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The fishery for American lobster is currently the highest-valued commercial fishery in the

United States, worth over US$620 million in dockside value in 2015. During a marine

heat wave in 2012, the fishery was disrupted by the early warming of spring ocean

temperatures and subsequent influx of lobster landings. This situation resulted in a price

collapse, as the supply chain was not prepared for the early and abundant landings of

lobsters. Motivated by this series of events, we have developed a forecast of when the

Maine (USA) lobster fishery will shift into its high volume summer landings period. The

forecast uses a regression approach to relate spring ocean temperatures derived from

four NERACOOS buoys along the coast of Maine to the start day of the high landings

period of the fishery. Tested against conditions in past years, the forecast is able to predict

the start day to within 1 week of the actual start, and the forecast can be issued 3–4

months prior to the onset of the high-landings period, providing valuable lead-time for

the fishery and its associated supply chain to prepare for the upcoming season. Forecast

results are conveyed in a probabilistic manner and are updated weekly over a 6-week

forecasting period so that users can assess the certainty and consistency of the forecast

and factor the uncertainty into their use of the information in a given year. By focusing on

the timing of events, this type of seasonal forecast provides climate-relevant information

to users at time scales that are meaningful for operational decisions. As climate change

alters seasonal phenology and reduces the reliability of past experience as a guide for

future expectations, this type of forecast can enable fishing industry participants to better

adjust to and prepare for operating in the context of climate change.

Keywords: seasonal forecast, temperature, fishery landings, lobster fishery, climate variability

INTRODUCTION

Societies have long been structured around typical seasonal and interannual cycles. The ability
to anticipate the types, timing, and magnitude of variability—even in an intuitive manner—has
afforded the ability to plan activities in ways that are compatible with environmental conditions.
For example, farming relies on timing activities such as tilling, planting, growth, and harvesting of
crops to typical annual rainfall and temperature cycles. However, this tight link between human
activities and seasonal cycles can also disrupt societies when large, abrupt events or unexpected
changes occur. Climate change is now pushing environments beyond conditions that have come
to be intuitively expected based on personal experiences. As such, shifts in the timing of seasonal
events and magnitudes of extremes (Mora et al., 2013; Poloczanska et al., 2013; Thomas et al., 2017;
Alexander et al., in press) can pose substantial challenges for and require adaptation of coupled
ecological and social systems (Mills et al., 2013; Alexander et al., 2017).
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While climate change will require new capacities to adapt to
changing environmental conditions, societies are becomingmore
prepared and capable of confronting these challenges. Increases
in observational and computing power are greatly expanding
our ability to understand and predict changes in environmental
conditions as well as their effects on ecosystem features and
human activities. Indeed, forecasting—in a variety of forms
and at multiple time scales—has become an essential part of
modern life. The ability to accurately predict weather conditions
days in advance has improved daily life, generating over US$30
billion in benefits to weather forecast users in the United States
alone (Lazo et al., 2009). Seasonal climate forecasts support
decision-making and help avoid major disruptions across many
natural resources sectors, such as agriculture (Hansen et al., 2011;
Ramírez-Rodrigues et al., 2016) and water resources (Hamlet
et al., 2002; Kwon et al., 2009). In addition, long-term projections
enable the consideration of environmental change over a range
of decisions. For example, projecting the consequences of
anthropogenic carbon dioxide emissions allows communities to
plan for expected impacts of warming and sea level rise and to
weigh the costs and benefits of different adaptation strategies
(Shepard et al., 2012).

Forecasts have long been central to the operation and
management of marine fisheries. The quota-setting process at the
heart of fisheries management involves projecting the expected
performance of the stock and the yield that can be obtained
from it. Similarly, longer-term projections of the growth of stocks
that are at low biomass levels are used to determine rebuilding
plans and timelines. While environmental variability has been
recognized as exerting a substantial influence on the recruitment
and productivity of fish stocks (Vert-pre et al., 2013; Szuwalski
et al., 2014), this information has not been widely incorporated
into fish population models and projections. However, recent
examples have demonstrated that population projections used to
set catch quotas and rebuilding plans can be more reliable for
some stocks if environmental factors, particularly temperature,
are considered in projections (Jacobson and McClatchie, 2013;
Hill et al., 2014; Pershing et al., 2015; Tommasi et al., 2017).

These types of stock projections establish the general harvest
constraints under which fisheries are prosecuted, and within this
context, fishing industry participants make a variety of shorter-
term operational decisions. Fishermen decide on a day-to-day
basis when and where to fish, which species to target given their
suite of permits and gear, and how to manage their operational
costs. Dealers face decisions about which species to purchase
given storage options, transportation capacity, and supply chain
demand. And processors determine the type, amount, and timing
of products to produce as well as how to adjust factory operations
for different production activities. Forecasting efforts that are
directed at industry-based operating decisions on seasonal or
shorter time scales are now emerging; for example, Hobday
et al. (2016) showcase several seasonal forecasts that support
operations in both wild harvest fisheries and aquaculture.

Our interest in seasonal forecasting to support fisheries
decision-making was motivated by the experience of the Maine
lobster fishery during a marine heat wave in 2012 (Mills et al.,
2013). American lobster supports the most valuable commercial

fishery in the United States at present (>US$620 million in 2015;
National Marine Fisheries Service, 2016), and over 80% of its
landings occur in the state of Maine. The Maine lobster fishery
is highly seasonal, with low landings rates during the winter and
spring, followed by an abrupt shift into a high landings period
in early summer. The high landings period is driven by lobsters
migrating into nearshore waters where they become accessible
to the large small-boat fleet, becoming more active and entering
traps, and molting into a harvestable size class. These three
processes are all tightly related to water temperature (Cooper
and Uzmann, 1971; Aiken, 1973; Aiken andWaddy, 1975; Ennis,
1984; Crossin et al., 1998). During 2012, sea surface temperatures
(SST) on the northeast U. S. continental shelf were 1–3◦Cwarmer
than the 1982–2011 average, the highest documented in 150 years
of measurements (Friedland, pers. comm.) and on par with the
mean SST change that climate models project for the region by
the end of the century (Mills et al., 2013). The heatwave led
to spring temperatures warming 3 weeks ahead of the typical
schedule, and lobster landings also rose sharply 3 weeks earlier
than normal. The supply chain was not prepared for the rapid
uptick and high volume of landings, which outstripped holding,
transportation, and processing capacity as well as market demand
(Mills et al., 2013). While record high landings volume was
reported in 2012 (National Marine Fisheries Service, 2016), an
ensuing price collapse left many fishermen struggling to break
even.

The events of 2012 highlighted the potential usefulness of
seasonal forecasts to support decision-making at multiple points
in the supply chain. Prior to 2012, the entire production process
for American lobster—from harvest to processing to tables—
was based on a historically reliable and intuitively understood
seasonal cycle. Advance notice that the high landings period
would begin much earlier than usual may have enabled dealers
to increase storage and transportation capacity, processors to
prepare equipment and hire seasonal staff, and marketers to
intensify efforts to expand markets for the product. Alternatively,
a forecast of an early season could have enabled harvesters or
managers to adopt strategies that better aligned supply with
demand, with a goal of avoiding a price collapse. While the
2012 heat wave demonstrated weaknesses of relying on past
experiences, the chain of events that occurred also showcased
the tight and lagged coupling between water temperature and the
Maine lobster fishery.

At the request of members of Maine’s lobster fishery, we
set out to develop a forecast system to provide advanced
warning of unusual conditions in the seasonality of the Maine
lobster fishery. The forecast focuses on the timing of when
the fishery shifts into its high-landings summer period, and it
is based on real-time temperature measurements provided by
NERACOOS (Northeastern Regional Association of Coastal and
Ocean Observing Systems), the regional contribution to the U.S.
Integrated Ocean Observing System. Our results demonstrate the
potential for using a simple process to forecast features of the
human system (i.e., fishery landings) from temperature months
in advance. Similar forecasts that are targeted to inform specific
decisions faced by users will become increasingly valuable as
climate change inhibits reliance on familiar past patterns and
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as multiple actors in a range of fishing industries seek to adapt
to unfamiliar extremes and new levels of variability that are
associated with climate change.

METHODS

The goal of our analysis is to assess the potential to predict
the phenology of the Maine lobster fishery using temperature
data. Our approach involves characterizing seasonal patterns of
lobster landings and then developing statistical models to explain
changes in landing rates as a function of temperature. Results
are conveyed through a probabilistic forecast of when the rate of
landings is expected to increase. This forecast is updated weekly
from early March through mid-April and is served via a public
website to interested users.

Temperature Data
Temperature data are accessed from buoys B, E, F, and I of
the Northeastern Regional Association of Coastal and Ocean
Observing Systems (NERACOOS; www.neracoos.org, Pettigrew
et al., 2011). These buoys are all located in coastal waters of the
Gulf of Maine, USA. Buoy B is representative of the Western
Maine Shelf; Buoy E is representative of the Central Maine Shelf;
Buoy F is located at the mouth of Penobscot Bay; and Buoy
I is representative of the Eastern Maine Shelf (Figure 1). All
four buoys became active during July 2001 and record water
temperature on an hourly basis at the surface (1m), 2, 20,
and 50m. Temperatures for 2002–2016 were used for analyses
presented herein.

FIGURE 1 | Site map of NERACOOS buoys from which water temperatures at

50m depth were derived. Buoys B, E, and I are representative of the Western,

Central, and Eastern Maine Shelf, respectively. Buoy F, at the mouth of

Penobscot Bay, is influenced by river outflow.

To process the temperature data, a daily average is first
computed, and then an 8-day centeredmoving average is applied.
When data are missing at depth (0.1–3.2% of the data points at
each buoy) and available at the surface, a linear regression is used
to fill the gaps in the temperature record at depth, by using the 8-
day smoothed surface temperature as the independent variable.
This generates smoothed time series of temperatures at 50m for
each of the four buoys.

For each buoy, a mean annual temperature cycle is generated
by averaging daily temperatures between 2002 and 2011. This
mean annual cycle is then subtracted from the smoothed
daily temperatures (2002–2016) to produce a daily temperature
anomaly time series for each buoy. These are also averaged
over the four buoys to produce one time series of region-wide
anomalies. For simplicity, we will only present models built using
data from the 50m sensors. This depth provides the best available
approximation to bottom temperatures for Maine’s coastal waters
where the bulk of the lobster fishery occurs. Models built using
data from other depths produce similar results.

We assess temperature persistence at the four buoys and for
the 4-buoy average to understand its potential influence on the
forecast. This analysis is conducted by computing the Pearson
product moment correlation between temperatures at 50m on
the forecast day and daily 50m temperatures for the remainder
of the year. For this analysis, we use only direct temperature
measurements, not those derived from surface-depth regressions.

Lobster Landings Phenology
Although regulations enable the Maine lobster fishery to remain
open year-round, for practical purposes there is a strong
seasonality to its operation. Landing rates are low during the
winter but increase abruptly in the early summer as lobsters
move into nearshore waters, become more active, and molt to
larger sizes. The annual cumulative landings show a sharp change
in slope between late June and mid-July (Figure 2). We define
the day when this change occurs as the “start day” for the
high-landings period.

Statewide landings data are provided by the Maine
Department of Marine Resources. From 1990 to 2007, they
are reported as monthly totals; from 2008 to 2016, they are
available as daily totals. Because daily data are not available
prior to 2008, we use a procedure to find the start day using
only monthly data. For years in which only monthly data are
available, the cumulative landings over the year are computed to
obtain the total biomass of landings at the end of each month.
We then linearly interpolate between months to approximate
daily cumulative landings, whereby we implicitly assume that the
landing rate is constant within each month. For 2008–2016, we
compared the start days defined by the monthly vs. daily landings
and found a tight correlation (Pearson’s product moment: r =
0.985, p < 0.01). Subsequently, we apply a standard procedure
across all years that uses the daily interpolation of monthly
landings to determine the start day.

To define the start day for each year, piecewise linear
regression is used to fit two lines to the cumulative daily landings.
The first portion incorporates data from March 31 to day d; the
second piece uses data from day d to October 2 (Figure 2). The
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FIGURE 2 | Cumulative landings (103 metric tons) in 2009, demonstrating the

piecewise regression method for defining start day. Landings data between

day-of-year 90 and day-of-year 275 are split into two pieces. These are fitted

by simple linear regression, shown by the gray and black dashed lines, and

their intersection defines the start day, shown by the vertical dotted line.

Landings in 2009 would indicate a start day on day-of-year 188 (July 7).

model fitting procedure is repeated for values of d betweenMarch
31 and October 2. We quantify the performance of the model for
each break day d by taking the weighted average of the R2-values
of the two linear components.

R1
2
∗ n1 + R2

2
∗ n2

n1 + n2
(1)

where n1 is the number of days betweenMarch 31 and d, n2 is the
number of days between d and October 2, and R1

2 and R2
2 are

the R2-values of the corresponding linear models. The piecewise
regressionmodel with the highest weighted average R2 is selected,
and the date on which the two lines intersect is recorded as the
start day for that year. Similar methods have been employed to
identify transition dates in studies of vegetation phenology (e.g.,
Zhang et al., 2013; Sweet et al., 2015).

Temperature-Start Day Relationships
After the annual start days are specified, their relationship
to temperature can be investigated. Through this analysis, we
determine if statistical relationships exist between the start
day and 8-day smoothed 50m water temperature anomalies,
and if so, a time period in which these relationships are the
strongest. We fit linear models relating the annual time series
of temperature on a particular day (also termed the “forecast
day”) to the start day time series. Models were developed for
temperatures from each buoy and for the region-wide average (a
total of five temperature time series) for dates between January
1 and June 30. The performance of these models was compared
using their R2 statistics to identify a time window during which
statistically reliable forecasts may be possible and that we would
use as the forecasting period.

Paired data on NERACOOS buoy temperatures and lobster
fishery start days are available for 2002 through 2016. In order
to test the predictive power of the forecast, we used data from
this full time series to evaluate how well the forecast may perform
if future years are similar to the range of experiences in the
past. Theoretical forecasts were simulated for each year using a
leave-one-out approach, whereby the data from the year being
predicted were excluded (i.e., a theoretical forecast for 2002 was
generated using the data from 2003 to 2016). Due to the relatively
small sample size and the presence of at least one “extreme”
data point (2012), 95% prediction intervals were found to be too
wide to be useful for communication and application. Instead,
the forecast is constructed using a modified Monte Carlo (mMC)
approach in order tomore clearly represent the uncertainty in the
forecast and the spread of the predictions based on the variance
in the dataset. The mMC approach fits a series of temperature-
start day linear regression models using a random sample of the
available years. From the 13 years of data available to use for
each forecast, the mMC simulation randomly selects 9, performs
a univariate linear regression, and then uses the temperature
from the forecast year to predict the start day. For each of the
five temperature time series, 3,000 mMC simulations are run to
ensure that repeated forecasts would be appropriately stable.

Forecast Communication
The forecast is made available to the public in the form
of a graphical histogram showing the proportion of mMC
simulations that falls into each of seven 1-week bins. The
“normal” bin is bounded by June 30th and July 7th, and is
centered on the mean start day for 2002–2011 (July 3rd), a period
of years that aligns with the temperature baseline. Seven bins
were required in order to keep the forecast image symmetrical
while encompassing the range of observed start days. The bins
are shaded according to the proportion of mMC simulations they
contain, which we interpret as the likelihood of the start day being
observed in that bin.

We updated the forecast weekly during the forecasting
period. Results were served via a website (www.gmri.org/lobster-
forecast) that delivers the forecast for the week as well as the
series of forecasts produced for the season so that changes
can be viewed over the forecasting period. In addition, the
website provides interpretive information that (1) contextualizes
temperature patterns that are shaping the forecast and (2)
provides a comparison of the current forecast to comparable
years in the past.

RESULTS

Between 2002 and 2016, the spring (March, April, May)
temperature range spanned ∼3◦C, from negative anomalies of
−1.45◦C in May 2004 to positive anomalies of 1.73◦C in March
2012. The strength and direction of temperature anomalies in
most years persisted over the spring months, with patterns in
March, April, and May exhibiting tight relationships to one
another. Strong negative anomalies (< −1.0◦C in March, April
or May) were observed in 2003 and 2004, while strong positive
temperature anomalies (>1.0◦C) were experienced in 2002, 2006,
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2012, 2013, and 2016 (Figure 3). An analysis of temperature
persistence at the buoys used for this analysis indicates that 50m
water temperature on April 1 serves as a good indicator of 50m
temperature through early to mid-October for Buoys B, E, and F
and through the end of the year for Buoy I (Figure 4).

The mean start day of the fishery between 2002 and 2011,
as defined by our two-part linear procedure, was July 3. Over
the entire study period, the start day varied by ∼40 days, from
a season that began more than 20 days earlier than the mean
(negative anomaly) in 2012 to one that started 16 days later than
the mean (positive anomaly) in 2003. Positive start day anomalies
of more than 5 days, reflecting a late start to the season, were
characteristic of 2003, 2004, 2005, and 2014. The start day defined
for 2012 was the earliest in the time series, but start day anomalies
in 2002, 2006, 2010, 2013, and 2016 were also more than 5
days early. A general negative association was observed between
temperature anomalies and start day anomalies (Figure 3).

The strength of the relationship between 8-day smoothed
50m temperature and start day increases from January 1 to
early spring, becoming statistically significant (p < 0.05) by late
January. The average coefficient of determination (R2) over all
models exceeds 0.7 from March 6 through May 3, and it exceeds
0.75 from March 8 through April 20 (Figure 5). Buoy F 50m
temperatures and the 4-buoy 50m temperature average appear to
have higher capacity for predicting the start day than other buoys
through March and April. The predictive capacity of Buoy B,
F, and the 4-buoy average 50-m temperatures remains relatively
stable through March and April. The predictive capacity of
temperatures at Buoy I peaks in late March and Buoy E peaks in
early April (Figure 5). Based on these results, we definedMarch 6
through May 3 as the forecasting period, as temperatures during
this span of time provide a strong indication of the timing of the
fishery 3–4 months in the future.

We used April 1 as the forecast date for display purposes in
this paper since R2 values over all models were high through
this date (Figure 5). We can evaluate the forecast by considering
how the likelihood of predicted fishery start days compares
to the “observed” start day defined by the stepwise regression
analysis. Across conditions experienced in all years since 2002,
the sign of the deviation of predicted start days from the center
of the “normal” bin was consistent with the observed start days
(Figure 6). Further, for conditions in most years, the actual start
days would have been within or adjacent to the bin that was
predicted to have the highest likelihood of containing the start
day (Figure 6). For 10 of the 15 years, more than half of the
mMC simulations predicted a start day within a 7-day window
centered on the observed start day (Figure 6). The forecast model
performed well for conditions in 2005, 2008, 2009, and 2012,
with a greater than 33% likelihood of the predicted start days
falling within a 3-day window centered on the observed start day.
Conversely, the model performed poorly under 2006 conditions,
with ∼4% likelihood of predicting the start day within a 7-day
window of the date defined as the actual start. Even for 2006
conditions though, the model would have correctly forecasted
the direction of deviation from the “normal” bin by predicting an
early start of the high landings period. There is no obvious bias
between skill in forecasting early years as opposed to late years,

and the skill in an extremely early year like 2012 is similar to the
skill in years with more normal temperature conditions, such as
2008 or 2009 (Figure 6).

Demonstrating the forecast for 2012 conditions, the 4-buoy
averagemodel built with data from 2002 to 2016 (excluding 2012)
would have given advanced warning of an extremely early start to
the summer season based on conditions on April 1 (R2 = 0.86;
Figure 7). The temperature-start day regression model would
have predicted a start day of 166 (June 15), while the actual start
occurred even a few days earlier than that, on day 163 (June 12;
Figure 7). The forecast would have been for an extremely early
start to the season (>75% likelihood), and it would have been
stable as the spring progressed (Figure 8).

DISCUSSION

As seasonal cycles that cue ecological events and human activities
change in ways that move beyond typical past experiences,
decision-making under variable environmental conditions will
increasingly benefit from forward-looking information about
resources of interest at appropriate temporal and spatial
scales. We have demonstrated the technical capacity to
forecast the timing of the seasonal increase in statewide
landing rates in the Maine lobster fishery from buoy-based
temperature observations. Using 50m water temperatures from
four NERACOOS buoys that span the coast of Maine, we are
able to forecast the start day of the fishery to within 1 week
of the actual start under conditions experienced in most test
years. Further, we can issue this forecast 3–4 months prior to the
typical shift into the high-landings period, providing important
advance notice of major shifts in the timing of the fishery. The
forecast performed well under conditions experienced during
an extremely warm year in which the high-landings period
began very early (i.e., 2012), indicating its potential reliability as
climate change progresses and pushes conditions beyond those
experienced in the past.

Seasonal forecasts of marine resources based on temperature
have proven useful for a variety of purposes (Hobday et al., 2016).
These resource-focused forecasts typically rely on an underlying
forecast of temperature, but the skill of temperature forecasts is
weak in coastal waters of the Northeast U.S. (Stock et al., 2015). In
this forecast for the Maine lobster fishery, our predictive capacity
is likely derived in part from temperature persistence. Over
the Northeast U. S. large marine ecosystem, April sea surface
temperatures are strongly correlated with temperatures 2 months
in the future, and weaker correlation signals are maintained
for 5 months (Stock et al., 2015). An analysis of temperature
persistence at the buoys used for this analysis provides similar
results for temperatures at 50m depth (Figure 4).

The predictive skill of the Maine lobster fishery forecast is also
likely attributable to lagged biological responses to temperature
and a tight biological-social link that initiates the rise in landings
rates. The annual landings cycle of the fishery is driven by the
migration andmolting cycle of the lobster population. The small-
boat fleet (∼80% of all vessels) relies on lobsters migrating into
shallow nearshore waters, molting into legal size classes, and
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FIGURE 3 | Spring temperatures and start days, 2002–2016. Bars show the monthly temperature anomalies for March, April, and May. The black line plots the start

day anomaly from the 2002–2011 mean. The start day anomaly is generally anti-correlated with the spring temperature anomaly.

FIGURE 4 | Persistence of correlation to April 1 temperature. Correlation of 50-m temperatures at four buoys on April 1 to temperatures on subsequent days of the

year. Statistically significant correlations persist through early to mid-October at Buoys B, E, and F; through mid-November for the 4-buoy average; and through the

end of the year for Buoy I.

becomingmore active so that they move into traps. Both seasonal
migration and smaller-scale movement behaviors are cued by
temperature (Cooper and Uzmann, 1971; Ennis, 1984; Crossin
et al., 1998). Temperature has been shown to be an important
factor in the initiation and progression of molting (Aiken, 1973;
Aiken and Waddy, 1975; Kelly, 1993), a critical process that
creates a tight biological-social link since 85% of landings in
the fishery are of lobsters that have recently molted into a legal
size class (Atlantic States Marine Fisheries Commission, 2015).
It has been proposed that early stages of the molting process are
triggered when a temperature of 5–6◦C is reached, after which the

ambient temperature determines the number of days to molting
(Kelly, 1993). The fact that a temperature threshold appears
to initiate the molting process provides a possible mechanism
connecting April temperatures to molt timing and an uptick in
fishery landings in June or July. Preliminary analyses indicate
correlations between (1) the April 1 temperature anomaly and
day when the 8-day smoothed 5◦C temperature threshold is
reached (r = −0.85 for 4-buoy average) and (2) the temperature
threshold date and fishery start day (r= 0.80 for 4-buoy average).
This threshold trigger for molting may also explain why the
predictive skill of the forecast declines in May, rather than
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FIGURE 5 | Temperature and start day correlations. Temperatures on January 1 through June 30 at each buoy and for the 4-buoy average were used to predict the

start day of the fishery. Results show the R2-value of these regression models by day. The model average R2-values exceeded 0.75 from March 8 through April 20

(light gray rectangle) and were above 0.7 for March 6 through May 3 (dark gray rectangle).

FIGURE 6 | Past performance of forecast. An April 1 forecast is run for each year 2002–2016, using all available data except the year being tested. In the left panel,

the boxes represent 7-day windows, centered on a “normal” start day bin that encompasses June 30-July 7. Bins are shaded according to the percentage of

simulations that predict a start day in the week represented by the bin (legend shown below panel). The observed start day is plotted as a star. In the right panel, the

stacked bar plot shows the proportion of mMC simulations predicting a start day inside a 3-, 5-, and 7-day window centered on the observed start day.
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FIGURE 7 | Simple linear regression between start day and April 1

temperature anomaly. Start days from 2002 to 2016 are plotted against the

April 1 (4-buoy average) temperature anomaly from the same year. Treating

2012 as an out-of-sample test, the linear regression fits well (R2 = 0.86) and

would predict a start day of 166 (June 16). The observed start day in 2012

was 163 (June 12).

FIGURE 8 | 2012 forecast series. A forecast is run on five dates in 2012, using

data available from 2002 to 2016. The boxes, representing 7-day bins, are

shaded according to the proportion of mMC simulations that predict a start

day in that bin (legend shown below panel), and the proportion (rounded to the

nearest percent) is displayed in each box. Based on spring temperatures in

2012, a high likelihood for an extremely early start to the high landings period

would have been predicted by a forecast issued as early as March 15, and this

prediction remained stable through May 1.

steadily improving as the start day draws closer (Figure 5).
Further investigation is needed to fully evaluate this potential
mechanism and to understand how a temperature threshold that
initiates molting vs. subsequent temperatures that control the
speed of that process may affect the forecast of the start day,
which inherently integrates both types of temperature influences.

Grounding this forecast in a mechanistic framework is an
important step in its future development. At present, the forecast
model is empirical and effectively amounts to a hypothesis

that temperatures in the spring trigger a chain of events that
leads to inshore movement and molting of lobsters, causing the
fishery to shift into its high landings summer mode. Empirical
models such as this have a poor track record in fisheries
(Myers, 1998) and their reliance on historical data is inherently
limiting when they are applied to novel conditions. As extreme
events like the 2012 heat wave are overlaid on rising mean
trends, conditions will move beyond historical analogs, and
forward-looking information streams that are not bounded by
past conditions will be needed to provide insights that shape
operational and management decisions in fisheries (Mills et al.,
in review). The empirical nature of the current forecast maymake
it less accurate in future years in which temperature patterns
deviate from those encountered during the study period; this
is particularly likely for years in which the temperature cycle
deviates substantially from a sinusoidal shape. More importantly,
the dependent variable—the timing of landings—is complex and
combines influences of lobster biology with the behavior of
fishermen. The latter can be strongly impacted by changes in
economic conditions or regulations.

Our motivation to develop this forecast stemmed from a
need expressed by leaders within the Maine lobster industry
and management system following the 2012 Northwest Atlantic
marine heat wave (Mills et al., 2013), and we have now
demonstrated the technical capacity to issue a forecast of the
seasonal timing of the lobster fishery. Since we have started
providing the forecast, initial conversations with industry users
indicate that they have applied the forecast information to
guide decisions as diverse as scheduling seasonal maintenance
and operations, setting debt payment dates, and planning for
transportation needs to distribute the lobsters to processors
or retail outlets. We anticipate that the forecast will enhance
preparedness of the industry, supply chain, and managers for the
start of the season, particularly in extremely early years in the
future. This awareness should help align production capacities,
marketing initiatives, and other operations to ensure a smooth
flow of lobsters from the water to tables across the globe. This
continuity may help optimize economic value derived from the
resource during a period when lobster productivity is increasing
in the state (Atlantic States Marine Fisheries Commission, 2015).
In contrast to the situation in Maine, substantial temperature-
related lobster population declines have decimated the fishery
in more southern regions of New England USA (Atlantic States
Marine Fisheries Commission, 2015). Operating the fishery and
its supply chain in ways that maximize economic benefits may
prove critical for buffering impacts of any future climate-related
productivity declines that may occur in Maine. Given the state’s
high dependence on the lobster resource (i.e., 85% of the value
of all fishery landings), forward-looking forecast information
can improve near-term operational decisions and longer-term
planning efforts to help sustain the fishery, its associated industry,
and coastal communities.

While we have developed the technical capacity to issue a
forecast that we anticipate will provide valuable information to
users, real-world application of forecasts has proven challenging
in a variety of situations (Hobday et al., 2016), and we anticipate
similar challenges to uptake of the forecast information.
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Although it appears that we could have provided a reliable
forecast of the early start to the 2012 season, sudden provision
of this forecast in 2012 may not have helped the situation on the
ground at that time. End-users need time to become familiar with
a forecast and develop their own sense of its reliability and how
to use it before they are likely to act on the information. Issuing
the forecast even in years when major impacts to the landings
cycle are not expected provides potential users with opportunities
to relate the information to their own operations, which may be
particularly valuable if another major disruption is predicted in
the future. Longer-term familiarity with and confidence in the
forecast may spur forward-looking planning, which will enhance
resilience of individual operators and of this integrated industry
to future disruptions.

Further development of the forecast will also benefit
from additional end-user engagement. Hobday et al. (2016)
recommended systematic engagement of stakeholders in the
forecasting process to ensure the applicability and usability of
the information in real-world decision-making contexts. This
three-stage process begins by assessing needs of the end users,
including relevant temporal and spatial scales. A forecast can
then be developed to target these information needs. Finally, the
implementation stage entails delivering the forecast, supporting
and educating users, applying information to a decision, and
gathering feedback to improve the product (Hobday et al., 2016).
Initial input from users has indicated that developing the forecast
at smaller spatial scales (e.g., for coastal regions or lobster
management zones) would make the information more relevant
and useful. In addition, benefits may be gained by targeting
communication strategies and formats to specific user groups.
We view the forecast that we describe herein as a pilot stage
from which we can work toward a future product that is shaped
by more deliberate and focused stakeholder input so that it can
support a range of applications by end users.

The impacts of climate change are being felt by fisheries
in many marine ecosystems. While climate-related forecast
information tends to focus on gradual environmental trends

over 50- to 100-year time horizons, fishing industry participants
face decisions on much more immediate time scales. These
decisions may be affected not just by the magnitude of
environmental conditions but also by their timing, as evidenced
by the experience of the Maine lobster fishery during the
2012 ocean heat wave (Mills et al., 2013). Providing forward-
looking information relevant to the scales at which decisions
are made is a critical step, and seasonal forecasts offer one
avenue toward achieving this alignment. As shifts in the timing
of warming and cooling occur in marine ecosystems (Burrows
et al., 2011; Thomas et al., 2017), the phenology of life events
in organisms, operations and outcomes of fisheries targeting
those species, and effectiveness of fishery management efforts
may all be affected (Mundy and Evenson, 2011; Peer and
Miller, 2014). Seasonal forecast information directed toward the
phenology of important events can provide a longer planning
horizon than weather forecasts and bring climate information
to bear on fisheries at a time scale that is meaningful for
operational and management decisions made throughout the
fishing industry.
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