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The differences among phytoplankton carbon (Cphy) predictions from six ocean color

algorithms are investigated by comparison with in situ estimates of phytoplankton

carbon. The common satellite data used as input for the algorithms is the Ocean

Color Climate Change Initiative merged product. The matching in situ data are derived

from flow cytometric cell counts and per-cell carbon estimates for different types of

pico-phytoplankton. This combination of satellite and in situ data provides a relatively

large matching dataset (N > 500), which is independent from most of the algorithms

tested and spans almost two orders of magnitude in Cphy. Results show that not a single

algorithm outperforms any of the other when using all matching data. Concentrating

on the oligotrophic regions (Chlorophyll-a concentration, B, less than 0.15 mgChlm−3),

where flow cytometric analysis captures most of the phytoplankton biomass, reveals

significant differences in algorithm performance. The bias ranges from −35 to +150%

and unbiased root mean squared difference from 5 to 10 mgCm−3 among algorithms,

with chlorophyll-based algorithms performing better than the rest. The backscattering-

based algorithms produce different results at the clearest waters and these differences

are discussed in terms of the different algorithms used for optical particle backscattering

coefficient (bbp) retrieval.

Keywords: phytoplankton carbon, carbon-to-chlorophyll, ocean color remote sensing, picophytoplankton, flow

cytometry, optical water class, algorithm uncertainty

1. INTRODUCTION

One of the standard products from ocean-color remote sensing is the concentration of chlorophyll-
a (B) in the surface layers of the ocean, which is an estimation of phytoplankton abundance. This
product has proven to be extremely useful for various applications (e.g., Platt and Sathyendranath,
2008). More recently, there has been a growing interest in monitoring the standing stock of
phytoplankton in carbon units (CEOS, 2014), in addition to chlorophyll units. There are many
reasons for this interest, which include calculation of primary production using carbon-based
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models (Behrenfeld et al., 2005; Westberry et al., 2008);
estimating phytoplankton loss rates (Zhai et al., 2008, 2010);
comparison with estimates of phytoplankton biomass in carbon
units from marine ecosystem models (Dutkiewicz et al., 2015);
and establishing the budget of the pools of carbon in the
ocean (CEOS, 2014), their turnover rates (Casey et al., 2013),
and their exchanges with the atmospheric and terrrestrial
domains (CEOS, 2014). With increasing appreciation of the
different roles of various phytoplankton functional types in the
oceanic biogeochemical cycles (Le Quéré et al., 2005), there is
a corresponding need to know the pools of carbon associated
with the different phytoplankton types, rather than just the total
phytoplankton carbon.

A handful of algorithms have been proposed for deriving
phytoplankton carbon from satellite data. These include
methods based on particle back-scattering coefficient (bbp) at
a single wavelength (Behrenfeld et al., 2005; Martínez-Vicente
et al., 2013); empirical relationships based on chlorophyll
concentration (Sathyendranath et al., 2009;Marañón et al., 2014);
and methods based on allometric considerations combined with
either the spectral slope of the particle back-scattering spectrum
(Kostadinov et al., 2009, 2016) or with the phytoplankton
absorption characteristics (Roy et al., 2017). Of these, the
method proposed by Martínez-Vicente et al. (2013) dealt with a
fraction of the phytoplankton community (diameter < 20µm),
whereas those of Behrenfeld et al. (2005), Sathyendranath
et al. (2009), and Marañón et al. (2014) dealt with the whole
phytoplankton community. The methods based on allometric
structure (Kostadinov et al., 2009, 2016; Roy et al., 2017), on the
other hand, have the advantage of being able to target the whole
of the phytoplankton community, and partition phytoplankton
carbon among any user-defined size-intervals. Comparison of
these algorithms is not straightforward, because of the differences
in approaches used and the products obtained. Furthermore,
they have been subjected to varying degrees of validation, with
differences in the number of validation points used and in
their regional and seasonal coverage. Another difficulty lies
with having access to in situ data in sufficient quantity and
comprehensive enough for algorithm assessment.

Various methods for in situ measurements of phytoplankton
carbon in the laboratory or in the field have been reviewed by
Casey et al. (2013). Some of the in situ methods require a proxy
measurement, which is then calibrated against phytoplankton
carbon. Subsequently, the carbon concentration is inferred from
measurements of the proxy, which would typically be easier to
measure than the carbon concentration itself. The proxies include
adenosine triphosphate (ATP) (Sinclair et al., 1979); the refractive
index of phytoplankton cells (Stramski, 1999); and the forward
light scatter by phytoplankton cells in a flow cytometer (Casey
et al., 2013). Redalje and Laws (1981) used chlorophyll-a labeling
and showed that the specific activity of carbon in chlorophyll-
a became equivalent to that of total phytoplankton carbon in
incubations of 6–12 h, and so chlorophyll-a labeling could be
used to infer phytoplankton carbon and growth rates. Graff
et al. (2015) used flow cytometer cell sorting (Graff et al., 2012)
to measure phytoplankton carbon in sorted samples, thereby
avoiding contamination of results by non-pigmented particles.

An accepted approach to estimating phytoplankton carbon at sea
is to use a flow-cytometer to count phytoplankton cells sorted
into different types. Using laboratory-based estimates of carbon
per cell and typical (or measured mean) cell diameters for those
phytoplankton types, the total carbon is computed by adding
the carbon contribution of each phytoplankton cell type. This
is obtained by multiplying the number of cells enumerated with
the flow cytometer by the carbon per cell (DuRand et al., 2001;
Oubelkheir et al., 2005; Martínez-Vicente et al., 2013). Such
methods have an upper limit on measured cell size, depending
on how the flow-cytometer is set up (typically D < 50µm).

We present in this work a comparison of six different
algorithms for estimating phytoplankton carbon from space. The
algorithms have been selected as representative of all existing
state-of-the-art approaches. The comparisons are based on a
newly-compiled, global, flow-cytometric dataset that is used to
compute the in situ picophytoplankton carbon, matched with
satellite data from the same location, and for the same day. The
performance of these products is explored in different optical
water classes. The comparison is limited to picophytoplankton,
because the flow-cytometric database dealt largely with this size
class. The objective of the comparison is to learn more about
the advantages and limitations of the algorithms, rather than
to rank them. We expect that the results will allow a more
informed use of phytoplankton carbon products from satellites,
for example, when they are compared with model outputs, and
serve to identify areas where improvements are needed and
potential avenues for achieving them. The analysis also brings to
light some of the limitations of the in situ database, and highlights
areas where progress is needed, to enable better validation of
satellite data.

2. METHODOLOGY

2.1. In Situ Dataset
As part of this study, more than 12,000 observations of
picophytoplankton abundance have been collated from
coastal and oceanic regions (Table 1), building upon a dataset
compiled by the modeling community through MAREDAT
(http://maremip.uea.ac.uk/maredat.html) (Buitenhuis et al.,
2012). Additional data come from a long-term observation
program, the Atlantic Meridional Transect (AMT); as well as
recently available data collected independently during AMT-22
and in the Pacific (Graff et al., 2015) and from other regions in
the Atlantic ocean (Taylor et al., 2013). The dataset assembled
consists of cell counts (in cells per milliliter), from water samples
originating between 0 and 200 m depth, and collected in the
period between 1997 and 2014, to match satellite observations
available. Flow cytometry analysis of the samples provides cell
abundances segregated into different types of phytoplankton.
At this stage, the database consisted of 12,431 sample entries.
Only the picophytoplankton cells (<2µm) were available in the
MAREDAT dataset, which were separated into Prochlorococcus
spp., Synechococcus spp. and picoeukaryotic phytoplankton.
For consistency, only information on the same phytoplankton
types were extracted from the additional data sources (Zubkov
et al., 1998; Tarran et al., 2001, 2006; Taylor et al., 2013;
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TABLE 1 | Summary of in situ data.

Area Number of in situ

observations

Selected

match-ups

(Total)

Cphy (mgm−3)

(Match-ups

median ± IQR/2)

References

Pacific and

Atlantic Ocean

2 (57) 18.3 ± N.A. Graff et al., 2015

Atlantic Ocean

(AMT)

174 (5,860) 10.6 ± 4.5 Zubkov et al.,

1998; Tarran et al.,

2001, 2006

Western English

Channel (WCO)

0 (1,196) N.A Tarran, 2015;

Tarran and Bruun,

2015

Atlantic Ocean 48 (224) 11.7 ± 3.5 Taylor et al., 2013

Global Oceans 333 (5,153) 12.1 ± 5.9 MAREDAT

(Buitenhuis et al.,

2012)

All data 557 (12,490) 11.5 ± 5.3 This study

Graff et al., 2015; Tarran, 2015; Tarran and Bruun, 2015) (see
Table 1). The carbon concentration (Cphy, in mgCm−3) for each
phytoplankton group (i) and for each sample (j), Cphy(i, j), was
calculated as follows:

Cphy(i, j) = 10−6
× N(i, j)ε(i) (1)

where N(i, j) is cell abundance (cellmL−1) for each of the three
phytoplankton types (i = Prochlorococcus spp., Synechococcus
spp. or picoeukaryotic phytoplankton) at sample j; and ε(i)
is cellular carbon per cell (fgC cell−1) for each of the
picophytoplankton types. The factor 10−6 converts mL to m3

and fgC to mgC. We used the mean ε(i) for each phytoplankton
type proposed by Buitenhuis et al. (2012): 60 fgC cell−1 for
Prochlorococcus spp., 154 fgC cell−1 for Synechococcus spp. and
1319 fgC cell−1 for picoeukaryotic phytoplankton. These values
of ε(i) are comparable to values from the Bermuda Atlantic Time-
series Study (BATS) (Casey et al., 2013), for Prochlorococcus spp.
and Synechococcus spp., whereas picoeukaryotic phytoplankton
ε(i) values are lower than in BATS. The total picophytoplankton
carbon concentration per sample j, i.e., Cphy(j) is the sum of the
contributions from each picophytoplankton type (i.e., Cphy(i, j)),
and will be hereafter referred to as Cphy at a given location and
depth.

The choice of phytoplankton types included in this
computation, as well as the parameters used for the conversion
to carbon, matches the modeling community approach
as represented in Buitenhuis et al. (2012). The choice of
phytoplankton types is such that phytoplankton types with
diameter >2µm are not taken into account. Furthermore,
the choice of a mean carbon concentration per cell for each
phytoplankton type does not permit accounting for any
variations in size or cellular carbon spatially or temporally
for each type of phytoplankton. To test our choice of carbon
conversion parameters we compared direct measurements of
Cphy with estimates computed using the conversion factors
above. In samples from the AMT-22 (N = 15) (Graff et al., 2015),

the slope of the regression between direct measurements of Cphy

and computed Cphy, was 0.8 (r2 = 0.6, p< 0.05). According to
this result, the estimates of picoplankton Cphy in our dataset are
significantly correlated with direct estimates of phytoplankton
carbon, and could be an overestimate of direct observations
of Cphy, which include nanophytoplankton, although a larger
sample is required to support this conclusion.

2.2. In Situ and Satellite Match-up
Selection
The in situ database described above was matched with merged
ocean-color satellite data from the Ocean Color Climate Change
Initiative (OC-CCI) (Sathyendranath et al., 2012). These merged
products were used to maximize the possibility of finding
matching in situ data as well as to use a set of common inputs
to the different algorithms. The OC-CCI version 2 data had a
daily sinusoidal projection (binned) and a 4 km spatial resolution.
These satellite data were used as inputs for Cphy algorithms: total
B from OC4v6, bbp from the Quasi-Analytical Algorithm (QAA)
v5 (a modification to v4 in Lee et al., 2002, 2007, but that does not
include Raman scattering, Westberry et al., 2013; Lee and Huot,
2014). Second, the water class membership (Moore et al., 2001,
2009; Jackson et al., 2017).

The procedure for match-up selection was the same as that
used for particulate organic carbon (POC) data (Evers-King et al.,
2017). The day of year the in situ sample was collected was
matched with the same day of year from the merged satellite
products. Then all relevant data were extracted from a 3× 3 pixel
set with the sample location at the center. The number of valid
data, within the 3 × 3 grid, and mean and standard deviation of
the valid points were recorded for each computed Cphy product.
The 3 × 3 grid was used to identify where sufficient satellite data
were available. In this dataset only 11 matched points had 3 valid
pixels or less. The Cphy algorithms were applied to the central
pixel of the satellite matched up data. The match-up process
reduced the sample size considerably. Further reduction came
from depth-averaging (between 0 and 10 m) the Cphy profiles
that matched the satellite data, and ignoring the deeper samples,
leaving 647 data points. Finally, to remove outliers, the top and
bottom 2 percentile were removed from the dataset, leaving
N = 557 for the analysis. The geographical distribution of match-
up database for the picophytoplankton carbon concentration,
Cphy, is given in Figure 1. The match-up dataset usable for the
algorithm comparison was only about 5% of the inital data
(Table 1). It is worth emphasizing that the match-up data set has
not been used for the calibration or development of most of the
algorithms compared (see section 4).

2.3. Ocean-Color Phytoplankton Carbon
Algorithms
The following section describes the six algorithms compared
in this exercise. All the phytoplankton algorithms were
implemented using as input data the appropriate OC-CCI
product for consistency and to isolate the effects of the different
algorithms. Table 2 provides a comparison of the input data
and the phytoplankton size range that is included in the
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FIGURE 1 | Geographical distribution of the match-up dataset (N = 557) used for algorithm testing. Color scale is concentration of picophytoplankton, Cphy in

mgCm−3.

TABLE 2 | Summary of Cphy algorithms main characteristics and median values predicted for the in situ match-up database (N = 557).

Model Algorithm type Input (wavelength) Output Cphy (Median ± IQR/2) References

A Chlorophyll-based B All sizes 16.8 ± 6.7 Sathyendranath et al., 2009

B Chlorophyll-based B All sizes 9.2 ± 5.2 Marañón et al., 2014

C Backscattering-based bbp (440) All sizes 18.7 ± 5.2 Behrenfeld et al., 2005

D Backscattering-based bbp (470) D < 2 µm 20.9 ± 6.4 Martínez-Vicente et al., 2013;

modified, see section 2.3.2

E Allometric conversion bbp spectral slope from the 490, 510,

and 555 nm bands, and bbp at 443 nm

0.5 < D < 2 µm 5.6 ± 0.8 Kostadinov et al., 2009, 2016

F Allometric conversion aphy (676) and B D < 2 µm 5.0 ± 2.2 Roy et al., 2017

Chlorophyll concentration, B, in mgChlam−3; optical particulate backscattering coefficient, bbp, in m
−1; phytoplankton absorption coefficients aphy , in m

−1; pico phytoplankton carbon

concentration, Cphy , in mgC m−3.

outputs of each algorithm. These are important characteristics
of the algorithms, required for the interpretation of the results.
For phytoplankton carbon, Cphy in mgCm−3, six products
were derived and they are briefly described in this section.
According to their common characteristics, they can be grouped
into chlorophyll-based, backscattering-based and allometric
algorithms.

2.3.1. Chlorophyll-Based Algorithms
This family of algorithms use chlorophyll concentration as
an input, B with units of mgChlam−3. Chlorophyll in this
study is obtained from OC-CCI merged dataset with the
algorithm OC4v6, which is a band switching algorithm, mainly
a fourth-order polynomial relationship between remote sensing
reflectance in the blue and green bands. The two algorithms in
this group use the same input and have a similar formulation,
however, the assumptions made in their construction and
hence their definition of Cphy are different. Algorithm A
(Sathyendranath et al., 2009) was developed from an empirical

relationship between in situ measurements of total particulate
carbon and B. For this model, Cphy in Equation (2) below is an
upper bound on the total phytoplankton carbon:

Cphy = 65× B0.63. (2)

Algorithm B (Marañón et al., 2014) was also developed from an
empirical relationship using in situ measurements of B, and not
originally designed as an algorithm for ocean color applications.
However, the estimates of total phytoplankton carbon originated
from applying a conversion factor to microscope (counting cells
with diameter, D > 5µm) and flow cytometry (D < 10µm)
phytoplankton cell counts. This model is formulated in
Equation (3) as:

Cphy = 62× B0.89. (3)

Because of the difference in their definition of Cphy, Algorithm
A and Algorithm B have been considered separately in our
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analysis. A priori, the expectation is that both chlorophyll-
based algorithms, using total chlorophyll concentration as input
data, will overestimate the picophytoplankton carbon from
our in situ match-up dataset, since they are both designed
to calculate total phytoplankton carbon, rather than just the
picophytoplankton in our dataset. Further, it is also worth noting
that the conversion factors used to compute phytoplankton
carbon from cell abundance in Algorithm B are different to the
ones used in our in situmatch-up dataset.

2.3.2. Backscattering-Based Algorithms
Some semi-empirical algorithms use the (wavelength dependent)
optical particulate backscattering coefficient, bbp in m−1, to
estimate Cphy. The backscattering coefficient in this study is
obtained from the OC-CCI merged dataset by applying the
algorithm by the Quasi-Analytical Algorithm (QAA) v5 (a
modification to v4 in Lee et al., 2002, 2007). In essence, the
QAA first computes bbp(555), from combining remote sensing
reflectance at 555 nm with an empirical relationship between
remote sensing reflectance ratios and the total absorption
coefficient and the backscattering of pure seawater (modeled).
Then, to propagate the bbp(555) at other wavelengths, the
algorithm uses a band ratio (again blue to green bands) to
compute the backscattering spectral slope. The same QAA bbp
product is used for both backscattering based Cphy algorithms,
but at different wavelengths. Algorithm C (Behrenfeld et al.,
2005) uses bbp(443) as an input:

Cphy = 13000× (bbp(443)− 0.00035). (4)

As this algorithm was developed from MODIS-Aqua (Moderate
Resolution Imaging Spectroradiometer) ocean-color data, and
443 nm is a native OC-CCI band, no spectral adjustment
is therefore needed. However, it is worth noting that the
algorithm was developed originally using the GSM algorithm
(Garver and Siegel, 1997; Maritorena et al., 2002; Siegel et al.,
2002), but in this test, the bbp input come from the QAA
algorithm. The Cphy derived with this algorithm includes all
the phytoplankton size ranges. Algorithm D (Martínez-Vicente
et al., 2013) is another semi-empirical algorithm, developed
from the relationship between in situ flow cytometry-based
carbon and bbp(470), but is included in the comparison
with some changes. The first modification was to re-compute
the coefficients in the original equation by using the same
computation of picoplankton as the one used in this work,
which meant ignoring the nanoeukaryotes, cryptophytes and
coccolithophorids contributions to the picoplankton carbon and
use the same carbon to cell conversion factors as in this study
(i.e., those of MAREDAT; Buitenhuis et al., 2013). This re-
calculation led to lower (pico)phytoplankton carbon estimates
which were, on average, 27% less than the published values of
phytoplankton carbon (from pico- and nano-plankton) used in
Martínez-Vicente et al. (2013).When the new picophytoplankton
Cphy estimate was used with the original in situ bbp data, the
resulting fit was:

Cphy = 18000× (bbp(470)− 43 ∗ 10−5),N = 70. (5)

This equation explains considerably less variance in the observed
data (r2 = 0.4) than the r2 of 0.89 reported in the original
work. However, it makes the definition of Cphy by this model
directly comparable to the in situ data. The second modification
was to adjust the backscattering coefficient wavelength from the
available value, 490 to 470 nm. To do so, the spectral slope of the
bbp from the OC-CCI data was obtained by doing an ordinary
least squares fit to the log10 transformed data and calculated the
new bbp(470) needed for Equation (5).

2.3.3. Allometric Type Algorithms
These algorithms belong to a family of algorithms that use
optical properties to compute phytoplankton size structure and
then convert it into biomass (Mouw et al., 2017). Algorithm E
(Kostadinov et al., 2016) retrieves the absolute and fractional
phytoplankton carbon biomass in three phytoplankton
size classes (or, approximately equivalent − phytoplankton
functional types) − picophytoplankton (0.5–2µm in diameter),
nanophytoplankton (2–20µm) and microphytoplankton
(20–50µm). The algorithm uses retrievals of the particle size
distribution (PSD) to estimate particle volume. Note that the
PSD is estimated for all particles in suspension in the water.
Particle volume is then converted to carbon concentrations using
a compilation of existing allometric relationships between size
and carbon content of phytoplankton cells (Menden-Deuer and
Lessard, 2000). Derived carbon concentration is then divided by
3 to estimate the living phytoplankton carbon fraction. The PSD
retrievals themselves are based on a PSD algorithm (Kostadinov
et al., 2009), which relates the spectral slope andmagnitude of the
backscattering coefficient spectrum to the underlying parameters
of an assumed power-law PSD, via look-up tables (LUTs)
constructed using Mie theory modeling. In the implementation
used here, the input backscattering spectrum comes from the
standard QAA products of the OC-CCI dataset, which are
derived using Lee et al. (2002) algorithm, as summarized above.
This is different from the original implementations (Kostadinov
et al., 2009, 2016), where the Loisel and Stramski (2000)
algorithm was used to retrieve spectral bbp. The PSD parameters
retrieved are the power-law slope (ξ ) and the scaling parameter
(i.e., differential particle number concentration at a reference
diameter of 2µm,No, [m−4]). Kostadinov et al. (2016) applied an
empirical correction to the PSD scaling parameter No obtained
from the model LUT, to improve absolute phytoplankton carbon
concentration estimates.

A further allometry-based method, Algorithm F (Roy et al.,
2017), uses chlorophyll concentration and the absorption
coefficient of phytoplankton at 676 nm, aph(676), to compute
phytoplankton carbon. In this algorithm, the exponent of the
phytoplankton size spectrum (ξ ) is first computed from the
specific-absorption coefficient of phytoplankton at 676 nm,
a∗
ph
(676) using a method developed by Roy et al. (2013). This

algorithm uses as input B from OC4v6 and aph(676) from
QAA, both standard products in the OC-CCI dataset. The
estimated exponent of the size spectrum ξ and the allometric
relationships between the cellular content of phytoplankton
carbon (Ccell) and cell volume (Vcell) reported by Menden-
Deuer and Lessard (2000) are then used to compute the
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concentration of phytoplankton carbon (Ctotal, in mgCm−3)
contained in the cells within any specified diameter range. To
do so, the allometric parameters corresponding to the mixed
populations of phytoplankton are derived from the allometric
relationships found for individual groups of phytoplankton, as
reported in Menden-Deuer and Lessard (2000), by performing
linear regression. The derived allometric relationship is used
then to compute the magnitude of the carbon-to-chlorophyll
ratio (χ), using the derived allometric expressions for the
concentrations of chlorophyll and phytoplankton carbon,
Ctotal. Finally, phytoplankton carbon for the specified size
range is computed as the product of χ and satellite-
derived chlorophyll concentration (for more details see Roy
et al., 2013, 2017). The allometry-based algorithms E and
F were used to compute picophytoplankton concentration
within a diameter range 0.2–2.0 µm, which is directly
comparable with the size range included in the matching in situ
database.

In summary, each method is thus based on a satellite
measurement that provides underlying variability in the resulting
Cphy (reflectance ratio or analytically-derived backscatter) which
is then combined with selected empirical relationships that scale
those measurements to Cphy (using either linear or non-linear
relationships and sometimes including more than one step, such
as via B). The strength of this study lies in the use of the
OC-CCI satellite dataset as a common source of inputs for
all the algorithms, which removes sources of uncertainty from
other parts of the satellite processing. A limitation, however,
comes from the differences in the definition of the Cphy for
each algorithm (Table 2). It is expected that the algorithms
which compute total Cphy (i.e., Algorithms A, B, and C) will
be most comparable to the in situ data when the contribution
to the phytoplankton Carbon by nano and picoplankton is not
significant.

2.4. Statistical Metrics and Their
Contribution to the Study
Ranking of algorithms according to their performance is a
classic exercise for the ocean-color community, that has evolved
from comparisons of chlorophyll algorithms (O’Reilly et al.,
1998) to more complex and comprehensive approaches recently
(Brewin et al., 2015; Kostadinov et al., 2017). Typically, a
battery of statistical metrics is used to construct an index of
overall performance against a set of matched data with in situ
observations (Brewin et al., 2015). In this exercise, however, we
do not use a scoring system to rank algorithms, since one of the
aims of this work is to provide an overall idea of the current
accuracy of the phytoplankton Carbon product from a group of
algorithms. The Kolmogorov-Smirnov test for normality of the in
situmatch-up data showed a significant deviation from normality
for log10 transformed and un-transformed data and the residuals
(p < 0.001). Therefore, statistical metrics that assume normality
would be less reliable. For completeness, the statistical tests were
computed for log10 transformed data, using parametric tests;
and for un-transformed data, using non parametric, rank-based,
statistics. Statistical metrics computed were:

• Pearsons correlation coefficient for log10 transformed data,
and Spearman’s correlation for un-transformed data (rp and
rs respectively),

• Root mean square differences (RMSD, 9),
• Signed average bias (δ),
• Median absolute percentage deviation between predictions

and observations, (MAPD in %) was an estimate of bias and
precision was estimated as the interquartile range (IQR) of the
absolute percentage deviation for the untransformed data.

• Center pattern root mean square differences for log10
transformed and un-transformed data (1), and

• Slope and intercept (S, I) from a Type-II linear regression
(Reduced Major Axis) for log10 transformed and un-
transformed data.

To provide an indication of the stability of the statistics and
to compute confidence intervals on them, bootstrapping (Efron,
1979; Efron and Tibshirani, 1993) with random re-sampling
and replacement was used to construct 1,000 different datasets
from which confidence intervals were computed for some of
the statistical metrics above. These metrics were computed for
all the algorithms tested against the match-up dataset as a
whole and, in adition, they were also computed after segregating
the match-up dataset according to the dominant water class
at the central match-up pixel. Because of the nature of the
ocean color CCI satellite data and the Cphy algorithms, it is
expected that algorithm performance will degrade toward more
turbid environments (water classes 8 and over). Furthermore, the
statistical results per water class provided a measure of dispersion
of the phytoplankton Carbon product among algorithms,
describing in which optical environments the algorithms show
greater agreement. The statistics per water class were used to
produce uncertainty maps (RMSD and bias). To generate the
uncertainty maps, the optical class memberships at each pixel,
and the per-class uncertainty values for each class were used to
produce a weighted average uncertainty value for the pixel, with
the weighting function being provided by the class membership.
This is the method followed by the OC-CCI and described fully
in Jackson et al. (2017).

3. RESULTS

3.1. Distribution of in Situ Data and
Accuracy of Algorithms
The sources and geographic distribution of the in situ data, as well
as the corresponding median values of the picophytoplankton
carbon data are summarized in Table 1. The spatial distribution
of the match-ups (Figure 1) shows their limited coverage of the
oceans, with most of the data (71%) located in the Northern
Hemisphere and from the Atlantic Ocean. The overall median
value of Cphy from the match-up database was 11.7 ± 5.3
mgCm−3 (median ± IQR/2), with values ranging from 1.7 to
60.2 mgCm−3. As a comparison,chlorophyll concentration (B)
from the coincident satellite data was 0.12 ± 0.08 mgChlam−3,
ranging from 0.01 to 3.53 mgChlam−3. The median values of
Cphy from the algorithms applied to the matching data (Table 2)
were not significantly different to the Cphy in situ (Mann-Witney
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test, N = 557, p < 0.05). Relative frequency histograms of these
data (Figure 2) however, show some bias. The peaks of the
histogram of the chlorophyll-based algorithms (Algorithms A
and B) were closest to the in situ; the backscattering-basedmodels
(Algorithms C and D) were double the median of in situ and
allometric algorithms (Algorithms E and F), were half the in situ
median value (Figure 2). The distribution spread of chlorophyll-
based algorithms were about the same or wider than the in situ
(C.V. between 40 and 56%), with backscattering and allometric
algorithms having narrower distributions (C.V. lower than 30%).

Figure 3 shows the results from the algorithm estimates
of Cphy against in situ derived estimates of Cphy and the
relevant statistical metrics are in Table 3. All the algorithms
showed different predictions of Cphy, but as expected, there
were commonalities among models that shared the same
formulation. For example, both chlorophyll-based algorithms
(Figures 3A,B) presented an elongated cloud with a weak but
positive (∼0.6) and significant correlation with in situ data,
and stayed mostly along the 1:1 line, with slopes close to 1;
whereas both backscattering-based algorithms (Figures 3C,D),
had weaker correlations (∼0.4) and, although the slopes where
also close to 1, the data cloud does not capture the lower Cphy

measurements. Contrary to the other two groups of algorithms,
the allometric-based do not share a formulation, hence their
results (Figures 3E,F) differ significantly among them.

The statistical metrics (Table 3) provide a range of values
among the algorithms tested, showing that there is not a clearly
superior performance of a single algorithm on all metrics.
The bias (δ) ranged from 3.5 mgCm−3 for Algorithm B
(Marañón et al., 2014) to 15 mgCm−3 for the Algorithm
D (Martínez-Vicente et al., 2013) as modified in this work.
Chlorophyll and backscattering based algorithms had a positive
bias, less than 15 mgCm−3, whereas allometric algorithms had

a negative bias, less than 7 mgCm−3. The un-biased RMSD
(1), which gives an idea of the dispersion of the predictions,
ranged from 8.9 mgCm−3 for Algorithm E (Kostadinov et al.,
2016) to 29 mgCm−3 for Algorithm D, (Martínez-Vicente et al.,
2013) as modified in this work. The lowest median absolute
percentage difference (MAPD), a measure of accuracy, for the
untransformed data was for Algorithm B (Marañón et al.,
2014), in agreement with the bias indicator for log and non-log
transformed data. The inter-quartile range of the MAPD (IQR), a
measure of precision of the algorithm, was lowest for AlgorithmE
(Kostadinov et al., 2016), and coincided with another indication
of dispersion (1) in the non-log statistics, but differed for the
log-transformed data.

Overall, chlorophyll-based algorithms had higher correlation
and indicators of lower bias (i.e., δ, MAPD), whereas allometric
algorithms had indicators of lower dispersion (i.e., 1, IQR of
MAPD). Between algorithms, there was a factor 4 of difference
between the maximum and minimum predictions from the
algorithms for all matchups pooled together as a median (i.e., the
median of the fractional difference between the minimum and
the maximum predictions by the algorithms in each match-up
point).

An additional way to assess model performance is to study
their emergent properties (de Mora et al., 2016). Here we
have compared the in situ and the algorithm derived Cphy to
the chlorophyll concentration, B (standard OC4v6 OC-CCI-
product) for the match-ups (Figure 4 and Table 4), to investigate
the behavior of the Cphy:B ratio. Figure 4A displays the positive
correlation between the satellite derived B (for the whole of
the phytoplankton assemblage) and the in situ derived Cphy

for the picophytoplankton fraction only, over more than two
orders of magnitude of chlorophyll concentration. Because of
the mismatch between the particle assemblage in B and Cphy,

FIGURE 2 | Relative frequency distribution of Cphy of the in situ data compared with the algorithms outputs. Note change in the scale of y-axis for Algorithms C and E.
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FIGURE 3 | Density plot of in situ vs. algorithm Cphy from the match-up database (N = 557). Black solid line is the 1:1 line and blue dashed line is the Type II linear

regression (Reduced Major Axis) fitted to the log10 converted data. (A) Sathyendranath et al. (2009), (B) Marañón et al. (2014), (C) Behrenfeld et al. (2005),

(D) Martínez-Vicente et al. (2013) modified, (E) Kostadinov et al. (2009, 2016), (F) Roy et al. (2017).

the overall values reported for the Cphy:B ratio are smaller
than they would be if the ratio had been derived from B
for picoplankton only. However, with a median value of 91

mgCmgChla−1, the in situ Cphy-to-satellite-B-ratio falls within
or close to observed values in oligotrophic areas. For instance,
Sathyendranath et al. (2009) reported average values of this
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TABLE 3 | Summary of statistics of algorithm performance (algorithms A–F, columns) for log10 and untransformed data (N = 557).

Statistic A B C D E F

log10 TRANSFORMED DATA

rp 0.61 0.61 0.32 0.31 0.42 0.32

9 0.35 ± 0.02 0.33 ± 0.02 0.43 ± 0.02 0.48 ± 0.02 0.37 ± 0.02 0.57 ± 0.03

δ 0.23 ± 0.02 −0.02 ± 0.03 0.28 ± 0.03 0.33 ± 0.03 −0.24 ± 0.02 −0.32 ± 0.04

1 0.27 ± 0.01 0.32 ± 0.02 0.33 ± 0.02 0.35 ± 0.02 0.29 ± 0.01 0.47 ± 0.03

S 0.90 ± 0.05 1.27 ± 0.07 0.75 ± 0.17 0.86 ± 0.21 0.44 ± 0.05 1.47 ± 0.44

I 0.34 ± 0.04 −0.29 ± 0.05 0.53 ± 0.04 0.48 ± 0.05 0.34 ± 0.02 −0.81 ± 0.10

UNTRANSFORMED DATA

rs 0.58 0.54 0.36 0.37 0.49 0.52

9 19.9 ± 1.37 22.2 ± 1.63 24.6 ± 1.75 32.6 ± 2.34 11.3 ± 0.67 13.0 ± 0.83

δ 9.55 ± 1.45 3.55 ± 1.82 10.8 ± 1.84 15.0 ± 2.41 −7.04 ± 0.74 −4.76 ± 1.01

1 17.4 ± 1.16 21.8 ± 1.54 22.1 ± 1.62 29.0 ± 2.16 8.86 ± 0.51 12.1 ± 0.83

S 1.76 2.16 1.77 3.87 2.29 0.25

I 2.65 −8.42 1.57 −10.9 3.46 3.62

MAPD ± IQR/2 55.1 ± 70.1 46.1 ± 19.4 78.9 ± 81.4 99.9 ± 98.8 55.1 ± 18.0 53.2 ± 18.6

Statistics provided have uncertainty estimates (95% confidence interval), from 1,000 bootstrap realizations (See section 2.4). Bold numbers are the best results for each statistic: highest

value for rs and rp, lowest for Ψ , δ, ∆, I and MAPD, and closest to one for S.

FIGURE 4 | Density plot of covariance between OC-CCI standard chlorophyll product and Cphy from the match-up database (N = 557). (A) In situ Cphy ,

(B) Sathyendranath et al. (2009), (C) Marañón et al. (2014), (D) Behrenfeld et al. (2005), (E) Martínez-Vicente et al. (2013) modified, (F) Kostadinov et al. (2009, 2016),

(G) Roy et al. (2017). Blue dashed line is the Type II linear regression (Reduced Major Axis) fitted to the log10 converted data. Black solid line is the regression line

between chlorophyll and in situ for comparison with the regressions by the algorithms. For comparison, data in (A) are repeated (gray) in the other panels.

ratio greater than 100 mgCmgChla−1 for prymnesiophytes,
cyanobacteria and Prochlorococcus sp. Direct observations of
pico and nano plankton carbon in the Northern and Southern
Atlantic gyres produced carbon-to-chlorophyll ratio estimates,
on average, of 106 and 190 mgCmgChla−1, respectively (Graff
et al., 2015). Marañón et al. (2014) also reports values in the range

of 80–117 mgCmgChla−1 for oligotrophic regions. Therefore,
the Cphy:B ratio used as reference in this study compares well
with existing observations reported in the literature, despite the
mismatch between the phytoplankton assemblages considered.
These data are repeated as the background of the other panels in
Figure 4 for reference along with their corresponding regression
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TABLE 4 | Summary of statistics for the Cphy to B relationships.

Algorithm Median Cphy :B ± IQR/2

(mgC/mgChla)

rp α × B+ β

In situ 91.3 ± 47.3 0.6 22.1× B+ 7.94

A 143 ± 34.1 N.A. N.A.

B 78.5 ± 5.4 N.A. N.A.

C 162 ± 102 0.7 53.4× B+ 10.7

D 180 ± 115 0.7 70.2× B+ 10.5

E 47.9 ± 29.5 0.8 6.70× B+ 4.85

F 52.5 ± 18.6 0.4 30.5× B+ 1.03

Cphy was computed from the algorithms and B from the standard OC-CCI chlorophyll

product for the match-up dataset (N = 557). Pearson correlation (rp) was computed for

log10 converted data. Type II linear regression (Reduced Major Axis) was computed for

untransformed data, with dependent variable Cphy and independent variable is B.

line. Algorithms A and B are chlorophyll-based, therefore their
predictions fall on the line of the equations used, respectively
Equations 2, 3 in Figures 4B,C. Their predictions are close to
the in situ data cloud and the resulting median phytoplankton
carbon-to-chlorophyll ratio encompass the in situ reference
value, Algorithm A providing an upper limit, as expected from
the assumptions made in its construction. Backscattering-based
algorithms (Algorithms C and D, in Figures 4D,E, respectively)
overestimate the Cphy:B reference relationship, specially at
the lower concentrations of chlorophyll, and produce median
phytoplankton carbon-to-chlorophyll ratio values up to two
times greater than the reference. However these algoritms
capture some of the variability around the prediction line, which
is in the same order of the in situ data. Algorithms using inherent
optical properties with allometric conversions (Algorithms E
and F, in Figures 4F,G, respectively) underestimate the reference
Cphy:B reference relationship, with Algorithm E showing a
narrower distribution of data points than Algorithm F.

The in situ Cphy dataset is representative only of a fraction
of the particle population (picophytoplankton). However, its
geographical distribution, the median Cphy concentrations and
carbon-to-chlorophyll ratios derived from this dataset are in
agreement with existing observations in oligotrophic oceanic
conditions. Taking into account this charcteristic of the dataset,
the overall performance of the algorithms was on the low
side, with chlorophyll-based algorithms producing slightly lower
bias and allometric algorihms slightly lower dispersion. Among
algorithms there was a median dispersion of a factor 4 between
minimum and maximum predictions. The algorithms were also
tested on their ability to produce realistic a Cphy:B ratio, which
again highlighted great dispersion in predictions among and
within algorithms types. Arguably, part of the dispersion in the
statistical results may have arised from the fact that the in situ
Cphy dataset is representative only of a fraction of the particle
population (i.e., picophytoplankton). Therefore if we limited the
study to the optical cases where picophytoplankon is expected
to dominate the phytoplankton carbon pool and the chlorophyll
content, we would expect an improvement on the results from
the algorithms. In the next part of this study we present results
obtained from segregating the data into optical water types.

3.2. Algorithm Comparisons for Individual
Optical Water Types
An optical water class, in this context, is defined by a mean
remote sensing reflectance spectrum representative of particular
optical characteristics, i.e., an end-member spectrum. Each
extracted satellite pixel coinciding with a match-up in situ
data has contributions from the different end-members in
different proportions. The water class contributing with the
largest proportion to the pixel water class membership is classed
as belonging to that water class (Jackson et al., 2017). The
geographic locations of the match-up points per water class and
the number of observations per class are shown in Figure 5.
There was a good correspondence between the geographic
location of the optical water types (note that the classes are
numbered such that i = 1 is the most oceanic type and i = 14
the most coastal type) in Figure 5A and the Cphy concentrations
(Figure 1), such that the higher-numbered optical classes tend
to be representative of higher concentrations of phytoplankton
carbon. The majority of the data (63%), though can be classed as
representative of an oligotrophic environment (i 1 to 6, B < 0.15
mgChlam−3). A boxplot summary of the descriptive statistics
per optical water class per algorithm is provided (Figure 6).
Table 5 summarizes the median Cphy values highlighting a
steady increase from oceanic to coastal waters, except for i
= 13, which only has N = 5 observations, and is hereafter
discarded from the analysis. The magnitude and the increase
of the picophytoplankton carbon is in agreement with oceanic
and coastal data (Tarran et al., 2006). For instance, using the
current carbon conversion parameters on existing abundance
data (Tarran and Bruun, 2015), Cphy median in the coastal area of
the Western English Channel is 12.1± 6.1 mgCm−3 (N = 68).

Algorithm performance per water class was quantified by the
signed bias (δ) and the center-pattern RMSD (1) (seeTable 5 and
Figure 7). These statistical indicators of performance improved
by limiting the analysis to oligotrophic waters (i 1 to 6) as
expected: bias, δ, was similar or lower than those obtained
when considering all data, for all the algorithms (section 3.1,
Table 3). Center-pattern RMSD, 1 an indicator of precision,
was, on average, half that when considering all data, indicating
decreased noise in the retrieval for all algorithms (for non-
log results, section 3.1). Chlorophyll-based algorithms had, on
average, similar δ and 1 to the allometric-based algorithms,
with back-scattering based algorithms producing higher bias and
higher 1 values.

Mesotrophic waters (0.15 < B < 0.7 mgChlam−3, or optical
water classes 7–10) comprise 32% of data. With respect to the
results obtained for all data available (section 3.1), the chlorophyll
based algorithms had an increased δ, whereas 1 was similar.
Backscattering-based algorithms had higher uncertainties than
chlorophyll-based algorithms in the more turbid waters (high
optical class numbers) in the untransformed data (Figure 7D).
Bias increased for all of the algorithms for these water classes
except for Algorithm E, which remained negative and relatively
constant at −60%. However, the results for mesotrophic and
more turbid waters, should be taken with caution as the use of
in situ Cphy data comprising only picophytoplankton is more
problematic in these waters.
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FIGURE 5 | Distribution of the Cphy from the match-up dataset per optical water class. (A) Geographical distribution. (B) Number of data per optical water class.

TABLE 5 | Median Cphy from in situ matchups and non-log average bias (δ) and un-biased RMSD (1) of the different algorithms (algorithms A–F, columns headers) per

water class number (i) in mgCm−3, alongside with the number of observations per water class (Ni ).

Water class Median Cphy (mgCm−3) Ni A B C D E F

i δ 1 δ 1 δ 1 δ 1 δ 1 δ 1

1 4.8 51 2.6 4.0 −2.3 3.6 13.3 7.0 15.5 8.2 −0.2 3.5 −2.8 3.4

2 7.5 30 1.2 3.9 −3.8 3.7 9.1 6.2 10.7 7.2 −2.3 3.8 −4.1 3.9

3 6.4 67 3.2 3.3 −2.5 3.3 10.1 4.2 12.0 4.7 −1.8 3.4 −3.3 3.3

4 10.5 68 3.1 5.7 −3.6 5.5 10.3 10.3 13.1 12.2 −4.9 5.5 −5.3 4.9

5 12.9 81 3.6 6.3 −3.9 6.1 7.1 10.4 9.6 12.3 −7.2 5.9 −6.7 5.2

6 13.6 54 4.2 8.3 −3.7 8.2 5.1 11.8 7.7 13.6 −8.9 8.2 −7.3 6.9

7 13.8 60 6.6 5.7 −1.7 5.5 3.3 8.5 5.5 10.2 −8.8 5.3 −7.3 5.4

8 15.9 49 9.5 8.3 0.6 8.3 4.4 8.8 8.0 9.9 −11.7 10.2 −10.0 8.0

9 20.4 33 18.4 14.5 11.1 16.1 8.9 13.9 16.2 16.8 −16.4 14.3 −8.4 13.6

10 21.1 34 36.0 23.6 33.3 30.2 14.1 16.9 22.9 21.2 −13.0 11.4 4.5 28.8

11 16.7 16 44.3 33.0 45.3 46.8 12.6 24.2 20.6 32.3 −8.8 10.2 −5.0 22.4

12 34.0 9 79.1 15.7 103.2 25.5 99.8 46.2 141 59.5 −14.3 12.0 31.8 30.1

13 6.8 5 19.1 19.2 11.9 21.1 113.1 119.8 144.8 157.4 4.2 12.6 −3.3 8.8
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FIGURE 6 | Box-whiskers plots of Cphy (in mgCm−3 ) for the optical water classes (OWC in the figures) 1–13 corresponding to sub-figures (A–M) respectively. The

output of each algorithm (A–F) is compared to the in situ measurement for each optical water type. Note change of vertical scale in plots (I–M), corresponding to

optical water classes greater than 9. Box, Inter Quartile Range (IQR); red line, median; whiskers, ±1.5×IQR.

The in situ median Cphy:B ratio by optical water class were
also compared to the median Cphy:B ratio from the algorithms
(Figure 8). The in situ data (solid gray line and error bars) is
repeated as a reference throughout Figure 8, showing that for i
from 1 to 6 (oligotrophic waters), the range of variation is narrow
(106 to 165 mgCmgChla−1, median 133 mgCmgChla−1) and
error bars are overlapping among the optical water classes 1 to 6.
For mesotrophic waters (i from 7 to 10), there was a decreasing
tendency of the in situ Cphy:B ratio.

The analysis of the algorithm predictions of the Cphy:B
ratio focusses on the optical water classes 1 to 6, where
Cphy and B are expected to describe the same phytoplankton
assemblage. Essentially, the behavior observed for the Cphy is
also repeated here. Algorithm A was an upper limit to the Cphy,
it is also an upper limit to Cphy:B ratio, which decreases with
increasing optical water class number (Figure 8A). Algorithm
B shows relatively little variation of the median Cphy:B ratio
for the optical water classes of interest and beyond (i > 6).
Backscattering-based algorithms, Algorithm C (Behrenfeld et al.,
2005) and Algorithm D (Martínez-Vicente et al., 2013), showed
also decreasing median Cphy:B ratio with increasing water class
number, with large overestimations with respect to the in
situ Cphy:B ratio at the clearest waters. The allometric-based

algorithms, Algorithm E (Kostadinov et al., 2016) and Algorithm
F (Roy et al., 2017), were generally predicting lower than
observed Cphy, and also predicted lower median Cphy:B ratios.
However, both algorithms had a decreasing tendency for the
median values with increasing turbidity (or water class number,
in this study), with Algorithm E being closest to observations for
i from 1 to 3.

Finally, Figure 9 shows an example of the Cphy product
from algorithms A to D using the OC-CCI monthly product
from May 2005. All algorithms reproduce the broad patterns
that would be associated with Cphy i.e., increased values in
high-chlorophyll areas (upwelling sites and coastal regions) and
lower concentrations in the gyres, however the salient point of
this Figure is the large differences in predictions among the
algorithms, as expected from the statistical results.

4. DISCUSSION

4.1. The Picophytoplankton C Match-up
Dataset
This study has compiled a large in situ database of
picophytoplankton carbon, building on a combination of a
substantial pre-existing effort by the modeling community (the
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FIGURE 7 | Center pattern root mean square deviation (1) for log10 (A,C,E) and non-transformed (B,D,F) data from the Cphy match-up dataset per optical water

class. Out of scale from the plot in (D) Algorithm C for water class 13 has 1 = 120 mgCm−3; Algorithm D for water class 13 has 1 = 157 mgCm−3. (E) Algorithm F

for water class 10 has 1 = 1.12 mgCm−3.

MAREDAT data) and long time series observation programmes
in the open ocean (Atlantic Meridional Transect, AMT). The
ambition is to see this dataset growing with time, as new data are
incorporated.

There are a number of advantages and limitations for this
dataset with respect to its use for algorithm testing and validation.

An advantage is that only a small fraction of the data have been
used for the development of any of the algorithms tested here.
Algorithms A, B, C, and E are completely independent of the
match-up dataset. Algorithm D as implemented by Martínez-
Vicente et al. (2013), was developed using a small subset of the
new database, N < 70, but the subset included nanoplankton.
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FIGURE 8 | Median Cphy :B for each optical water class in the match-up

dataset per type of algorithm: (A) chlorophyll-based algorithms A and B; (B)

backscattering-based algorithms C and D and (C) allometric algorithms E and

F. Error bars are the IQR/2 for the water class. Gray line and error bars in all

sub-figures are obtained from the in situ dataset.

Algorithm F usedMAREDAT for testing algorithm performance,
but not for its development. So the data for the validation
presented here are mostly independent of the data used in the
construction of algorithms. The geographic distribution of the
match-up database, though largely limited to the Atlantic, with
some additional points from the Pacific, does cover a variety
of oceanic regions. It is a purpose-built database for satellite

validation studies, and therefore, only an average of the matching
data in the top 10m have been selected for convenience.

However, the dataset also has limitations. One of them is
that it is only composed of picophytoplankton: though they
are important contributors to the open-ocean phytoplankton
biomass, picophytoplankton form a decreasing proportion of the
phytoplankton biomass in more productive waters, where larger
cells tend to become more important (Marañón et al., 2012;
Marañón, 2015). One interesting avenue would be to expand
the database with other phytoplankton groups (Buitenhuis et al.,
2013; Sal et al., 2013). Nanoplankton can also be counted using
flow cytometry, and microphytoplankton groups counted using
microscope or automated image processing (Sosik and Olson,
2007; Álvarez et al., 2012), but the relationship between carbon
and abundance becomes more variable for larger and more
irregularly-shaped phytoplankton (Moberg and Sosik, 2012;
Saccà, 2016).

Because the data are confined to the surface layers, they may
also be adversely affected by underestimation of Prochlorococcus
sp. abundance by flow cytometry because of extremely low
fluorescence per cell (Partensky et al., 1996; Heywood et al.,
2006). Furthermore, by limiting our dataset to the top 10m, we
have precluded the possibility of testing any potential impact that
the vertical structure in the first optical depth might have on
algorithm performance. Examples exist in the literature where
the depth variations in particulate organic carbon been taken into
account (Duforêt-Gaurier et al., 2010), and this may be an avenue
worth exploring also for phytoplankton carbon algorithms.

Finally, the conversion of abundance to carbon using
estimates from the laboratory could cause errors in the computed
Cphy in the field, if the laboratory estimates do not hold under
natural environmental conditions. These factors can vary with
physiological state and with depth (Casey et al., 2013) and have
been discussed previously (Buitenhuis et al., 2012; Martínez-
Vicente et al., 2013). It is important to highlight that in this
study we have used indirect estimates of phytoplankton carbon
(through cell counts and cell size) only because of the lack of
direct measurements. However, methods for direct quantification
of Cphy have recently become available (Graff et al., 2012; Casey
et al., 2013) and the expectation is that there will be more direct
Cphy data available in the future.

Limiting the study to the optical water classes where the
composition of the phytoplankton assemblage is expected to be
dominated by picoplankton ( i 1 to 6, B up to 0.15mgChlm−3)
median values of Cphy and Cphy:B ratio matching the literature
(Marañón et al., 2001; Marañón, 2015), were obtained, and the
algorithms results showed more stability and less dispersion.
However, some algorithms displayed significant differences
which are discussed hereafter.

4.2. Algorithm Comparison by Type:
Chlorophyll Based, Backscattering Based
and Allometric
The algorithms presented here were broadly classified into three
classes: chlorophyll-based, back-scattering based and allometric.
In the results presented here, it is evident that algorithms based
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FIGURE 9 | An example of the Cphy product for May 2005, estimated using each of the algorithms (A–F) applied to the monthly OC-CCI data. Black color in the

gyres indicate values close or below 5 mgCm−3, light gray indicates invalid retrieval or unavailable input data.

on similar approaches perform alike. So it is worth examining
each of these approaches in some detail, to explain the differences
observed in the results for oligotrophic waters.

The two chlorophyll-based algorithms were designed
to consider all the phytoplankton groups: Algorithm A
(Sathyendranath et al., 2009) provides an upper limit to the
phytoplankton contribution to the total particulate carbon
pool and Algorithm B (Marañón et al., 2014) is based on
phytoplankton carbon computed from flow-cytometric data
supplemented with microscopic counts for larger phytoplankton.

Yet, when compared with only one fraction of the total
phytoplankton pool (the picophytoplankton in this study), the
results are similar, with Algorithm A slightly overestimating and
Algorithm B slightly underestimating in situ Cphy. Algorithm A
was designed as the upper limit to the phytoplankton carbon,
hence this result is as expected. Algorithm B was computed using
a similar conversion method between cell count and carbon
concentration to the one used in this study, but with different
conversion coefficients. We speculate that a possible reason for
the difference observed between the predicted Cphy by Algorithm
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B and the in situ Cphy could be found in the differences in
conversion between cell counts and carbon. Production of
datasets with consistent conversion factors would help eliminate
this source of discrepancy.

Differences in results are greater with the backscattering-
based algorithm, which produced overestimation of Cphy and
greater dispersion statistics than the other algorithms. Because
it has been verified in situ that bbp increases with pico and nano
plankton carbon (Martínez-Vicente et al., 2013; Graff et al., 2015),
the degradation of results may be linked to the backscattering
input from the algorithm. Algorithm C equation was derived
using the GSM algorithm for obtaining a relationship between
the backscattering coefficient and the B. It has been found in
situ, that at low B there may be an overestimation of the bbp
by using this satellite-derived relationship (Huot et al., 2008;
Antoine et al., 2011; Brewin et al., 2012), yet in situ data
also have shown overestimation of backscattering by the QAA
algorithm (Behrenfeld et al., 2013). It has been found recently,
that Raman scattering plays a role in the discrepancy of the
retrievals of the backscattering coefficient in very clear waters
from satellite (Westberry et al., 2013), causing an overestimation
in backscattering. This effect of Raman scattering has been
only identified recently (Lee and Huot, 2014), and was not
incorporated in the QAA version used for the production of the
OC-CCI version 2 data used for this study, but can be analytically
corrected (McKinna et al., 2016), and future versions of the
OC-CCI dataset will address this issue.

While validation of the OC-CCI chlorophyll product has
been performed intensively in Atlantic oligotrophic waters and
showed low error statistics (Brewin et al., 2016), investigations
to improve the validation of bbp and to understand better the
relationships of bbp with particles in oligotrophic areas are
still required (Brewin et al., 2015). At a fundamental level,
backscattering is dependent on the refractive index of the cells,
their abundance and size, whose interplay is not yet fully
understood. But in addition to phytoplankton, other particles
(e.g., detritus) are known to contribute to the backscattering
signal, and their variability relative to phytoplankton could
potentially contribute to the discrepancies observed in this study.

Algorithm E used in its original formulation an inversion
model to retrieve the backscattering spectral slope (Loisel et al.,
2006) that is different from the one used in this comparison
as input (i.e., QAAv5). The QAA used here invoked a band
ratio to solve for the backscattering spectral slope, and this
may account for at least part of the observed tighter coupling
between B and Algorithm E. Algorithm E provides consistently
low 1 values across the water classes, although it underestimates
the in situ data systematically. This may be pointing to a
need to re-adjust the size scaling parameter (like No), the
empirical correction for which is now based on a rather
limited in situ validation data set (Kostadinov et al., 2016).
Ultimately, a better optical closure is needed between modeled
and observed backscattering spectra, and a better understanding
of the underlying particle assemblages, their refractive indices,
and their relative contributions to the backscattering coeffient.
It remains to be validated if at more productive waters, the
prediction of low Cphy (from Algorithm E picophytoplankton

fraction) remains valid, whereas the current in situ dataset
showed an increase (Table 5).

Algorithm F was similar to algorithm E in all water classes
except for water classes 8 to 11, where the uncertainty is
almost double compared with the rest of the algorithms,
pointing perhaps to a vulnerability to uncertainties in the
aph(676) retrieval in these waters. More accurate estimates of
phytoplankton carbon by Algorithm F would possibly require
improving the retrievals of the input aph(676) values, especially
in high-chlorophyll waters.

5. CONCLUSIONS AND FUTURE WORK

Further work is required to extend the in situ dataset
to include additional phytoplantkon sizes to evaluate if
uncertainties can be reduced in the product by including larger
phytoplankton to capture phytoplankton dynamics at wider
scales. Despite the limitations of the in situ data used, it has
been shown that where chlorophyll concentrations are less than
0.15mgChlam−3, chlorophyll-based algorithms provide the
best estimates of Cphy, allometric-based algorithms consistently
underestimate Cphy and backscattering-based algorithms, can
produce large overestimations of Cphy, at least for the
particular case of back-scattering data, provided using the
QAA algorithm, as implemented in OC-CCI version 2.0. To
improve back-scattering products from satellites, fundamental
optical work on explaining the relationship between the bbp
and particles in oligotrophic areas is still needed. Satellite-
based phytoplankton carbon product, once validated to a level
that meets user requirements, and in situ datasets, similar
to the one presented here, will be useful for validation of
marine ecosystem and biogeochemical models at a wider scale
(Dutkiewicz et al., 2015).

DATA AVAILABLE

The Cphy data, computed from in situ phytoplankton counts,
and the matching Cphy data, computed from different
algorithms using OC-CCI version 2.0 satellite data, can be
obtained from http://www.zenodo.org with doi: 10.5281/zenodo.
1067229.
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