecosystem
changes. Managers of marine systems may be interested in
a range of issues that involve humans, including trade-offs
in ecosystem-based fisheries management (EBFM) as a result
of environmental change, planning for infrastructure (e.g., in
locations where fish are projected to move, fisheries and the
necessary infrastructure will need to adjust), and minimizing
unanticipated consequences (e.g., that can result from ignoring
the people). Social and economic sustainability are now seen
as central goals alongside ecological sustainability, and forecasts
may provide valuable new insights into how ecosystem changes
and management actions will differentially affect multiple
objectives (Fulton et al., 2014; Jennings et al., 2016).

In constructing models of human systems, there are several
advantages compared to the “biological” part of the system.
Humans can talk and be observed (e.g., via observer and vessel
monitoring systems), they are relatively easy to sample and
census, and extensive historical data are often available (e.g.,
price, employment, catch, effort) to condition and test models.
At times control groups of vessels or fleets are available that allow
controlled studies to be performed (e.g., Essington, 2010; Abbott
et al., 2015). On the negative side, humans can be deliberately
or accidently unreliable or strategic in describing their behavior.
They may have preferences which are not revealed until a
situation actually occurs, particularly for problems that result
from a combination of physics (ocean change), biology (dynamic
species responses), and humans (behavioral responses). As a
result, there are considerable challenges in buildingmathematical
descriptions of human behavior, and gathering information on
people in a systematic way such that it can be included in marine
models (Fulton, 2010). For example, in a study of the eastern
Bering Sea ecosystem and the response of extensive commercial
fishery and subsistence harvests, Haynie and Huntington (2016)
found the influence of ecosystem conditions on the outcomes of
human activities was weaker than anticipated. They attributed

this loose coupling to the ability of fishers and hunters to adjust
to variable conditions, and the role of social systems, the market
economy, and management in moderating the direct effects of
changes in the ecosystem.

Development of predictive models of human behavior has
thus been considered challenging, with marine examples to date
consisting mostly of models that characterize fleet behavior (e.g.,
Eales and Wilen, 1986; Michael et al., 2017) or that assess
outcomes of conservation or resource management decisions
(Fulton et al., 2015). These modeling tools allow a range of
options to be explored, and support evaluation of alternative
interventions under differing conditions. Model results can
be presented at multiple spatial and temporal scales, and
relative to ecological, economic, and social objectives. Results
can also reveal potential “surprises”, such as bottlenecks in
human responses (Fulton et al., 2015). Predicting how fleets
will respond to changes in management such as catch shares is
particularly challenging, as the observed behavior is a response
to environmental, market, and management conditions and
changes (e.g., Abbott et al., 2015; Reimer et al., 2017).

HOW TO GO FORWARD

While marine ecological forecasting is clearly still a field
in its infancy, it is also extremely diverse in the range of
issues considered. Although each of the response variables and
associated forecast products described has their own strengths
and weaknesses, there are also clear trends and commonalities
between them. Here we synthesize these lessons with the aim of
highlighting the way forward on a broad scale.

Firstly, it is important to remember that it may not be
necessary to invoke the complex machinery of a fully-coupled
climate model to produce useful forecasts. Many physical,
biological and social systems have inherent lags that can
be exploited to produce useful forecasts based on observed
(rather than forecasted) environmental conditions, an approach
used by the Gulf of Maine lobster and Pacific salmon return
forecasts (Table 1). Similarly, the influence of environmental
factors on year-class strength of a fish stock typically occurs
very early in life (Hjort, 1914; Houde, 2008) but in many
cases it can take several years before these individuals become
important for the fishery. Fraser River salmon forecasts and
Gulf of Maine lobster timing have both used this approach
to give appreciable forecast horizons without the need for a
climate model.

Similarly, the long-term memory of the ocean and its slow
dynamics can also be exploited. Statistical forecasts of the
physical environment can be produced by assuming persistence
of either absolute values, of anomalies or of a trend (e.g., climate
warming) into the future. For example, in the North Sea, anomaly
persistence forecasts of SST readily give appreciable skill at a
one-year lead time (Stock et al., 2015). This approach is implicit
in several of the examples noted previously, where exploitation
of the fishery is adjusted to the local environmental regime
e.g., Pacific sardine management. While such forecasts may
not have the elegance or technical bravado of applying a fully
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coupled climate model, the important question from an end-
user’s perspective is the presence (or absence) of useful skill,
rather than how the forecast is generated.

Where such simple approaches are insufficient and fully
coupled climate models are required, a good place to start is by
focusing on the predictability of major modes of variability in
the ocean, and their biological consequences. Much of the skill
of seasonal and, in part, multi-year forecasts at management-
relevant local scales arises from the ability of the forecast systems
to capture the evolution of predictable basin-scale patterns (e.g.,
associated with the El Niño-Southern Oscillation, ENSO) and
their regional imprints (Goddard et al., 2001; Stock et al., 2015).
Thus, some of these types of events may be more predictable
than average conditions. For example, in the California Current,
skill of seasonal SST predictions is higher during El Niño events
(Jacox et al., 2016). This is beneficial for fisheries managers
and industry stakeholders, as El Niño events can have dramatic
impacts on the California Current ecosystem (Chavez et al., 2002;
Jacox et al., 2016). Similarly, there is evidence that the strong
and abrupt contraction of the North Atlantic sub-polar gyre
in the mid-1990s could have been foreseen with a sub-decadal
lead time (Yeager et al., 2012; Wouters et al., 2013; Msadek
et al., 2014). These oceanographic changes also have had well-
documented effects on the ecosystems of the North Atlantic
(Hátún et al., 2009a,b). In both cases, a valuable first step may
be to build simple conditional ecological forecast systems (so-
called “if-then” forecasts or “forecasts by analogy”) whereby a
list of ecosystem responses seen in prior analogous events can
be produced: a forecast need not be quantitative in nature to be
valuable.

While these simplistic approaches can quickly yield useful
forecasts in some situations, the most comprehensive results
will ultimately require coupling of biological models to physical
forecast systems. In developing such forecast products, it is
tempting to focus on a specific response variable or species,
driven by the nexus of commercial and academic interests,
together with available funding. However, there is no guarantee
that such an approach will lead to forecast systems that are both
skilful and useful. Instead, we propose that the question should
be reversed: rather than asking “how do we predict a particular
variable”, it is useful to consider asking “what can we predict?”
We propose three concepts that we believe can be valuable in
identifying systems and variables that can be predicted skilfully.

Firstly, mechanistic understanding, where available, is clearly
favored over empirically derived models when building forecasts
(Levins, 1966; Urban et al., 2016). This is not to say that
useful forecasts cannot be built upon empirical knowledge:
indeed nearly all of the products highlighted here are based
on correlations between physical variables in the ocean
and biological responses. However, mechanistic knowledge is
generally regarded as providing a strong footing for forecasting
both biological (Guisan and Zimmermann, 2000; Dickey-Collas
et al., 2014) and economic (e.g., Haynie and Pfeiffer, 2012) aspects
of marine systems, particularly in cases where extrapolation
beyond the range of conditions seen in the training set
(e.g., under climate change) is required. Nevertheless, it is
important to note that there is often little choice but to employ

correlative approaches: while the difficulties of predicting fish-
stock recruitment based on empirical relationships with the
environment have long been recognized (e.g., Myers, 1998),
skilful mechanistic solutions to this problem still appear far off.

Secondly, it is necessary to focus on developing biological
forecast products around physical variables that can themselves
be predicted. A forecast system based on SST, which can readily
be predicted on seasonal and even decadal time scales in many
marine ecosystems (Kirtman et al., 2014; Meehl et al., 2014;
Stock et al., 2015), is much more likely to yield success than
one that requires estimates of food abundance, which at the
moment cannot be forecasted skilfully. Similarly, it is important
to recognize that the spatial forecast skill of a given variable
differs across space (Figure 2) and across time scales (Figure 3).
For example, while there is multi-annual SST forecast skill in
the North Atlantic (Matei et al., 2012b; Meehl et al., 2014),
prediction skill at a multi-annual scale is low over the Pacific
Ocean (Figure 3). This contrasts with the seasonal scale, where
ENSO provides high seasonal forecast skill to the eastern tropical
Pacific Ocean (Figure 2). A full assessment of the predictability of
the physical-system at biologically-relevant spatial and temporal
scales (Stock et al., 2015) could eliminate areas where forecasts
are not possible and is therefore a critical first step in narrowing
down the range of skilfully-predictable biological quantities.

Thirdly, researchers should focus on biological responses
where there is a high proximity between the biological
response and the physical driver, i.e., tight cause-and-effect
relationships. For example, a large body of knowledge exists
about correlations between large-scale climate indices, such as
the North Atlantic Oscillation (NAO) and Atlantic Multidecadal
Oscillation (AMO), and biological responses (Ottersen et al.,
2001; Stenseth et al., 2003; Alheit et al., 2014; Nye et al., 2014).
However, while these indices can potentially be well-predicted by
coupled forecast systems (García-Serrano et al., 2012), it seems
unlikely that they can be used to build skilful predictive systems
of the marine environment due to the large number of steps
between the predictor and the response, each of which adds
noise to the predictive process. Similarly, biological responses
to physical processes that are filtered through multiple processes
and trophic levels (e.g., from upwelling to nutrient concentration
to primary productivity to secondary productivity to survival of
juvenile fish) seem less likely to yield skilful predictions than
situations where there is a direct response to the physical driver
(e.g., egg mortality due to low salinity, avoidance of waters that
are too cold).

However, and most importantly, while these three concepts
can help focus on identifying “low-hanging fruit” that it may
be possible to predict skilfully, there is no guarantee that these
quantities will be useful to end-users. The ultimate value and
success of a forecast is determined by whether it is (actively)
used by end-users in their decision making process and whether
its use results in economic or other benefits (Murphy, 1993).
Active engagement with the end-users of the predictions from
the very start of the project to co-develop forecast products is
therefore key to ensure that their potential value to the end-user is
realized (Hobday et al., 2016). While this may necessarily entail
a deviation from the approach given above, worsen the forecast
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FIGURE 2 | Seasonal-scale sea surface temperature (SST) forecast skill. Skill is shown here for the North American Multi-model Ensemble (NMME) as the correlation

coefficient (as a percentage) between observed and forecast seasonal anomalies for a 1 month forecast lead time. Correlation coefficients are shown for temperature

anomalies averaged over each of four seasons. Top-left: December, January, February (DJF). Top-right: March, April, May (MAM). Bottom-left: June, July, August

(JJA). Bottom-right: September, October, November (SON). Modified from (Becker et al., 2014). © 2014 American Meteorological Society. Used with permission.

skill, or complicate the development process, a forecast product
without an end-user is ultimately a waste of effort. Striking the
balance between what is feasible and what is useful will therefore
be essential to push marine ecological forecasting forward in the
future.

FUTURE NEEDS

While the forecast products highlighted here have successfully
shown that forecasting of marine ecological variables is possible,
realizing the full potential of this field will require more than
just coupling existing biological or socio-economic knowledge to
existing climate forecast systems. Developing the next generation
of forecast products that moves beyond these initial proof-
of-concept examples necessitates further developments in both
research and management, as we discuss here.

Perhaps the greatest factor limiting the development of
marine ecological forecast products is the gap between the
climate modeling and marine science communities. This gap is
multidimensional in its nature. Climate modelers and marine
scientists, for example, are rarely employed at the same institute
and have very different educations and ways of thinking and
working. The nature of climate model output is a particularly
challenging aspect of this disjoint; while climate scientists
routinely work with extremely large data sets on large computing
clusters, many analyses and datasets in marine science have
historically not required the use of a formal programming

language and are stored in a spreadsheet (Berx et al., 2011).
Bridging this gap is challenging, and the main linkage between
the two disciplines is currently in the form of relatively
few individuals that are capable of moving between them.
Fortunately, climate-model and climate-data literacy can be
learned. The development of training courses to increase the
proficiency of both marine biological researchers and students in
the use and application of climate-model data should therefore
be seen as a simple but high priority action to help bring
these two fields closer together. Similarly, the climate data
needs in marine science can be better communicated to climate
scientists so they can provide output that facilitates the uptake
of climate information into marine ecological forecasts. Overall,
large projects that bring together researchers across disciplines
for sustained periods of time should be encouraged as they
facilitate the exchange of expertise in both directions (e.g., Van
Pelt et al., 2016).

A second key factor limiting the development and eventual
uptake of climate-model forecasts in fisheries andmarine science,
even for those that are adept with climate-data, is access to
forecast data. Getting access to such data for marine scientists
typically requires establishing close collaborations with climate
modelers directly: on the one hand, this brings new and critical
expertise into the project, but on the other hand is not an option
available to all. Availability of climate-forecast data on both
the seasonal and decadal timescales, including both hindcasts
and routine delivery of updated forecasts, is nevertheless critical
for the continued development and production of marine

Frontiers in Marine Science | www.frontiersin.org 9 September 2017 | Volume 4 | Article 289

http://www.frontiersin.org/Marine_Science
http://www.frontiersin.org
http://www.frontiersin.org/Marine_Science/archive


Payne et al. Marine Ecological Forecast Products

FIGURE 3 | Decadal-scale sea surface temperature (SST) forecast skill. Skill is

shown as the temperature predictability beyond the global warming trend for

the ECHAM5/Max Planck Institute Ocean Model (MPI-OM) coupled model

with initial conditions provided by the NCEP reanalysis. Correlation coefficients

between linearly-detrended observations and forecasts are shown for forecast

lead times of (a) 2–5 years and (b) 6–10 years. Only the significant correlations

(at the 5% level) are plotted. Modified from (Matei et al., 2012b). © 2012

American Meteorological Society. Used with permission.

ecological forecast products. Fortunately, this problem has been
well-recognized for some time now in the climate-modeling
community and initiatives aimed at improving access (e.g., the
WCRP Grand Challenge on Near Term Climate Predictions) are
starting to deliver results. Seasonal scale forecasts are available
from the North American Multi-Model Ensemble (NMME:
Kirtman et al., 2014) and analogous projects are currently in
progress in Europe (e.g., Copernicus C3S). Some decadal forecast
products are also openly available e.g., via CMIP5 (IPCC, 2013)
and can be used to develop products, although given that most
of the models stop around 2005, these cannot be used to produce
regularly updated predictions.

From a biological point of view, there is a continuing need
to improve the quality of our biological models. Marine science
has been limited for many years by its focus on describing,
rather than predicting, systems. Expanding our knowledge
beyond the empirical toward the mechanistic can be expected
to greatly improve the quality of our understanding and our
predictive capability (Dickey-Collas et al., 2014; Urban et al.,
2016). Incorporating behavior, allowing for adaptive responses,

and modeling organisms in terms of their full life-cycle are
all key elements that can be expected to be seen in the
next generation of models and deliver gains in predictive
skill, challenges in parameterising such models notwithstanding
(Urban et al., 2016). Similarly, the importance of social science
in understanding the marine system is gaining increasing
recognition and can be expected to drive important modeling
developments in the future as well as to inform the features that
make a management system effective (Fulton, 2010; Bundy et al.,
2017).

For economics and social sciences, modeling, and data
collection are expanding significantly but the integration of these
models with biophysical models is nascent. Economic models
are both structural and empirical, but even when predictions
can be made about how fish populations and market conditions
will change, the ability to predict what will occur across large
policy changes that alter fishers’ incentives is limited (Reimer
et al., 2017). However, as more research is conducted and the
lessons learned integrated across management systems, better
assumptions will be able to be made about the combined impacts
of environmental, market, and policy variability and change.

Improvements in applying this knowledge are also needed
to take advantage of the potential offered by marine ecological
forecasts. Foremost amongst this is the need to further develop
frameworks to assess and quantify the value of forecast
knowledge. Potential applications of forecast information could
be run through a simulation procedure, similar to a Management
Strategy Evaluation (MSE) to quantify both the benefits and risks
associated with the forecast product. Importantly, the level of
forecast skill required of the forecast product to “break-even”
(i.e., where the benefits outweigh the risks) can be established
within such a framework and used to determine when the
procedure should be adopted, modified or potentially rejected.
Examples of such analyses can be found in the literature already
(e.g., Basson, 1999) and at least one example of the analysis of a
forecast system, for themanagement of the Pacific sardine fishery,
has emerged (Tommasi et al., 2017b).

Finally, the role of stakeholders in the development of
these forecast products is often easy to overlook, but is also
critical (Hobday et al., 2016). Stakeholder participation is crucial
at all phases of developing forecast products, and should be
involved all the way from the scoping of the project through
its development to its evaluation and into operational delivery
(e.g., Liu et al., in review). Support to train stakeholders on
how to interpret and use this forecast information is therefore
also essential: engaged and informed stakeholders will ultimately
both inspire the development of new forecast products that the
scientific community cannot foresee and ensure their success.
Efforts to increase and support stakeholder engagement are
therefore expected to yield large dividends.

DISCUSSION AND CONCLUSIONS

This review of the current state of the marine ecological forecast
products shows a field that is developing quickly. Within the last
5 years, many products have come online and are now being
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produced in an operational manner, with many more still under
development. A number of these products are quite mature, and
have been in operation for close to a decade: it therefore seems
safe to say that the field hasmoved beyond the “proof-of-concept”
phase and is now preparing to roll-out the technology on a much
larger scale.

Realizing the full potential offered by marine ecological
forecasting can, however, seem like a daunting task, currently
available forecast products notwithstanding. The underlying
complexity of biological systems and the difficultly of observing
life in the ocean are particularly challenging obstacles.
Nevertheless, it is worth remembering the tremendous progress
that has been made in other fields: meteorology, in particular,
makes for a particularly inspirational example. Starting from the
early numerical experiments of Lorenz in the 1950s, weather
forecasting has progressed steadily and surely to the point where
reliable 5 and 7 day forecasts are now a reality (Figure 4), a
situation that was pure fantasy just a few decades ago (Bauer
et al., 2015). These advances have occurred in spite of challenging
observational difficulties and the inherent complexity and
chaotic nature of weather systems. Marine biological science
faces many similar problems today. While it is tempting to
despair of the complexity of ecosystems, the lessons from the
history of numerical weather prediction teach us that useful
products can be developed in the face of complexity.

The pathway followed by marine ecological forecasting,
however, will likely be different from the incremental progress
of numerical weather prediction (Figure 4). We expect the
next few years to exhibit a form of “Cambrian explosion” in
the number and variety of such forecast products, as marine

researchers become aware of the potential of forecasting and start
to populate the “niche.” We expect that this second generation
of products will be dominated by direct use of the available
model outputs: this is the approach advocated in the section
“How to go forward.” However, once the initial “low-hanging
fruit” products have come online, progress can be expected to
be more incremental in nature, as the joint development of
forecast systems between physical modelers andmarine scientists
starts to address the more challenging problems; indeed, such
collaborations are already starting to emerge e.g., the J-SCOPE
forecasting system in the California Current (Kaplan et al., 2016;
Siedlecki et al., 2016).

The marine ecological forecast products that have emerged
thus far are by no means distributed uniformly across the globe,
or even across the developed world. While Australia has clearly
been the pioneer, with multiple mature operational products,
and the United States has also seen rapid development of
operational products within the last few years, Europe has yet to
see the first such products emerge. Counterintuitively, the waters
surrounding Europe have some of the longest forecast horizons in
the world (Figure 3), particularly in the North Atlantic sub-polar
gyre region where decadal-scale forecasts are a reality (Matei
et al., 2012b; Meehl et al., 2014), but also in its shelf seas (Stock
et al., 2015). Moreover, many of its seas have a long history of
scientific investigation and some of the key hypotheses about fish
stock productivity were inspired by variations in European stocks
(Hjort, 1914; Paasche et al., 2015). We postulate two potential
explanations for this discrepancy. Firstly, while local fisheries in
Australia and the USA essentially are governed by one national
agency, management of European fisheries needs to balance the

FIGURE 4 | Development of weather forecast skill since 1981 for 3, 5, 7, and 10 day lead times for the northern (NH) and southern hemispheres (SH). Forecasts are

regarded as being useful if they exceed a skill of 60%, while >80% is considered to be of high accuracy. Forecast skill is the correlation between the forecasts and the

verifying analysis of the height of the 500-hPa level, expressed as the anomaly with respect to the climatological height. The collapse of the curves in the late 1990s is

due to advances in incorporating satellite observations into forecast models. Reprinted by permission from Macmillan Publishers Ltd, Nature (Bauer et al., 2015)

copyright 2015.
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interests of many nations at the same time, and therefore may
be less flexible and slower to respond to new opportunities.
Secondly, both Australia and the USA border the Pacific Ocean
and their waters are influenced by strong and regular variability
in the form of both ENSO and the Pacific Decadal Oscillation
(PDO). Furthermore, many of the first seasonal forecasts of
the ocean (for ENSO) were developed in this area more than
a decade ago, while the dominate mode of variability in the
North Atlantic (the NAO) has until recently been thought to be
unpredictable (Scaife et al., 2014; Smith et al., 2016), again giving
the Pacific a natural advantage in this respect. Nevertheless, the
high predictability of the front doorstep of Europe represents a
tremendous potential that we expect to see tapped in the future.

As marine forecasts become more common, we can
also expect to see both dramatic failures and unintended
consequences emerge. These negative outcomes may result
if a forecast fails in a technical sense, but they will also
arise if forecasts are not used or interpreted properly. As the
technical potential for forecasting in marine systems becomes
more tangible, the need is rising for systematic processes to
engage end-users in designing forecasts that can effectively
support their specific decision-making requirements. In addition,
information that is understandable to stakeholders about what
the forecast provides, temporal and spatial scales at which it is
relevant, its associated levels of uncertainty and its limitations
is also critical. In many cases, successful use of a forecast
will require that stakeholders beyond the immediate users are
capable of interpreting the forecast correctly, so as not to
disrupt highly connected systems in which actors may have
competing interests, such as fishery governance systems and
seafood supply chains. Active engagement with end-users to
communicate the limitations and assumptions inherent in these
forecasts is therefore critical to minimize the problems created
when forecasts inevitably fail or are misused.

In conclusion, we have reviewed and highlighted the lessons
learned so far from this first generation of forecast products.
While the recommendations made here will not guarantee the
successful development of other popular prediction systems in
the future, they can nevertheless be used to increase the rate of
development, identify “low-hanging fruits” where there is a good
chance of developing forecast systems and ensure the relevance
of the products to end-users. Following such an approach will,

we believe, lead to a rapid blooming of forecast products that
can close the gap between the potential and the reality of marine
ecological forecasting.
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