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Analysis of visible remote sensing data research requires removing atmospheric

effects by conversion from radiance to at-surface reflectance. This conversion can be

achieved through theoretical radiative transfer models, which yield good results when

well-constrained by field observations, although these measurements are often lacking.

Additionally, radiative transfer models often perform poorly in marine or lacustrine settings

or when complex air masses with variable aerosols are present. The empirical line method

(ELM) measures reference targets of known reflectance in the scene. ELM methods

require minimal environmental observations and are conceptually simple. However,

calibration coefficients are unique to the image containing the reflectance reference.

Here we compare the conversion of hyperspectral radiance observations obtained with

the NASA Glenn Research Center Hyperspectral Imager to at-surface reflectance factor

using two reflectance reference targets. The first target employs spherical convexmirrors,

deployed on the water surface to reflect ambient direct solar and hemispherical sky

irradiance to the sensor. We calculate the mirror gain using near concurrent at-sensor

reflectance, integrated mirror radiance, and in situ water reflectance. The second target

is the Lambertian-like blacktop surface at Maumee Bay State Park, Oregon, OH, where

reflectance was measured concurrently by a downward looking, spectroradiometer on

the ground, the aerial hyperspectral imager and an upward looking spectroradiometer

on the aircraft. These methods allows us to produce an independently calibrated

at-surface water reflectance spectrum, when atmospheric conditions are consistent.

We compare the mirror and blacktop-corrected spectra to the in situ water reflectance,

and find good agreement between methods. The blacktop method can be applied to

all scenes, while the mirror calibration method, based on direct observation of the light

illuminating the scene validates the results. The two methods are complementary and

a powerful evaluation of the quality of atmospheric correction over extended areas. We

decompose the resulting spectra using varimax-rotated, principal component analysis,

yielding information about the underlying color producing agents that contribute to the
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observed reflectance factor scene, identifying several spectrally and spatially distinct

mixtures of algae, cyanobacteria, illite, haematite, and goethite. These results have

implications for future hyperspectral remote sensing missions, such as PACE, HyspIRI,

and GeoCAPE.

Keywords: hyperspectral remote sensing, PACE, HyspIRI, GeoCAPE, empirical line method, cyanobacterial

harmful algal blooms, VPCA, atmospheric correction

INTRODUCTION

The empirical line method (ELM) is well-recognized as an

accurate, operational approach for the calibration of aerial

and satellite imaging systems to correct multispectral and
hyperspectral data from raw digital numbers (DNs) or radiance
to at-surface reflectance factors (e.g., Ferrier and Trahair, 1995;
Smith and Milton, 1999). If two or more ground targets with a
known reflectance factor are placed within a scene, calibration
for each spectral band reduces to an uncomplicated process of
regressing the observed radiance against the known reflectance
factor values. Linearity has been empirically demonstrated to be
valid over the full range of low to high reflectance factor targets
(Baugh and Groeneveld, 2008). The result is the calculation of
gain and offset coefficients that can be applied to all surfaces
in the scene, assuming uniform atmospheric conditions. The
gain characterizes the sensor response of reflectance factor per
unit radiance and the offset characterizes the sky path radiance
between the sensor and the surface for a sensor system calibrated
to radiance.

As part of a collaborative Cyanobacterial Harmful Algal

Bloom (CyanoHAB) monitoring program in the Western Basin

of Lake Erie (Figure 1) and Sandusky Bay, OH conducted

from 2014 to present, we have developed and implemented

an approach to apply an empirical atmospheric correction

and vicarious reflectance factor calibration to the second

generation, National Aeronautics and Space Administration
(NASA) John Glenn Research Center’s Hyperspectral Imager
(HSI2). This manuscript focuses on methods developed at
Kent State University (KSU) compared with those employed
at Michigan Technological Research Institute (MTRI) and the
University of Toledo (UT). Research conducted by MTRI, UT
and other collaborators will be presented in greater detail
separately. The HSI2 is an aerial imaging spectroradiometer that
generates a hyperspectral datacube over the VNIR from 400 to
900 nm. Atmospheric correction is a necessary pre-processing
step required prior to further processing to extract information
about algal composition from the HSI2 image swaths (Gordon
et al., 1988; Gao et al., 2009; Goetz, 2009). For the application
presented in this study, the ELM is applied in four ways as
described below. Three versions are simplified further to a single-
point calibration by assuming that since the NASA Glenn S3
Viking aircraft carrying the spectroradiometer is flying at a low
altitude that the path radiance between the surface and aircraft
can be assumed to be negligible. The result may introduce an
offset in the retrieved spectra compared to the actual surface
spectrum, however the general spectral shape of the upwelling
surface reflectance factor spectrum is still revealed (Farrand et al.,

1994). This allows spectral shape based methods, which are
not strongly dependent on absolute reflectance factor values to
be effectively employed. The approach that we use here is the
KSU visible derivative, Varimax-rotated, Principle Component
Analysis (VPCA) spectral decomposition method, (Ali et al.,
2013; Ortiz et al., 2013). Our conceptual approach also capitalizes
on an innovative reflectance factor reference target, allowing
the ELM to be applied directly to observations collected on
the lake surface, which is the surface of particular interest for
this and other aquatic studies. Application of these methods to
the optically complex waters of Lake Erie is a stringent test of
the approach because we document its applicability in highly
turbid waters. The methods developed here will be applicable
in coastal and inland water as well as marine environments
imaged by proposed orbital hyperspectral missions such as the:
Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) mission,
the Hyperspectral Infrared Imager (HyspIRI) mission, and the
Geostationary Coastal and Air Pollution Events (GeoCAPE)
mission. Deploying these orbital tools will create the opportunity
for enhanced estimation of pigment-related biomass and new
capabilities to identify algal and cyanobacterial composition
based on extraction of pigment spectra by visible derivative
spectroscopy.

METHODS

The innovative calibration approach is to employ a floating panel
(1.07 m by 1.17 m; 1.25 m2) composed of 16 convex mirrors
(0.26 m diameter with radius of curvature 0.18 m) deployed on
the water surface, providing an in-scene lake surface reference
for image reflectance factor calibration. The convex mirrors
reflect the direct sunlight and hemispherical sky illumination
downwelling to the surface of the Earth back up to the HSI2
sensor while it is flying over the target. We can then use the
HSI2 response of the mirror targets to normalize the upwelling
radiance to percent reflectance factor, if we know the correct
calibration gain function for the mirror target that transforms
the HSI2 measured at-sensor radiance to a Lambertian surface
reflectance factor. This effectively converts the spectroradiometer
to a spectrophotometer merely by sacrificing a few scene pixels.
An advantage of using convex mirrors deployed on the lake
(Figure 1) is that their spherical surface produces a constant
reflectance factor even when bobbing around on the unstable
water surface. We have constructed a series of mirror panels for
in scene reflectance factor calibration (Figure 1B). These were
deployed as floating platforms in the western basin, Sandusky
Bay, and a coastal transect along the southern shore of the central
basin of Lake Erie using Ohio Division of Natural Resources
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FIGURE 1 | (A) Maumee Bay State Park is the location where the NASA Glenn, second generation Hyperspectral imager (HSI2) swath 15_MBSP was collected on

June 21, 2016. Sampling station Western Erie 6 (WE6) is indicated, where measurements were taken from the boat, and the mirror array was deployed. (B) Inset:

mirror calibration panel being cleaned on deck and deployed behind the vessel in Sandusky Bay (After Figure 4.3 with modification, Lekki et al., 2017).

(ODNR), United States Geological Survey (USGS), or Ohio Sea
Grant vessels used as part of regular sampling trips conducted
during NASA coincident over flights.

Ground-Based Measurements and
Sampling
The image swath analyzed here was collected in the western
basin of Lake Erie perpendicular to the coast over Maumee Bay
State Park (MBSP), Oregon, OH, one of the surface calibration
sites employed in the Lake Erie CyanoHAB monitoring program
and includes the offshore sampling station designated WE6 (or
sometimes WLE06) shown in Figure 1.

Each field site was revisited bi-weekly from early June
through mid-October, 2016, via boat, provided that weather
conditions were suitable for data collection. An Analytical
Spectral DevicesTM (ASD) FieldSpec R© Handheld 2 (HH2)
spectroradiometer was used to measure downwelling irradiance
with a cosine-theta receptor. Irradiance data was collected with
the cosine-theta receptor shaded and unshaded to obtain diffuse
and global irradiance data. Surface water reflectance factor was
collected with a 10-degree field of view (10◦ FOV) receptor
calibrated to a 100% SpectralonTM plate that is factory calibrated
with the ASD FieldSpec R© HH2 spectroradiometer. At specific
stations chosen in coordination with the NASA aircraft pilot to
ensure coincident operations, the mirror calibration panel was
deployed from the research vessel during the overflight.

Image Acquisition
The initial version of the hyperspectral imaging system was
developed at NASA Glenn Research Center in fiscal year
2006 and has been flown in three separate aircraft campaigns
to study CyanoHABs in collaboration with the National

Oceanic and Atmospheric Administration (NOAA) Great Lakes
Environmental Research Laboratory (GLERL) (Lekki et al.,
2009).

As of 2015, the second generation, NASA Glenn hyperspectral
imaging system (HSI2) (Lekki et al., 2017 NASA TM 2017-
219071) includes the imager, an Inertial Navigation System (INS),
and an upward-looking spectroradiometer. Because reflectance
factor measurements are desired for CyanoHAB assessment,
starting with the 2015 HSI2 imaging campaign, an ASD
FieldSpec R© HH2 spectroradiometer was mounted in the aircraft
and used to collect downwelling irradiance measurements in
order to compute simple, at-sensor reflectance factor values in
conjunction with imager radiance. The HH2 spectroradiometer
was mounted in the aircraft under a Plexiglas window because it
was logistically impractical to modify the fuselage of the aircraft.
A cosine receptor foreoptic was attached to the upward-looking
HH2 spectroradiometer by a fiber optic cable to directly measure
the total hemispherical solar irradiance.

Data recorded during each flight is produced by two
systems: the HSI2 control and acquisition computer and the
spectroradiometer system. The HSI2 imager and the INS acquire
data at 25 Hz while the ASD FieldSpec R© HH2 spectroradiometer
acquires at 0.033 Hz. Because the HSI2 imager and upward-
looking HH2 spectroradiometer are not synchronized, the
imager frame times are used as the basis for the INS and
spectroradiometer data are interpolated to estimate data values
corresponding to the imager frame times. From 2015 and on,
for each imaging flight over a point of interest, the output
of the hyperspectral data acquisition computer is a binary file
containing a number of hyperspectral image frames (also referred
to as tracks). Each frame includes an image with data in raw
counts. The data files also contain a set of parameter values for
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each frame related to GPS time, latitude, longitude, altitude, roll
(side to side motion), pitch (nose up to nose down motion)
and yaw (motion around a vertical axis). The raw HSI2 image
contains 658 spectral bands (arrayed in the along-track direction
from the UV to the NIR) and 496 spatial pixels (arrayed in
the cross-track ground direction). From the 658 spectral bands,
the 510 central bands with the highest signal to noise ratio
(SNR) are retained for analysis. The full spectral resolution of
the HSI2 sensor is thus ∼0.98 nm per band, with continuous
bands through the visible-near infrared (VIS-NIR) range of
400–900 nm.

The calibration of the HSI2 imager takes place at the NASA
Glenn Optical Laboratory. Using a LabsphereTM incandescent
light source with a radiance profile traceable to the National
Institute of Standards and Technology (NIST), a set of calibration
frames is acquired with the HSI2 system. The LabsphereTM

radiance profile image is then divided by the average of this set
of frames to yield a radiance-per-count image. Radiance units
are: Watts per square meter per steradian per nanometer. The
radiance-per-count image can then be multiplied by each HSI2
image acquired in flight to convert it to radiance.

When applying the radiance-per-count calibration image,
a perfect pixel-to-pixel match must be assumed between the
radiance-per-count image generated in the laboratory and the
in-flight data image. This is frequently not the case with data
acquired while airborne. The HSI images have two axes: the
wavelength axis and the distance axis. There is evidence that a
shift occurs in the airborne data along both axes and that the
shift may be different for each axis. To correct this shift, the
calibration image may also be shifted to improve the registration
before it is applied to the data. The solar “G” line and the O2

absorption line have been used to determine the wavelength shift.
The wavelength axis is stretched and/or translated so that these
two spectral features occur at their proper wavelengths in the data
image.

Incorrect registration along the distance axis manifests as
striping that appears in the along-track direction of the images.
The radiance-per-count image may be shifted slightly along the
distance axis to minimize the striping effect. When a segment of
a track is over water across the whole track, a correlation process
can determine the optimum shift based on the maximum from
a cross-correlation between the data image and the radiance-
per-count image. For the KSU VPCA spectral decomposition
method, the data was destriped using the ENVI/IDL SPEAR
Vertical Stripe Removal tool.

To reduce the size of the processed files and to satisfy
requirements imposed by some CyanoHAB detection algorithms,
the HSI images are rebinned along the wavelength axis,
decreasing the wavelength resolution from 0.98 to 2.97 nm per
pixel. This results in an increase in the SNR of the resulting
binned image. The rebinning process is performed both on the
raw data and on the calibration images before the radiance
calibration is applied. For the KSUVPCA spectral decomposition
method, the data is further rebinned to 10 nm resolution.

The georeferencing process requires knowledge of the
effective viewing angle for the imager. The total viewing angle
is defined as twice the angle from nadir to the angle beyond

which the image cuts off. For the imager described here, the total
angular width of the image swath was determined to be 12.4◦.
The accuracy of georeferencing has been used as a validation of
this view angle determination. Once the data has been converted
to units of radiance with the optimum shifts applied, a set of
GPS coordinates is computed for each pixel in the image track.
For each frame in the track, the spatial pixels mark a cross track
line that is imaged on the surface of the Earth with the GPS
coordinates computed for each pixel in the line. Think of the
pixels as 496 point sources whose beams are projected across the
swath from the Earth surface to the aircraft as the plane overflies
an area. The problem is to compute the GPS coordinates of the
projected spots for each of the 496 spatial pixels. This would be
a relatively simple geometry problem if the imager was always
pointing directly down. But, the HSI2 unit is fixed to the airplane
structure, so as the plane rolls, pitches and yaws, the HSI2 unit
must follow. Finding the GPS coordinates is thus essentially a ray-
tracing process. The method used here attempts to trace a ray out
from each pixel on the imager through the optical system and
down to the surface.

In order to do this ray-tracing computation, some
assumptions are made: (1) Traveling out from the image
sensor chip, the ray path to the front of the lens includes mirrors,
a holographic grating, and then the lens. The rays are not
followed through this maze, but are assumed to begin at the lens.
(2) A constant angle of view is assumed for the optical system.
The 496 imaging pixels are assumed to be spread linearly over
the 12.4◦ viewing angle. This amounts to an angular spacing
between pixels of 0.025◦. (3) The above-ground-level elevation is
also assumed to be constant. This is important because the GPS
device provides altitude above sea level. To compute the actual
distance to the surface from the aircraft, the ground elevation
above sea level is subtracted from the GPS altitude. The constant
elevation assumption is reasonable when flying over one of the
Laurentian Great Lakes because the elevation is known and
is essentially constant. The constant elevation assumption is
frequently violated when flying over land. There is currently no
way of knowing the elevation before knowing the coordinates;
the elevation information must be determined post flight. Thus,
there is presently more uncertainty in the geolocation for inland
tracks. With these assumptions and measurements of the image
platform orientation, the coordinates of the imaged line on
the surface can be computed. This georeferencing process was
validated using known ground control points.

Because the plane may be pitch, roll or yaw during the
data acquisition, it is very likely that the coordinates of some
adjacent pixels will overlap. Thus, the process of georeferencing
of these images can be very complex. Fortunately, the software
package used (Excelis Visual Information Solutions) provides this
functionality. The georeferencing routine available computes a
footprint using the envelope of all the GPS coordinates in the
track. Then the software attempts to fill in the gaps with data
pixels. To compute a radiance value for a pixel in a gap, the
software looks for data pixels within a 7-pixel neighborhood
around the gap pixel and sets the value of the gap pixel to the
average of these neighborhood data pixels. For hyperspectral
image pixels located on the same geographical location, the
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software uses a similar operation to determine the proper data
level for that pixel. The roll, pitch, and yaw angles are assumed
to apply to the imaging axis. However, small adjustments to the
roll, pitch, and yaw values are necessary to achieve optimum
georeferencing results. These adjustments remain constant until
the mounting configuration is changed. As longitude and latitude
is generated for each pixel in a given track, these data are then
used to produce a georeferenced data set. The software package
(Excelis Visual Information Solutions) used also provides a
Google Earth Bridge functionality, which creates a “.kml” file that
places the georeferenced image onto a satellite view of the Earth
surface.

As a demonstration of the empirical mirror-based correction
approaches described below, the technique is applied to NASA
HSI2 scene 062116_15_MBSP, where the file name convention
for the HSI2 images is: <acquisition date (mmddyy)>_<swath
#>_<location ID>. This image was collected on June 21, 2016
over Lake Erie, offshore of MBSP. On this day, the sky conditions
were clear and the NASA aircraft flew at an altitude of 8,500
ft. The image swath collected included station WE6, offshore of
MBSP where the team deployed a mirror panel and collected
surface validation data as described above. The aircraft HSI2
sensor was calibrated preflight for producing absolute radiance
imagery as described above. The image used for this analysis
was corrected for aircraft motion, georeferenced to obtain proper
spatial relationships between pixels, and resampled using a
nearest neighbor algorithm to convert rectangular pixels in the
raw data to square pixels. The rectangular pixels resulted from
an extended along-scan integration time to improve the sensor
signal-to-noise at the low water radiance. After processing, the
resulting pixel GSD was 3.21 m on a side.

Reflectance Factor
Calibration-Inter-Comparison of Four
Methods
For this study, we compare four empirical means of removing
atmospheric effects by transforming from radiance to reflectance
factor (Table 1). Three of these make use of data from the floating
mirror arrays, while one is based on application of the ELM using
parking lot blacktop as the calibration surface.

In the empirical mirror calibration method designated ELM0,
the Sun’s downwelling irradiance hits the mirror surfaces and
is radiated back up to the HSI2 senor flying above the target
during an overpass. The ratio of the HSI2 radiance divided
by the radiance reflected from the mirror is calculated to
yield a biased estimate of the at-sensor reflectance factor. The
measurement is biased due to the dispersion of light by the
curved mirror surfaces. A gain factor for the mirror is then
calculated by dividing the biased estimate of the at-sensor
reflectance factor with the 100% SpectralonTM-calibrated, at-
surface reflectance factor measurement obtained from an ASD
FieldSpec R© HH2 spectroradiometer to remove the bias. This
single-point gain factor is then used to correct the mirror signal
to determine a reflectance factor from the HSI2 radiance. This
correction depends on knowledge of the observed at-surface
reflectance of the target, measured using an ASD FieldSpec R©

HH2 spectroradiometer. For the single-point empirical mirror
calibration method (ELM1), we use a combination of the
mirror radiance and the diffuse to global ratio measured using
an upward looking ASD FieldSpec R© HH2 spectroradiometer
equipped with a cosine-theta receptor to determine the mirror
gain function. For the two-point empirical mirror calibration
method, we add the use of the ASD at-surface lake reflectance
factor, which yields the intercept for the reflectance factor
in addition to the gain of the relationship. Derivations and
equations for the ELM0, ELM1, and ELM2 methods based on
radiative transfer theory are described below.

The MTRI blacktop calibration method does not employ
mirrors to remove the atmospheric effects. Rather, that method
starts with an at-sensor reflectance factor ratio determined
by dividing the HSI2 radiance using the at-sensor irradiance
measured by the upward looking ASD FieldSpec R© HH2
equipped with a cosine theta receptor that is mounted in the
aircraft. A gain function is then determined by comparing the
at-sensor reflectance factor to the well-known measurement of
the reflectance factor of the asphalt blacktop parking lot at
MBSP, which is measured routinely by researchers throughout
the summer. The cosine theta irradiance data is adjusted to the
same time of day as the parking lot reflectance factor data to
minimize sun angle offsets.

Because each of these methods employs data from multiple
instruments, it is possible that minor path radiance biases may be
introduced by the fact that not all measurements are coincident
in time or space. The ELM0method should exhibit minimal path
radiance bias because the reflectance factor ratio that removes
atmospheric effects is determined using the same instrument, the
HSI2. Any offset with this method arises from the calculation
of the gain function by comparison with the surface reflectance
factor measurement. This effect should be minimal, however,
as the surface reflectance factor should vary more slowly than
atmospheric measurements. The ELM2 method should yield
a better estimate of the absolute reflectance factor than the
ELM1 method, since it provides a more complete correction that
accounts for both the slope and intercept. Offsets in the MTRI
blacktop method could arise from calculation of the at-sensor
reflectance factor using three separate instruments, or from the
temporal and spatial offset of the path radiance between the
measurements over the lake and the calibration data obtained
from a nearby ground station.

We used the Kent State University (KSU) Varimax-rotated
Principle Component Analysis (VPCA) visible derivative spectral
decompositionmethod to partition the variance of the reflectance
factor from the resulting derivative-transformed reflectance
images. The resulting VPCA spatial score maps were smoothed
with a 9 × 9 median kernel for presentation. The VPCA method
allows us to compare the level of path radiance bias observed
in the four, empirical reflectance factor calibration methods.
This is a stringent test because the VPCA method is based
on the derivative of the spectra and is capable of separating
correlated signal from systematic bias and random noise (Ali
et al., 2013; Ortiz et al., 2013). The KSU VPCA approach should
thus be effective at separating path radiance biases resulting from
scattering of light on the blue end of the spectrum from the
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TABLE 1 | Reflectance calibration methods employed.

Method Calibration surface Instrumentation and data

designation

ELM0a Floating, convex mirrors HSI2e at-sensor upwelling radiance, mirrors, ASDf at-surface lake reflectance factor

ELM1b Floating, convex mirrors HSI2 at-sensor upwelling radiance, mirrors, ASD at-surface diffuse to global ratio

ELM2c Floating, convex mirrors HSI2 at-sensor upwelling radiance, mirrors, ASD at-surface diffuse to global ratio, ASD at-surface lake reflectance factor

MTRId Blacktop Asphalt parking lot HSI2 at-sensor upwelling radiance, ASD at-sensor downwelling irradiance, ASD at-surface lake reflectance factor

aEmpirical Line Method 0.
bEmpirical Line Method 1.
cEmpirical Line Method 2.
dMichigan Tech Research Institute.
eNASA Glenn, second generation Hyperspectral Imager.
fAnalytical Spectral Devices.

spatially coherent, environmental signals. We predict that the
ELM1 and ELM2 methods will yield similar VPCA signals since
they differ only by a constant. Because the derivative of a constant
is zero, the addition of the second calibration point, while
necessary to yield accurate absolute reflectance factor values,
should contribute little to the derivative spectra. In the sections
that follow, we present theoretical derivations and empirical
descriptions of the methods employed to convert from radiance
to reflectance and to decompose the complex, mixed signals into
independent spectral signatures that can be related to know color
producing agents.

Deriving the Effective Lambertian
Reflectance Factor of a Spherical Mirror
The empirical calibration of aerial and satellite systems to
retrieve surface reflectance factor requires that the reference
target have a known Lambertian reflectance factor. To use a
ground reference target made of spherical convex mirrors, the
specular reflectance factor of the mirror target must be converted
to a Lambertian reflectance factor producing an equivalent sensor
response in each spectral channel for the view angle recorded in
the sensor image. The derivation of the transformation used in
this analysis is described in this section. The spherical convex
mirrors deployed on the water surface are domes designed to
reflect a fraction f of the hemispherical sky toward the sensor as
given by

f = 1− cos 2θm (1)

where θm is the angular width of the mirror surface as measured
from the mirror’s center of curvature. A virtual image of the full
hemispherical sky (f = 1) is seen in the mirror by a nadir looking
sensor when θm = 45◦. Schiller and Silny (2010) have shown that
when illuminated by a hemispherical irradiance on a horizontal

surface from the sun and the sky (E
surf
sun (λ) + E

surf

sky (λ); Watts m−2

nm), that the upwelling radiance (L
surf
m ; Watts m−2 sr−1 nm−1)

from a panel of N convex mirrors can be calculated knowing the
radius of curvature of the mirrors (Rc) and the along-scan and
cross-scan ground sample distance (GSD) of the sensor system

(GSDAS and GSDCS, respectively) using the equation:

L
surf
m (λ) =

[

E
surf
sun (λ) + E

surf

sky (λ)

]

f ρm (λ)Rc
2

4GSDASGSDCS
(2)

where ρm (λ) is the specular reflectance of the mirror measured
in the laboratory. It is important to note that by using spherical
mirrors, there is no foreshortening effect as with a flat diffuse
target. Thus, the upwelling radiance signal is constant and
independent of the sensor view angle and in principle, the tilt of
the sphere representing the mirror’s surface. Although the wave
motion changes the orientation of the hemisphere reflected by a
mirror so that the 180◦ Field of view may include some of the
water surface if f = 1, the effect can be minimized by designing
the mirrors to reflect a sky fraction slightly <1, if one assumes
the integrated diffuse sky is relatively isotropic. As long as the
direct solar contribution continues to be reflected at the sensor, a
constant upwelling radiance will bemaintained even for off-nadir
view geometries of <25◦.

Next, we establish a hemispherical-directional reflectance
factor distribution function, ρHDRF

m , for the mirror reflectance
factor target by taking the ratio of the radiance directed
toward the sensor to the horizontal irradiance at the surface
(Schaepman-Strub et al., 2006). Since there are no significant
directional effects in the upwelling signal, applying Equation (2),
one can write:

ρHDRF
m (λ) =

L
surf
m (λ)

E
surf
sun (λ) + E

surf

sky (λ)

=

[

1

cos θo
+

(

f −
1

cos θo

)

G(λ)

]

NRc
2

4GSDCSGSDAS
ρm (λ) . (3)

Here, we have included the term
[

1
cos θo

+
(

f − 1
cos θo

)

G(λ)
]

,

which includes the solar zenith angle, θo, and the diffuse-to-
global ratio illuminating a horizontal surface [G(λ)]. This term
is needed to perform a proper conversion of specular reflectance
to an equivalent Lambertian reflectance factor. It corrects for the
fact that there is no foreshortening in the solar contribution to the
mirror reflected signal compared to a Lambertian surface. Amore
detailed description of this correction term will be presented in a
future publication.
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Finally, Palmer (1999) shows that a reflectance factor
distribution function, such as ρHDRF

m , is related to a
hemispherical-to-direct Lambertian reflectance factor, ρHDRF

m ,
through a simple factor of π steradians. Thus,

ρHDRF
m =

[

1

cos θo
+

(

f −
1

cos θo

)

G(λ)

]

πNRc
2

4GSDCSGSDAS
ρm (λ) .

(4)

The result is that Equation (4) provides the needed
transformation equation for converting the specular reflectance
spectrum of the mirror reference target to an equivalent
Lambertian reflectance factor needed for the empirical
calibration of the sensor image radiance to surface reflectance
factor.

Empirical Line Method Reflectance Factor
Calibration
The ELM applied to a lake surface image assumes a linear
relationship between at-sensor water radiance, Lsenw (λ) , recorded
by the HSI2 imaging system and water surface reflectance factor,
ρHDRF
w (λ). This can be expressed for a sensor image calibrated to

radiance as:

ρHDRF
w (λ) = gm (λ) [Lsenw (λ) + (Lp (λ) + d (λ))]. (5)

In terms of a linear equation, gm (λ) is the gain function that
will be derived from the mirror surface reference target and
gm (λ) (Lp (λ) + d (λ)) = b (λ) is the linear intercept. The term

Lp (λ) is the atmospheric path radiance between the aircraft
and the surface, while d (λ) accounts for any residual sensor
calibration dark bias drift and potential processing offset. The
empirical line equation follows as:

ρ
−surf
w (λ) = gm (λ) Lsenw (λ) + b (λ) . (6)

The determination of the gain and bias coefficients is obtained
by regressing observed radiance values, recorded by the HSI2
sensor, against known reflectance factor values in each band from
at least a high and low reflectance factor target pair in the scene.
For the ELM1 solution, the coefficients needed to determine the
intercept, b (λ) are set to zero, while both the slope and intercept
coefficients are used for the ELM2 solution. This allows us to
determine the impact that both the slope and intercept have on
the solution. The high reflectance factor reference is provided
by the convex mirror target deployed on the water and the low
reflectance factor reference is recorded by a direct measurement
of the water surface reflectance factor from a research vessel in the
scene, or measurement from a nearby ground station. Thus, the
calibration is based on the two reference points (Lsenm (λ) , ρHDRF

m )
and (Lsen

w, boat (λ) , ρHDRF
w, boat

), where Lsenm (λ) and Lsen
w, boat (λ) are

the HSI2 measured reference radiance of the mirror target and
water surface and ρHDRF

w, boat
is the reflectance factor recorded at the

location of the research vessel, or nearby ground station.

Thus, for the ELM2 solution, the image calibration equation
converting all pixels in the scene from at-sensor radiance,

Lsenw (λ), to at-surface reflectance factor, ρ
surf
w (λ) , becomes:

ρ
surf
w (λ)=

ρHDRF
m (λ)

Lsenm (λ)

[

Lsenw (λ)−Lsenw, boat (λ)

]

+ ρHDRF
w, boat (λ) (7)

and provides an algorithm for performing an atmospheric
correction of hyperspectral or multispectral image data. The ratio
ρHDRF
m (λ)

Lsenm (λ)
represents the mirror gain function gm (λ) .

One advantage obtained by the use of curved mirrors is
that their convex shape disperses the light reflected back to
the air- or space-bourne sensor passing over the target. This
decreases the possibility that the solar radiance reflected from
the surface will saturate the detector. The dispersion factor is
determined as part of the calibration process. The approach
effectively converts a passive spectroradiometer to an active
spectrophotometer by sacrificing a small number of scene pixels.
An additional advantage of the mirror targets for deployment is
that they are small and generally can be designed to be the size
of an instantaneous field of view (IFOV) pixel or smaller. As a
result, the deployment of reflectance factor reference targets on
water now becomes practical. If actual Lambertian-like targets
were placed on the water instead of the mirror targets, their
surface area would need to be at least 25 times larger in order
to provide a reliable measure of the target radiance. This is due to
the blurring resulting from the aircraft motion, the optical point
spread function (PSF) and pixel resampling, all of which have
the effect of mixing the reference signal with the background.
The blurring effects can be seen in (Figure 2A), which shows
the image of the mirror target deployed on the water surface.
Although the target (1.2m on a side) is smaller than the processed
image pixels (3.21 m on a side), the radiance signal recorded by
the sensor has been spread out over many pixels around it. Thus,
the radiance from the target pixels is a combination of the mirror
signal and the background water. However, because the target
is small, it can be assumed to be a point source, located on a
uniform background. It is thus straightforward to separate the
total target radiance from the background water. An integration
to remove the background is carried out by placing an integration
window containing P pixels around the target centroid enclosing
all the radiance from the target (Figure 2A, red box), as defined
by the system PSF, and calculating the average radiance spectrum,
Lsenm (λ). Outside the perimeter of this window, an average pixel

water radiance spectrum is derived, L
bkg
w (λ), to represent the

background signal (Figure 2A, green box). Thus, the calculation
of the background subtracted at-sensor total integrated radiance
from the mirror target becomes:

Lsenm (λ) = P

[

Lsenm (λ) − L
bkg
w (λ)

]

(8)

Equation (8) provides the at-sensor radiance response for
completing the calculation of the mirror gain function.

To fully explore parameter space, we also consider a different
single-point calibration, the ELM0 method, which is based on
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FIGURE 2 | (A) NASA Glenn, second generation Hyperspectral imager (HSI2) image pixels from swath 15_MBSP, acquired on June 21, 2016, of the mirror

reflectance target (red box: high calibration point), water (blue box: low calibration point) and boat at station Western Erie 6 WE6. Though the mirror target is smaller

than an instantaneous field of view (IFOV) pixel, the energy reflected at the mirror is spread out over multiple pixels due to the aircraft motion, sensor system point

spread function and pixel resampling during processing. Pixels included in target integration are indicated by green and red boxes. (B) Example diffuse to global ratio

spectra, and (C) water surface reflectance spectra measurements taken from the boat located at WE6 on June 21, 2016.

the at-surface water reflectance factor, ρHDRF
w, boat

, measured with

an ASD FieldSpec R© HH2 at the boat location, rather than the
mirror target reflectance factor ρHDRF

m (λ) . This method first uses
the mirror signal to remove the atmosphere by determining a
ratio of the water leaving radiance and mirror radiance with
both quantities measured directly by the HSI2 sensor. Because
that ratio is biased by the mirror dispersion, it is rescaled using
the at-surface reflectance factor measured from the boat with
an ASD FieldSpec R© HH2 spectroradiometer. After algebraic re-
arrangement, the mirror terms drop out and the radiance to
reflectance conversion equation for the ELM0 has the form:

ρ
surf
w (λ) =

ρHDRF
w, boat (λ)

Lsen
w, boat (λ)

Lsenw (λ) . (9)

While this transformation will not yield absolute reflectance, it
should be scaled so that spectra at various spatial locations
in the scene have the correct spectral shape as needed
for algorithms based on spectral shape, such as the KSU
VPCA spectral decomposition method. We compare
the results of the ELM0, ELM1, and ELM2 solutions
with the MTRI Blacktop calibration, which is described
below.

RESULTS

Application of the Mirror-Based Empirical
Line Method
The steps in the analysis of the data include the following
for each HSI2 swath. We obtain the subset of the swaths that
includes locations of ground-based measurements conducted
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by researchers in a vessel on the water or at a nearby ground
station. We then identify the location of the research vessel and
floating mirror array in the swath (Figures 1, 2A). The pixels
associated with the mirror array (Figure 2A) are extracted and
averaged, as are lake pixels near the mirror array. The image
cutout of the mirror target and boat are shown in (Figure 2A)
identifying the target integration window and pixel locations
used to estimate the water background. The mirror correction
method for the ELM1 and ELM2 is then applied using Equation
(7) as described in the text and for the ELM0 using Equation
(9). Validation data collected on the lake included measurements
of the diffuse to global ratio obtained from the ratio of shaded
to unshaded downwelling solar irradiance measured with an
upward looking ASD FieldSpec R© HH2 spectroradiometer
equipped with a cosine theta receptor (Figure 2B) and
measurements of the at-surface reflectance factor relative to a
100% SpectralonTM plate measured with a downward looking
ASD FieldSpec R© HH2 spectroradiometer equipped with a 10◦

FOV foreoptic (Figure 2C). The data in Figures 2B,C document
the stability of the atmosphere and lake surface during data
collection.

With knowledge of the sensor GSD for the image, the
calculation of the mirror Lambertian reflectance factor, ρHDRF

m ,
can be completed. The specular reflectance spectra of the mirrors
were measured at Kent State University using a Konica Minolta
CM-2600d Spectrophotometer, which was set to measure the
specular component of the reflectance factor relative to daylight
with a brightness temperature of 6,500K. The calibration panel
consisted of N = 16 mirrors deployed on the water surface.
The radius of curvature for the mirrors, Rc = 20.1 cm, and
a hemispherical sky fraction was calculated as f = 0.878. The
resulting specular reflectance factor and Lambertian equivalent
reflectance factor spectra, calculated from Equation (4), are
shown in Figure 3A. The reference target is spectrally flat, which
is ideal for the calibration of a hyperspectral sensor. Note that
a calibrated, diffuse reflectance factor flat panel delivering a
reflectance factor of 18% as shown in Figure 3A would normally
saturate a sensor designed to record a high SNR for water
leaving radiances. However, since the energy from the curved
mirrors is spread over many pixels by the sensor PSF, a small
bright target can be recorded without saturation, providing a
measurement of the target signal with good precision. Figure 3B

FIGURE 3 | (A) Specular reflectance factor and Lambertian equivalent reflectance factor spectra, calculated from Equation (4). (B) Resultant average NASA Glenn,

second generation Hyperspectral imager (HSI2) water and mirror radiance spectra representing the low calibration reference spectrum (HSI2 Boat Water Spectrum)

and the high cal reference (HSI2 Mirror Target Integrated Radiance). (C) Empirical line method 2 (ELM2) transformation reflectance spectra of water pixels extracted

from the HSI2 15_MBSP swath (inset, red region of interest; ROI), compared to in situ reflectance spectra measured concurrently using the Analytical Spectral Devices

(ASD) FieldSpec HandHeld 2 (HH2) around the boat at station WE6 (insert, blue box). (D) Empirical line method 0 (ELM0) transformation reflectance spectra of the

same pixels shown in (C) for comparison.
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shows both the resulting average HSI2 water radiance spectrum
representing the low calibration reference spectrum, Lsen

w, boat (λ) ,
denoted with the blue box in Figure 2A and the net integrated
HSI2 target radiance with background subtraction as calculated
using Equation (8), Lsenm (λ) , representing the high calibration
radiance spectrum. The ratio of the at-surface mirror target
reflectance factor spectrum and HSI2 measured at-sensor mirror
target integrated radiance spectrum provides the mirror gain
function used to convert any HSI2 radiance spectrum to surface
reflectance factor in the scene via Equation (7), assuming even
illumination throughout the scene.

The at-sensor radiance to surface reflectance factor
transformation is demonstrated in Figure 3C as the average
water radiance spectra, based on HSI2 pixels around the boat
and mirror targets that were extracted from a portion of the
062116_15_MBSP swath, which is shown in the inset image in
Figure 3C. Applying Equation (7) as a two-point calibration
(ELM2), the transformation to a predicted at-surface reflectance
factor spectrum was calculated and shown in the plot for two
locations, the boat location in the blue box and a second,
independent region of interest (ROI) in the red box. The result
produces an estimated absolute reflectance factor water surface
spectrum at each location. The predicted spectrum at the boat
is identical to the ASD measured reflectance factor spectrum
at the research vessel (10:31 a.m. EDT Figure 2C) because it
was recorded nearly coincident with the HSI2 overpass (3 min
apart) and was used as the low reference reflectance spectrum
for calibration and thus sits exactly on the line defined by
Equation (7). The second spectrum in red is the resulting
reflectance factor spectrum for an independent ROI location.
The two spectra represent the absolute appearance of the water
reflectance factor spectra at the two locations recorded by the
HSI2 sensor as scaled in reflectance units by the mirror gain
function. The two-point calibration transformation removes
the solar/sky illumination spectrum and the atmospheric
transmittance and path radiance effects produced between the
sensor and the water surface extracting the water reflectance
factor spectrum for the illumination and view geometries
at the time of the HSI2 collect. In comparison, Figure 3D

shows the resulting transformation using only the mirror gain
function in a single-point calibration (ELM1) without the bias
correction provided by the ASD measured at-surface water
reflectance [the terms for ρHDRF

w, boat
and Lsen

w, boat (λ) were set to
0 in Equation (7)]. The resulting spectrum has similar shape,
but more noise than the EML2 spectrum from Figure 3C, and
a higher path radiance contribution on the blue end of the
spectrum. The ELM1 calculation will allow us to determine
if the KSU VPCA spectral decomposition analysis can still be
performed in this way using less ground validation data. The
mirror gain function correctly scales the relative difference
between the two locations in reflectance units for the ELM2,
but a spatially constant reflectance offset in each spectral band
still remains as revealed in the difference between the spectra in
Figures 3C,D. Though the result is not an absolute reflectance
spectrum, the ELM1 spectrum can still potentially be used for
spatial/spectral decomposition. This will be explored in Section
Comparison of the Reflectance factor calibration methods:
VPCA Decomposition.

The important result is that the methodology of deploying a
single mirror reflectance factor reference target was successful
in performing an atmospheric correction of the HSI2 aircraft
imagery resulting in the retrieval of the at-surface water
reflectance factor spectral profiles based on the image data,
sensor metadata, the mirror target properties, measurements of
the lake surface reflectance and simple measurements of shaded
and unshaded downwelling solar irradiance to establish the
diffuse to global ratio. The utility of the derived spectra will be
demonstrated in the following sections, where we compare the
ELM0, ELM1, and ELM2 reflectance factor estimates with the
extraction of water constituents using the KSU VPCA spectra
decomposition method. Though random path radiance bias
is likely present between the derived HSI2 and the surface
validation spectrum due to offsets in time of measurement
and/or location, they will mostly drop out in the derivative
transformation and decomposition process with minimal effect
on the analysis results.

MTRI Blacktop Calibration Results
We compare the three mirror-based reflectance calibration
methods with an additional empirical approach to estimate
the reflectance factor. The MTRI blacktop vicarious calibration
method involves identifying a natural or artificial site that
can be measured both by the HSI2 sensor, which requires
calibration, and instruments of known calibration, such as the
ASD FieldSpec R© HH2 spectroradiometers used in our field
measurements. The ratio of these measurements is used as the
basis for the vicarious calibration. The MBSP parking lot was
chosen as a suitable location because the site is located along the
immediate shoreline of Lake Erie so that it does not impose an
undue burden on flight planning and navigation; the parking lot
has a consistent and well-characterized spectral response across
both time and space (Figure 4A); and is a relatively large feature
that can be easily identified in HSI2 imagery at any operational
elevation (Figure 4B).

The correction factor (Figure 5), which is a wavelength-
dependent scalar that relates the two reflectance factor
measurements, is then calculated using Equation (10), where C is
a correction coefficient, λ is wavelength, CalRef is the calibrated
reflectance factor (i.e., ASD radiance/ASD irradiance measured
in situ at MBSP), and UncalRef is the uncalibrated reflectance
factor (i.e., HSI2 radiance/ASD irradiance upward looking
from the S3 Viking aircraft). The correction factor equation
will encapsulate the measurement differences between the two
sensors, including all sources of measurement error, and can be
used to convert measurements from one instrument into the
other. Of obvious interest is converting the uncertain sensor to
match the well-calibrated instrument.

C (λ) =
CalRef (λ)

UncalRef (λ)
(10)

CalRef (λ) = C (λ) ∗ UncalRef (λ) (11)

Radiance and irradiance spectroradiometer measurements were
recorded to calculate an at-sensor surface reflectance factor.
Coincident ground data was collected during overflight using
ASD FieldSpec R© HH2 spectroradiometers set up in the MBSP
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FIGURE 4 | (A) Maumee Bay State Park (MBSP) parking lot blacktop spectral response, as measured by MTRI and the University of Toledo (UT) research teams.

(B) NASA Glenn, second generation Hyperspectral imager (HSI2) image of MBSP parking lot in relation to Lake Erie (insert) (After Figures 4.2 and 4.3, Lekki et al.,

2017).

parking lot. This allows collection of data under the same
illumination conditions as the lake surface from a nearby ground
station. We account for the effects of solar angle on the diffuse
illumination component of radiance when a cosine receptor
is used to measure irradiance by applying a time correction.
When using a 100% SpectralonTM panel, mirror, or other known
reflector to estimate solar radiance, the effect of the diffuse
terms will cancel out when computing the reflectance factor. The
cosine receptor does not include this term, whereas the radiance
measurement does, and will therefore remain in the computed
reflectance factor if not addressed. An example of this effect is
readily apparent (Figure 6A) in the split between the 10:30 and
13:00 measurements from the MTRI ASD FieldSpec R© HH2 data
collected on August 24, 2015, in which the time correction for
solar angle removes most of the offset (Figure 6B).

We explore output from the MTRI method using data
from a number of swaths collected in 2015. In Figure 6C,
the parking lot as observed by the HSI2 sensor has a similar
shape in spectra extracted from different swaths; the remaining
differences are likely atmospheric or time of day effects. This
suggests that a single correction factor would be useful even
on days for which it was not recomputed, as demonstrated by
the manner in which the corrected signals clustering around
the observed ASD FieldSpec R© HH2 spectra (Figure 6D). The
two anomalous dates are both flagged as cloudy days (dashed
line), their measurement difference could be explained by clouds
periodically shadowing the irradiancemeasurements, which were
averaged across the entire track, leading to a higher than normal
reflectance factor measurement. The measurements thus likely
differ due to variations in the diffuse to global ratio for cloudy
vs. clear sky.

Reflectance Factor Inter-Comparison
To explore the hyperspectral nature of the reflectance factor
signals, we compare the average reflectance spectra from each
reflectance factor calculation and their derivatives (Figure 7). To
more clearly compare the spectral shapes for each reflectance
factor calculation, we convert the averages to z-scores, by
subtracting the average reflectance value across all wavelengths

in the visible and dividing by the standard deviation across
all wavelengths in the visible. These standardized reflectance
values and standardized derivatives are a useful way to compare
the results because the VPCA method is based on analysis
of the correlation matrix of the derivative spectra. The four
methods of calculating the reflectance factor produce values that
range in amplitude from minimum to maximum reflectance
by 1.8 to 14.8%. None of the average spectra exhibited
negative reflectance factors. The ELM0 method produced the
lowest amplitude signal, while the ELM1 method produced
the largest amplitude signal. The ELM1 and MTRI exhibited
higher reflectance factors on the blue end of the spectrum
relative to the ELM0 and ELM2 methods. This is particularly
apparent when viewing the z-score transformed reflectance
factors (Figure 7B). When the results were z-score transformed,
the similarity in spectral shape of the four methods of calculating
the reflectance factor is readily apparent as is the increased blue-
end reflectance for the ELM1 and MTRI methods relative to the
ELM0 and ELM2 methods. The derivative spectra for both the
absolute reflectance factor values and the z-score transformed
observations were similar, exhibiting the same spectral features,
although they diverged to some extent toward the blue end of the
spectrum.

The ELM2 provides the best estimate of the absolute
reflectance as demonstrated by the goodness of fit with the
measured at-surface ASD FieldSpec R© HH2 surface reflectance
factor. The MTRI and ELM0 methods produced reflectance
spectra of similar amplitude, while the ELM2 values had higher
amplitude. The ELM1 values were considerably higher than the
ELM2 estimates because the intercept term in Equation (8) for
the ELM1 calculation was intentionally set to zero to explore
the impact of the intercept on the solution. In terms of absolute
reflectance, there is a bias offset for the ELM0 and MTRI relative
to the absolute spectrum produced by the ELM2 transformation,
but less offset than for the ELM1 transformation. As predicted,
the ELM0 and ELM2 solutions have the same spectral shape
as can be seen for the z-score transformed results (Figure 7B).
We further explore the differences between the ELM0, ELM1,
ELM2, and MTRI calculations in the following section where
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we evaluate the underlying structure of the images using an
eigenvalue-eigenvector decomposition method, the KSU VPCA
spectral decomposition method.

FIGURE 5 | Wavelength-specific correction coefficients derived from

comparing to in situ reflectance for two NASA Glenn, second generation

Hyperspectral imager (HSI2) tracks (track 19 and 20) (After Figures 4.5, Lekki

et al., 2017).

Comparison of the Reflectance Factor
Calibration Methods: VPCA Decomposition
The four reflectance factor calculation methods listed in
Table 1 when applied to HSI2 swath 062116_15_MBSP produce
reflectance RGB plots that look very similar (not shown) to
the radiance RGB plot in Figure 8A. The dominant pattern
observed in the radiance RGB image for the swath are alternating
bands and filaments that run parallel to the coast, which is
located at the bottom of the image. There is a strong coastal
transition front that marks the end of the reddish-brown coastal
waters and the transition into the bluish-green offshore waters
of the Western Basin. The coastal water appears more red than
the offshore waters, located further into the Western Basin. A
second, strong brighter-colored front can be seen toward the
top of the swath. This front separates milky blue water to the
south in the middle of the image that transition into water of
more buff coloration to the north, before transitioning furthest
offshore into a darker, blue color. Because of the similarity of the
reflectance-derived RGB images, the MTRI reflectance method
was used to calculate the Cyanobacterial Index (CI) (Wynne
et al., 2010, 2013). The calculation of the widely-used NOAA CI,
contributed by collaborators at UT, provides a useful reference
for comparison to the components extracted using the VPCA

FIGURE 6 | (A) Maumee Bay State Park (MBSP) in situ reflectance before time correction. (B) MBSP in situ reflectance after time correction. (C) NASA Glenn, second

generation Hyperspectral imager (HSI2) parking lot reflectance uncorrected. (D) NASA HSI2 parking lot reflectance corrected. In situ reflectance is shown in magenta

(labeled 0803_MTRI) in (C,D) (After Figures 4.4 and 4.6, Lekki et al., 2017).
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FIGURE 7 | (A) Comparison of average scene spectra for each correction method. (B) Comparison of z-score correction of average scene spectra. (C) Comparison

of average derivative scene spectra for each correction method. (D) Comparison of z-score correction of average derivative scene spectra for each correction method.

decomposition method. For comparison with VPCA score maps,
the spatial map of the NOAA CI was smoothed with a 9 × 9
median kernel for presentation as was done with the VPCA score
maps.

Application of the KSU VPCA spectral decomposition
method following (Ortiz et al., 2013; Lekki et al., 2017) to the
four reflectance factor data sets enabled extraction of four to
six components that account for a maximum of 92.8–97.4%
variance in the four derivative transformed data sets (Table 2).
One difference among the various solutions is that in some
cases, the components extracted were flipped relative to similar
components from one of the other calculation methods. This is
a function of the varimax rotation. It can be easily addressed by
multiplying the component scores and loadings by −1, so that
the components with similar shape and spatial pattern have the
same sign. This has been done for ease of comparison between
components. The ELM0 solution explained the largest amount of
variance in the image at 97.4% for five components (Table 2). The
components extracted from the other reflectance factor methods
exhibit subtle differences from each other, but their general
similarity is readily apparent (Figures 8–13).

To identify the composition of the color producing agents in
each component, we standardized the component scores, then

matched the components from each data set without replacement
to their best visual match (if any) in the other data sets to group
them into spectral “patterns.” Comparing the various solutions,
the components can be matched on the basis of their spectral
shapes and spatial patterns into six patterns, labeled A through
F (Table 2, Figure 14). The component loadings for the matches
in the patterns were then averaged and compared using forward,
least-squares, stepwise regression against a library of known
standardized pigments and mineral spectra (Ortiz et al., 2013) to
infer their composition. The quality of the identified patterns was
determined by the spatial coherence of their component score
maps, average spectral loadings < ±3 standard deviations, and
absolute R-values for the stepwise regression >0.8.

The key point to address here is the similarity of the structure
of the results extracted despite the differences in the atmospheric
correction methods applied. All of these patterns (with the
exception of Pattern E) exhibit coherent spatial structures,
partitioning the variance in the hyperspectral image cube into
graceful filaments and bands that run parallel to the coast. The
NOAA CI and the VPCA solutions pull out features similar
to those seen in the RGB images. The NOAA CI indicates
bloom-like conditions offshore and then alternating bands of
higher and lower values parallel to the coast, tapering out toward
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FIGURE 8 | (A) Red, Green, Blue (RGB) image of swath 15_MBSP from June 21, 2016. (B) National Oceanic and Aeronautical Administration Cyanobacterial Index

(NOAA CI) product calculated after Wynne et al. (2010). (C) Spatial distribution of varimax-rotated principal component analysis (VPCA) component pattern A using

Michigan Tech Research Institute (MTRI) correction method decomposition. (D) Spatial distribution of VPCA component pattern A using Empirical Line Method 0

(ELM0) correction method decomposition. (E) Spatial distribution of VPCA component pattern A using Empirical Line Method 1 (ELM1) correction method

decomposition. (F) Spatial distribution of VPCA component pattern A Using Empirical Line Method 2 (ELM2) correction method decomposition. (G) Pattern A

Loadings. Negative signs in loading numbers indicate that pattern has been multiplied by −1 for comparison purposes.

TABLE 2 | Correlation of spectral patterns and variance explained.

Component spectral patterna MTRIb 6VPCAc ELM0d 5VPCA ELM1e 4VPCA ELM2f 4VPCA

Pattern A: VPCA 1 (56%) VPCA 1 (67.3%) VPCA 1 (36.9%) VPCA 1 (36.9%)

+Illite, +Diatoms and −phycoerythrin

Pattern B: VPCA 2 (16.4%) VPCA 2 (15.5%) VPCA 3 (26.3%) VPCA 3 (26.3%)

+Haematite, +Green Algae, −α-carotene, and +phycoycanin

Pattern C: VPCA 3 (10%) VPCA 3 (7.2%) VPCA 2 (26.5%) VPCA 2 (26.5%)

−Goethite and +haematite

Pattern D: VPCA 4 (7.8%) VPCA 4 (6.4%) Absent Absent

+Haematite and +phycocyanin

Pattern E: VPCA 5 (4.4%) Absent VPCA 4 (4.3%) VPCA 4 (4.3%)

Residual Path radiance errors

Pattern F: VPCA 6 (1.3%) VPCA 5 (1%) Absent Absent

−Myxoxanthophyll, +phycocyanin, and –Chl b

Sum patterns A–C 82.4% 90% 89.7% 89.7%

Sum patterns D, and F 9.1% 7.4% Absent Absent

Sum all patterns except E 91.5% 97.4% 89.7% 89.7%

Sum all patterns 95.9% 97.4% 94.0% 94.0%

aPositive or Negative signs indicate a direct or inverse correlation between the component spectral pattern and identified pigment and sediment mixture.
bMichigan Tech Research Institute.
cVarimax rotated principal component analysis.
dEmpirical Line Method 0.
eEmpirical Line Method 1.
fEmpirical Line Method 2.

lower values near the shore. The leading component (Pattern A)
extracted from the four data sets has a spatial patternmost similar
to the NOAA CI (Figure 8B). The first three patterns are found
in all four of the solutions and explain between 82.4 and 90% of
the variance in the data sets (Table 2, Figures 8–10). Patterns D, F

are each found in two of the four solutions (Figures 11, 13). They
represent 6.4 or 7.8%, 1.0 or 1.3%, of the variance in each data set,
respectively. The sum of all the coherent spatial patterns, which
can be related to environment signals in the images accounted for
88.5–97.4% of the image variance.
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FIGURE 9 | Spatial distribution of varimax-rotated principal component analysis (VPCA) component pattern B. (A) Michigan Tech Research Institute (MTRI) correction

method decomposition. (B) Empirical Line Method 0 (ELM0) correction method decomposition. (C) Empirical Line Method 1 (ELM1) correction method

decomposition. (D) Empirical Line Method 2 (ELM2) correction method decomposition. (E) Pattern B Loadings.

FIGURE 10 | Spatial distribution of varimax-rotated principal component analysis (VPCA) component pattern C. (A) Michigan Tech Research Institute (MTRI)

correction method decomposition. (B) Empirical Line Method 0 (ELM0) correction method decomposition. (C) Empirical Line Method 1 (ELM1) correction method

decomposition. (D) Empirical Line Method 2 (ELM2) correction method decomposition. (E) Pattern C Loadings. Negative signs in loading numbers indicate that

pattern has been multiplied by -1 for comparison purposes.

These components can be partitioned into spatially coherent
environmental signals and random noise. A detailed evaluation
of the spectral interpretation of the components is beyond the
scope of this paper and will be addressed in a separate paper,
but Table 2 and Figure 14 identify the most likely composition of
the spectral patterns based on stepwise multiple linear regression

against known standards. Briefly, the components extracted from
the image represent mixtures of sediment (illite, haematite, and
goethite), and algal and cyanophyte groups and pigments known
to be present in the waters of the western basin of Lake Erie (Ortiz
et al., 2013). Matching the features present in the radiance-based
true color image (Figure 8A), the reddish portions of the image
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FIGURE 11 | Spatial distribution of varimax-rotated principal component analysis (VPCA) component pattern D. (A) Michigan Tech Research Institute (MTRI)

correction method decomposition. (B) Empirical Line Method 0 (ELM0) correction method decomposition. (C) Empirical Line Method 1 (ELM1) correction method

decomposition. (D) Empirical Line Method 2 (ELM2) correction method decomposition. (E) Pattern D Loadings. Negative signs in loading numbers indicate that

pattern has been multiplied by -1 for comparison purposes.

FIGURE 12 | Spatial distribution of varimax-rotated principal component analysis (VPCA) component pattern E. (A) Michigan Tech Research Institute (MTRI)

correction method decomposition. (B) Empirical Line Method 0 (ELM0) correction method decomposition. (C) Empirical Line Method 1 (ELM1) correction method

decomposition. (D) Empirical Line Method 2 (ELM2) correction method decomposition. (E) Pattern E Loadings. Negative signs in loading numbers indicate that

pattern has been multiplied by -1 for comparison purposes.

were identified as containing iron-bearing minerals as well as
autotrophs, while the offshore waters were identified as mixtures
of lighter-colored illite, algae, cyanophytes, and various accessory
pigments.

One notable difference between the ELM0 solution and
the other three solutions is Pattern E, which is absent from

the ELM0 solution, but present in each of the other three
data sets (Figure 12). Pattern E exhibits a random spatial
pattern and a spectral pattern with strongest loadings in the
blue end of the spectrum. This pattern accounts for 4.3 to
4.4% of the variance in the data sets where it is found. The
significance of Pattern E is discussed below. Expanding theMTRI
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FIGURE 13 | Spatial distribution of varimax-rotated principal component analysis (VPCA) component pattern F. (A) Michigan Tech Research Institute (MTRI) correction

method decomposition. (B) Empirical Line Method 0 (ELM0) correction method decomposition. (C) Empirical Line Method 1 (ELM1) correction method

decomposition. (D) Empirical Line Method 2 (ELM2) correction method decomposition. (E) Pattern F Loadings. Negative signs in loading numbers indicate that

pattern has been multiplied by -1 for comparison purposes.

FIGURE 14 | Spectral patterns of varimax-rotated principal component analysis (VPCA) components (A–F), indicating inferred composition based on forward,

stepwise least squares regression. Complete description of the composition of each average component spectral pattern is listed in Table 2. The quality of the

regression fit is indicated by the reported R-value.

decomposition to 6 components extracted a 6th component
(Pattern F) that was similar to the 5th component in the ELM0
case. Expanding the ELM1 and ELM2 solutions out to a 5th
or 6th component extracts a 5th component with a spectral
pattern that cannot be matched to any know standards or

mixtures in the spectral library in the 5-component case and
splits the random noise component (Pattern E) in the 6th
component case. This indicates that a 4-component solution is
sufficient to capture all the variability in the ELM1 and ELM2
cases.
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DISCUSSION

Implications for Reflectance Estimation
and Atmospheric Correction
A fundamental challenge associated with analysis of multispectral
and hyperspectral visible remote sensing imagery is removal
of atmospheric effects. Here we explore several different
applications of empirical methods of atmospheric correction,
which enables extraction and separation of mixed environmental
signals from aquatic data sets. Development of atmospheric
correction methods that are effective is important to enable
optimal use of future, planned hyperspectral orbital missions,
such as PACE, HyspIRI, and GeoCAPE. In this application, the
question of interest is to identify the constituents present in the
optically complex waters of the Western Basin of Lake Erie. This
area develops a perennial CyanoHAB bloom that initiates in the
late spring or early summer, depending on the level of runoff to
the system (Stumpf et al., 2012; Bullerjahn et al., 2016). In general,
the bloom is larger and starts earlier during wet years, and is
smaller in dry years (Stumpf et al., 2012). The Maumee River
and other rivers in the region deliver significant nutrient loads,
suspended sediment and a variety of algal and cyanobacterial
taxa into the Western basin (Conroy et al., 2014; Kane et al.,
2014; Matisoff and Carson, 2014; Pennuto et al., 2014). As a
result, the assumption that the optical properties of the water
are controlled only by chlorophyll a is not valid (Ali et al.,
2013, 2014; Ali and Ortiz, 2016). Removal of atmospheric effects
enables further analysis of the reflectance spectra to determine
which constituents are present at any given time. While several
approaches have been proposed to do this, spectral shape-based
algorithms show promise at partitioning the variance associated
with these complex optical mixtures (Simis et al., 2005; Moisan
et al., 2011; Chase et al., 2013; Shuchman et al., 2013). Application
of these methods in these complex environments suggests that
they will be effective at less complex marine applications. Indeed,
a similar EOF analysis approach has been applied in the optically
complex Baltic Sea (Soja-Woźniak et al., 2017) and the lead
author, Ortiz, is applying the VPCA spectral decomposition
method effectively using data sets collected in the USVI.

It is in this context that we compare the reflectance factor

calculations. In our experience in the Western Basin, the ELM

has proven to be very effective at removal of atmospheric

effects, with modest amounts of input data (Lekki et al., 2017).
We present a theoretical basis to support the ELM based on
radiative transfer theory. To evaluate the effectiveness of the ELM
method we employed two complementary means of removing
the atmospheric effects: one approach used mirrors to directly
measure the downwelling irradiance, while the MTRI approach
calculates an at-sensor reflectance factor and then generates a
gain function using the reflectance of a known surface to reshape
the reflectance factor to at-surface values. The two methods are
complimentary. The mirror based correction method is based on
direct observation of the downwelling irradiance at one or more
points in the scene and thus can be used as an effective check on
other methods of atmospheric removal. The MTRI approach can
be applied broadly in the absence of additional equipment that
must be imaged in the scene (the mirrors), which are required to
apply the mirror-based correction methods.

All four of the methods produced average reflectance factors
that were positive, suggesting the in situ calibration data allowed
the methods to yield reasonable reflectance factors. When plotted
as a function of wavelength, the ELM0 method produced the
lowest amplitude reflectance factor, followed by the MTRI, then
the ELM2 and finally the ELM1 method, which is known to
be biased, because it intentionally does not include an intercept
correction (Figure 7). By presenting a theoretical explanation for
a single-point and two-point ELM correction, we can illustrate
the impact of path radiance on the resulting estimated reflectance
factor calculations. The two-point ELM2 correction method
outperforms the single-point EML1 correction method in terms
of recovering absolute reflectance. TheMTRI and ELM0methods
underestimated themaximum reflectance response relative to the
two-point ELM method, but the ELM0 was able to capture the
same spectral shape as the ELM2 method.

To compare the spectral shapes extracted by the four methods,
the average reflectance factor for each method was standardized
by removal of the spectral mean and then the residual was divided
by the spectral standard deviation to calculate z-scores. Several
important points arise from this comparison. First all of the
values lie within 3 standard deviations, indicating that on average,
the spectra did not include individual bands that were biased
by extreme outliers. In addition, (Figure 7B) documents that all
four methods have similar spectral shapes. The ELM0 and ELM2
spectral shapes are consistent throughout the visible. The MTRI
and ELM1 spectra are also similar to each other. However, they
both exhibit considerably more signal on the blue end of the
spectrum than either the ELM0 and ELM2 spectra below ∼475
nm. The MTRI and ELM1 spectra exhibit slightly less reflectance
at wavelengths longer than 600 nm than either the ELM0 or
ELM2 methods. Comparison of the derivative spectra for the
four methods shows similar variability above 540 nm. The curves
diverge somewhat toward the UV end of the spectrum. The
similarity of themethods is particularly apparent in the derivative
of the z-score spectra.

We can make some observations regarding what will happen
if additional secondary analysis methods are applied to the
reflectance factors to extract environmental information, such
as chlorophyll a or other pigment concentrations related to the
scene (e.g., Witter et al., 2009). Methods that rely on accurate
absolute reflectance values will fail when applied to the ELM1
method, which was presented only to show the importance of
the path radiance correction to a valid solution. Based on the
strength of the theoretical basis presented, the ELM2method will
yield a stronger response than if either the MTRI or the ELM0
reflectance factor methods are employed. This may be less of an
issue for band ratio based methods, particularly ones that operate
toward the red end of the spectrum.

Spectral Shape and Identification of
Component Patterns
The z-score analysis of the four methods shows that they
each extract very similar spectral shapes. Methods that extract
information about color producing agents based on a spectral
shape will perform similarly with the fourmethods. To document
this, we applied the KSU VPCA spectral decomposition
method (Ortiz et al., 2013) to each of the four reflectance
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factor calculations presented here. The results presented in
Figures 8–14 demonstrate this well. The leading component
extracted in all cases is similar in spatial distribution to the
NOAA CI. This is to be expected, because chlorophyll a is found
in all taxa of algae and cyanobacteria and thus should dominate
the signal.While the NOAACI pattern look similar to the leading
VPCA component for each case, the VPCA results are cleaner,
because they are based on a centered, first derivative, rather than
a second derivative as for the NOAA CI. Each higher order
derivative calculation introduces more error when looking for
small differences between large values (Press et al., 1992).

In addition, the VPCA method removes uncorrelated signal
from the data set so that features that are not related to a
particular pattern show up in other components, or are excluded
as noise (Abdi, 2003). For this reason, the VPCA method is
relatively insensitive to the noise that was left in the ELM1
solution by setting the intercept term to zero (Figure 3C vs.
Figure 3D). Notice that the ELM1 and ELM2 spatial patterns
for the VPCA solutions in Figures 8–13 are virtually identical
because the two solutions differ only by a constant, which drops
out during the derivative calculation step in the VPCA.

The VPCA spectral decomposition approach also provides
additional information beyond that which the NOAA CI alone
can extract. In this application, we were able to extract three to
five consistent components with coherent spatial signals. This
was true despite difference in the way that the atmospheric
effects were removed or due to differences in the absolution
reflectance factor estimates. This result strongly suggests that the
KSU VPCA method, which is based on extraction of spectral
shapes, is relatively insensitive to the need for absolute reflectance
values. Atmospheric corrections that are adequate thus can yield
valuable, higher-order information about the scene. The reason
why this works is because the KSUVPCA spectral decomposition
method is based on decomposition of the correlation matrix of
the derivative spectra, rather than analysis of absolute reflectance
factors. The derivative transformation removes scattering effects,
while the correlation analysis decreases the need for stringently
correct absolute reflectance factors. Obtaining a valid estimate of
the spectral shape—the relationship between bands in the data
set—is sufficient to yield useful results.

Correction for Imperfect Atmospheric
Removal
Another problem that plagues conversion from radiance to
reflectance is a lack of validation data that are precisely coincident
with the overflight observations. In our case, the various
methods presented require one or more of the following data
for calibration or validation: downwelling irradiance, the diffuse
to global ratio, and surface reflectance factor measurements
of a known calibration surface on land or water for one or
more different surface radiance values. Instruments that can
simultaneously measure downwelling irradiance and upwelling
radiance or reflectance are considerably more expensive than
radiometric instruments that can onlymeasure in one orientation
at a time. Likewise, labs that maintain more than one instrument
often opt to place them at multiple locations in the scene to

assess spatial heterogeneity. The lack of strictly coincident data
in space and time can thus lead to errors in calculations because
the properties of the scene can shift with time as lighting or cloud
cover changes.

The KSU VPCA spectral decomposition method provides a
means of addressing and quantifying the impact of temporal
variability in scene conditions on data acquisition. In our results,
three of the four methods of calculating reflectance factors
produced a random noise component, with the largest spectral
response in the blue end of the spectrum and near zero responses
at other wavelengths (Figures 12, 14E). This spectral and spatial
pattern is consistent with path radiance effects that likely arise
from ancillary data that are not precisely temporally or spatially
coincident with the observations from the NASA Glenn HSI2.
The only method that did not produce this path radiance
component was the ELM0 method. Because the ELM0 method
calculated a direct ratio of the downwelling and upwelling
radiance measured over the full path length between the surface
and the HSI2 sensor using data from that sensor only, this
method did not produce a path radiance bias component during
the VPCA spectral decomposition, even though its reflectance
factor produced the lowest amplitude response. In addition to
the temporal and spatial coherence of the measured downwelling
and upwelling radiance ratio from the HSI2 used in the ELM0,
this result also arises because the measured at-surface water
reflectance factor spectrum used as the calibration point for the
ELM0 transformation is closer in magnitude to the rest of the
water surface across the scene than the higher mirror target
reflectance factor used as the at-surface reflectance calibration
point in the ELM1 and ELM2 transformation. Even so, the
magnitude of the path radiance bias in the other methods
was small, amounting to just 4.3–4.4% of the total variance
extracted from the image. The ability of the KSU VPCA spectral
decomposition method to partition this random bias from the
environmental components extracted from the image further
documents the usefulness of the method.

The work presented here documents that the empirical line
method, used in conjunction with the KSUVPCA decomposition
method is sufficiently robust to provide adequate atmospheric
correction to hyperspectral visible image data. The use of
derivative spectroscopy also provides a way to extract useful
information even when the absolute reflectance values are not
strictly correct as was demonstrated with the ELM1 test example
where we specifically left off the intercept of the radiance to
reflectance transformation. The VPCA method also explicitly
removes path radiance issues that result from data that is not
precisely temporally synchronous. These results are encouraging
and indicate that as a field, we have methodologies in place
that will enable the community to capitalize on the additional
spectral information that can be extracted from proposed orbital
hyperspectral sensors on missions such as PACE, HyspIRI, and
GeoCAPE. Each of these sensors has been designed for specific
missions. PACE will provide global hyperspectral coverage
at daily temporal and 1 km spatial resolution. HyspIRI will
provide high spatial resolution hyperspectral data (30 m) in
the Landsat orbit to provide continuity with legacy Landsat
data and the capability for highly enhanced data products.
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Finally, GeoCAPE is a proposed geostationary instrument that
would image 70% of the illuminated western hemisphere,
enabling the collection of time series of hyperspectral data
for unprecedented process studies. Deploying these tools will
create the opportunity for enhanced determination of pigment-
related biomass estimates and new capabilities to identify algal
and cyanobacterial composition based on extraction of pigment
spectra by visible derivative spectroscopy as well as a host of other
applications.

CONCLUSIONS

Our results document the utility of empirical calibration
methods, such as the ELM to remove atmospheric errors
from hyperspectral remote sensing data sets. We present a
theoretical basis for the ELM using radiative transfer theory.
The ELM2 and ELM0 methods produced spectral shapes that
were consistent across the entire visible spectrum, but the ELM2
was effective at reconstructing the absolute reflectance values.
The work presented here documents that the empirical line
method, used in conjunction with the KSUVPCA decomposition
method is sufficiently robust to provide adequate atmospheric
correction to hyperspectral visible image data. The VPCA
method extracted more information from the image swaths than
the NOAA CI method, with less random error. The use of
derivative spectroscopy also provides a way to extract useful
information even when the absolute reflectance values are not
strictly correct as was demonstrated with the ELM1 test example
where we specifically left off the intercept of the radiance to
reflectance transformation. In our results, three of the four
methods of calculating reflectance factors produced a random
noise component, with the largest spectral response in the
blue end of the spectrum and near zero responses at other
wavelengths. This spectral and spatial pattern is consistent with
path radiance effects that likely arise from ancillary calibration
data that are not precisely temporally or spatially coincident
with the observations from the NASA Glenn HSI2. The only
method that did not produce this path radiance component
was the ELM0 method. Because the ELM0 method calculated a
direct ratio of the downwelling and upwelling radiance measured
over the full path length between the surface and the HSI2
sensor, this method did not produce a path radiance bias
component during the VPCA spectral decomposition, even
though its reflectance factor produced the lowest amplitude
response. The VPCA decomposition method was effective at
isolating the path radiance issues, thus improving the quality
of the resulting retrievals. The VPCA enabled extraction of
components that can be identified by quantitative comparison
with a spectral library. This approach will enable accurate

analysis of how phytoplankton functional groups and suspended
sediment distribution vary in space and time, particularly once
new hyperspectral sensors are available in orbit.
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