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Dissolved organic matter (DOM) is arguably one of the most complex exometabolomes

on earth, and is comprised of thousands of compounds, that together contribute

more than 600 × 1015 g carbon. This reservoir is primarily the product of interactions

between the upper ocean’s microbial food web, yet abiotic processes that occur over

millennia have also modified many of its molecules. The compounds within this reservoir

play important roles in determining the rate and extent of element exchange between

inorganic reservoirs and the marine biosphere, while also mediating microbe-microbe

interactions. As such, there has been a widespread effort to characterize DOM using

high-resolution analytical methods including nuclear magnetic resonance spectroscopy

(NMR) and mass spectrometry (MS). To date, molecular information in DOM has

been primarily obtained through calculated molecular formulas from exact mass. This

approach has the advantage of being non-targeted, accessing the inherent complexity

of DOM. Molecular structures are however still elusive and the most commonly used

instruments are costly. More recently, tandem mass spectrometry has been employed to

more precisely identify DOM components through comparison to library mass spectra.

Here we describe a data acquisition and analysis workflow that expands the repertoire

of high-resolution analytical approaches available to access the complexity of DOM

molecules that are amenable to electrospray ionization (ESI) MS. We couple liquid

chromatographic separation with tandem MS (LC-MS/MS) and a data analysis pipeline,

that integrates peak extraction from extracted ion chromatograms (XIC), molecular

formula calculation and molecular networking. This provides more precise structural

characterization. Although only around 1% of detectable DOM compounds can be

annotated through publicly available spectral libraries, community-wide participation in

populating and annotating DOM datasets could rapidly increase the annotation rate and

should be broadly encouraged. Our analysis also identifies shortcomings of the current
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data analysis workflow that need to be addressed by the community in the future.

This work will lay the foundation for an integrative, non-targeted molecular analysis of

DOM which, together with next generation sequencing, meta-proteomics and physical

data, will pave the way to a more comprehensive understanding of the role of DOM in

structuring marine ecosystems.

Keywords: mass spectrometry, LC-MS/MS, dissolved organic matter, non-targeted metabolomics, environmental

metabolomics, marine microbial communities

INTRODUCTION

On the surface of the ocean, unicellular photosynthetic organisms
fix as much atmospheric CO2 into organic carbon as their
terrestrial, multicellular counterparts, despite the standing
biomass of marine primary producers being just 1% of the
terrestrial biosphere (Siegenthaler and Sarmiento, 1993). This
is the result of a fast and efficient recycling of biomass in this
system. A significant fraction of the photosynthetic production is
channeled through the dissolved organicmatter (DOM) reservoir
(Halewood et al., 2012; Stephens and Aluwihare, in review);
and recycled by bacteria (Azam and Malfatti, 2007). The DOM
reservoir comprises 600 Gt C, making it the largest reduced
carbon (C) reservoir in the ocean and comparable in size to
the atmospheric CO2 reservoir. In many areas of the ocean,
DOM also represents the largest reservoir of nitrogen (N) and
phosphorus (P), both essential nutrients for supporting marine
food webs (Karl and Björkman, 2002; Sipler and Bronk, 2015). As
such, DOM is a crucial intermediate in the cycling of carbon and
nutrients in our oceans. Despite the central role of DOM in the
ocean’s elemental cycles, the identities ofmolecules underpinning
this massive recycling effort and the microbial metabolisms
that sustain it, remain poorly understood. The identification
of molecules is however pivotal to determine accurate rates of
remineralization and comprehensively understand the microbial
community metabolism. This knowledge will better inform our
predictions of how climate change may impact the size and
composition of the DOM reservoir and thus, the future of
atmospheric CO2 sequestration in the ocean.

From an analytical perspective DOMposes a special challenge.
A single sample can be comprised of tens of thousands of
individual molecules that together rarely exceed 1mg C/L.
The true chemical complexity of DOM is unknown because
extraction methods capable of isolating this fraction from the
much more abundant salts in seawater are not 100% efficient.
The most widely used method is solid phase extraction (SPE)
using the sorbent PPL, a proprietary functionalized, reversed
phase, hydrophobic, styrene-divinylbenzene polymer (Dittmar
et al., 2008). This resin typically isolates between 40 and
50% of DOC from the surface ocean with a molar C:N
ratio of 20–30 (Dittmar et al., 2008; Arakawa et al., 2017)
and contains various proportions of other elements including
phosphorus (P) and sulfur (S) as detected primarily by mass
spectrometry (Lechtenfeld et al., 2011; Herzsprung et al., 2016).
This fraction is poorer in N and P than bulk DOM (Hopkinson

and Vallino, 2005; Letscher and Moore, 2015) and is lacking
in the more polar biomolecules such as dissolved proteins

and carbohydrates (Hertkorn et al., 2013) consistent with the
hydrophobic characteristics of the PPL resin. However, even
this fraction shows marked and unique complexity, which is
exemplified in Fourier transform ion cyclotron resolution (FT
ICR) mass spectra of this PPL-DOM. In a general sense, FT ICR-
MS has shown that PPL-DOM contains thousands of molecules
with peaks located around every nominal mass unit between 200
and 1,000 m/z, with the most abundant masses concentrated
between 300 and 400 m/z (D’Andrilli et al., 2010; Flerus et al.,
2012; Hawkes et al., 2016; Zark et al., 2017). Although larger
molecules are known to be present in DOM, various analyses
confirm that most (at least 60%) of DOM is <1 kDa (Guo
et al., 1995; Dittmar and Kattner, 2003; Benner and Amon,
2015). Formula assignments to FT ICR-MS ions have provided
further insight into elemental ratios and thus compound diversity
(Dittmar and Paeng, 2009; Flerus et al., 2012; Hawkes et al.,
2016; Herzsprung et al., 2016; Lucas et al., 2016; Osterholz et al.,
2016), but molecular structures capable of identifying sources
and cycling have remained elusive.

Recently, studies of DOM have focused on targeted molecules
relevant for particular biogeochemical processes. These
molecules have been identified in culture experiments and/or
detected in field samples to highlight some of the important
microbial interactions in the surface ocean (Amin et al., 2015;
Johnson et al., 2016; Repeta et al., 2016; Heal et al., 2017;
Kujawinski et al., 2017). Targeted metabolomic studies focus on
individual, well-characterized substrates whose concentrations
and cycling can be followed precisely in incubations and in field
settings. Advantages of such an approach are clear – in general,
targeted work is quantitative, precise, and the metabolic role of
identified substrates may already be well established (Amin et al.,
2015; Johnson et al., 2016; Repeta et al., 2016; Heal et al., 2017).

Still, thousands of unidentified molecules are present in
DOM and uncovering their roles in elemental cycling and
marine microbial ecology requires an unconstrained and
non-targeted approach. Non-targeted studies aim to examine
temporal and spatial variability of all detectable metabolites
(specific to isolation method and analytical method). With the
appropriate data analysis tools, this approach has the power to
identify relevant metabolites and “metabolic interdependencies”
at a faster pace (Sogin et al., 2017). Such an approach can
also inform targeted approaches including those with stable
isotope labeling studies and expression/transcription studies,
for instance. Merits of both approaches are clear and they
both have the ability to provide new insights and advance
the study of DOM dynamics. The guiding scientific questions
should determine the appropriate approach (Hawkes et al.,
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2016; Moran et al., 2016) and in the some cases, they
can be combined (Kujawinski et al., 2017). The superior
mass resolution of FT ICR-MS instruments approximates the
compositional diversity of DOM most closely (Kujawinski
et al., 2002; Reemtsma et al., 2008; Romano et al., 2014; Zark
et al., 2017). Yet orbital iontrap MS instruments possess some
advantages that, despite their slightly lower mass resolution, can
augment the molecular level investigations of DOM. Besides
the dependency of resolution and thus mass accuracy for
molecular formula assignments, an interesting advantage of
orbital ion traps, especially new generation high-field orbitraps,
is the significantly higher scan speed (Makarov et al., 2009;
Scheltema et al., 2014), also provided by high-end Time-of–
Flight (TOF) mass analyzers. Fast scan speed is an essential
requirement for the coupling with liquid chromatography. This
enables structural annotations, which provide molecular level
identification, through database comparison of tandem MS
spectra and/or retention times (Vinaixa et al., 2016). Such an
approach is common in metabolomic studies and has been
extensively reviewed (Liesenfeld et al., 2013; Viant and Sommer,
2013; Gika et al., 2014; Rubert et al., 2015).

In non-targeted LC-MS/MS experiments, tandem mass
spectra are often acquired in data dependent acquisition (DDA),
where the mass spectrometer decides in real time based on MS1
survey scans which ions to submit for subsequent MS/MS scans.
This approach paired with high acquisitions speed (>1Hz) of
state of the art instruments results in thousands of spectra per
LC-MS/MS run. For a reliable data analysis and reproducible
interpretation of the results, bioinformatic workflows including
comprehensive databases and statistical significance estimation
are crucial (da Silva et al., 2015; Böcker, 2017; Scheubert et al.,
2017; Weber et al., 2017) and have been very recently employed
for marine metabolomic studies (Quinn et al., 2016; Hartmann
et al., 2017; Kujawinski et al., 2017; Longnecker and Kujawinski,
2017). With these new bioinformatic tools and instrumental
improvements in sensitivity, acquisition speed and resolution we
anticipate that the techniques used for DOM characterization will
further shift toward non-targeted analyses using high-resolution
LC-MS/MS that provide inventories of molecular structures in
complex environmental datasets. Therefore, the adaption and
standardization of marine LC-MS/MS based metabolomics, an
essential requirement for inter-dataset comparison, will be of
high interest to the aquatic sciences community. Here we
describe the implementation and assessment of an LC-MS/MS
based workflow, capable of identifying untargeted metabolites
in complex marine environmental samples. The addition of LC
separation reduces sample complexity prior to ionization, which
reduces ion suppression effects and improves quantification. The
chromatographic separation also provides another dimension
of information (retention time) for comparison across samples.
ESI is a routinely applied ionization method for LC-MS based
metabolomics, despite its selectivity toward polar compounds,
as it is well suited to metabolite identification (Zhou et al.,
2012). Identifying dissolved metabolites is a primary goal as
it provides information that can be effectively compared with
genomic and proteomic datasets and is essential for providing
an integrative understanding of marine microbial communities.

Untargeted metabolite identification is substantially improved
by acquiring MS/MS information and coupling with a high
throughput workflow used for the first time here to study DOM.

EXPERIMENTAL CONCEPT

Our analytical workflow, shown in Figure 1, starts with a
SPE enrichment using PPL resin (Dittmar et al., 2008).
After extraction, we analyzed the compounds by ultra-high
performance liquid chromatography (UHPLC) coupled through
ESI to an orbital ion trap. The experimental design relies on high
resolution MS1 experiments with orthogonal data acquisition
in both positive and negative ionization modes. Subsequently,
we also recorded positive high-resolution MS/MS information
in data dependent acquisition (DDA) mode. The data analysis
begins with MS1 features and relies on an initial creation and
alignment of extracted ion chromatograms (feature extraction)
using the software tool MZmine2 (Pluskal et al., 2010). The
alignment of features was performed in two dimensions: first,
between all samples, which resulted in a consensus feature table;
and second, between positive and negative mode data to define
consensus features of high confidence. After feature extraction
from MS1, we calculated molecular formulas based on exact
masses of individual and consensus features. In parallel, we
performed clustering of identical MS/MS spectra and multiple
spectra alignments using the Global Natural Product Social
molecular networking (GNPS) (Wang et al., 2016). This analysis
defines spectral proximity between all MS/MS spectra of a dataset
and visualizes them in a spectral network (Watrous et al.,
2012). For the molecular annotation we compared the MS/MS
spectra to a spectral library including the GNPS community
contributed spectral library as well asMassbank, ReSpect,HMDB,
and NIST14 (Forsythe and Wishart, 2009; Horai et al., 2010;
Sawada et al., 2012; Stein, 2014; Wang et al., 2016). The
overall goal of such an analysis is to enable robust, untargeted
comparison of multiple samples at the molecular level. Once
features are defined, annotated and connected to sample
metadata, molecular features can then be used for multivariate
data reduction and visualization such as Principal Coordinate
Analysis (PCoA) (Anderson and Willis, 2003) or multivariate
component classification approaches such as Random Forest
(Breiman, 2001). If spatial information is available, molecular
intensities can be displayed on geographical coordinates to create
extracted ion maps (Petras et al., 2017).

RESULTS AND DISCUSSION

The overall goal of this study was to devise an LC-MS/MS
data acquisition and analysis workflow that holds the potential
to access the molecular level complexity of the marine DOM
reservoir. The biggest barrier to any comprehensive molecular
level survey of DOM composition is that a salt-free, concentrated
sample is required, which means that DOM must be isolated
from seawater (Dittmar et al., 2008). Most of the widely available
methods for extracting DOM can only isolate ≤60% of the total
dissolved organic carbon (DOC) in seawater. We chose to extract
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FIGURE 1 | Overview of data acquisition and data analysis workflow. After sampling of sea water (1), dissolved organic matter is extracted by solid phase extraction

(2) and samples are analyzed by non-targeted high-resolution liquid chromatography tandem mass spectrometry (HR LC-MS/MS) in data dependent acquisition

mode (3). Following raw data acquisition (4), extracted ion chromatograms (XICs) are created and relative feature intensities are defined through integration of peak

areas (5). For molecular annotation of features, molecular formulas based on exact masses of the XICs from negative and positive ionization experiments are

calculated and spectrum library comparison of MS/MS spectra as well as spectral networking is performed (5). To facilitate the analysis of data, multivariable statistics

such as Principal Coordinate Analysis (PCoA) can be performed in order to display sample-sample distance, and metabolite data can be interpreted in the context of

oceanographic features and microbial community composition (6).

DOM from seawater using the modified styrene divinyl benzene
polymer resin, PPL (Varian Bond Elut, Agilent Technologies,
USA), as it is currently the most widely used method for
extracting DOM from seawater (Dittmar et al., 2008). Before
describing our LC-MS/MS protocol in detail we summarize
the result of simple tests conducted to optimize the extraction
protocol and to define a standard protocol for our future high
throughput, open ocean, metabolic profiling. We tested five
seawater replicates each of three different volumes (100, 500, and
1,000mL) from a single, homogenized seawater sample from the
Pacific Ocean (Scripps Pier, February 2018), that had been pre-
filtered using a 0.2µm cutoff, membrane filter (Acropak, Pall) to
remove particles and large bacteria. Seawater was extracted with
either 0.2 g (100, 500, and 1,000mL) or 1.0 g (1,000mL) of resin
mass. We varied extraction volumes to determine the lower limit
of extraction volume that was capable of providing representative
compositional information.

Extraction Efficiency
We assessed extraction efficiency by measuring DOC
concentrations in the bulk seawater sample and permeate
of each replicate. Detailed results are shown in Figure S2
and Table S1. The input seawater had a concentration of
approximately 70 µmol L−1. For the 0.2 g cartridges, the
highest extraction efficiency calculated based on the permeate
concentration was 54.4 ± 1% (mean ± SD) and was observed
for the 100mL samples, followed by 47.4 ± 3% and 42.3 ± 1%

for 500 and 1,000mL respectively. The 1.0 g cartridge extracted
more DOC from 1,000mL (53.1± 2.3%) than the 0.2 g cartridge,
as would be expected. The data also suggested that the reactive
sites on the 0.2 g bed mass cartridge became saturated at seawater
volumes ≥500mL. Extraction efficiencies calculated using the
concentration of DOC that was eluted from the resin exhibited
the same trend but were lower than those calculated from
permeate concentrations. This is likely due to the fact that
not all compounds extracted onto PPL resin could be eluted
with methanol, but could also result from sample processing
following the elution (e.g., drying). The approximate amount of
injected carbon ranged from an average of 0.19 µmol for the
100mL samples to 0.83 µmol for 500mL to 1.48 µmol for the
1,000mL samples extracted with 0.2 g PPL and 1.86 µmol per
injection for the 1,000mL samples extracted with 1 g PPL. The
reported accuracy of injection concentrations is linked to the
concentration of DOC in permeates of each SPE extraction and
the dilution volume.

Global Analysis of Total Ion Currents and
Extracted Ion Chromatograms
The simplest assessment of DOM MS data was performed
by comparing overall intensities of total ion currents (TIC)
(Figure 2). The featureless TIC, regardless of injected
concentration, highlighted the overall complexity of the
PPL-extracted DOM sample, and thus the depth of the analytical
challenge faced by DOM analysts. As expected, the two 1,000mL
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FIGURE 2 | Total Ion Current (TIC) of different extraction volumes in positive

(A) and negative (B) mode. Representative LC-MS chromatograms of five

replicates of different water volumes are shown. Data was acquired in both

positive and negative ionization mode. The relative TIC intensity is directly

related to the abundance of analytes and shows a clear trend between the

different amounts of total carbon injected. The signals of one liter samples

extracted with different extraction cartridges (0.2 vs. 1.0 g bed mass) show the

biggest difference in the lower retention time range, indicating that biases due

to MS based extraction efficiencies mainly affects polar compounds.

samples, which had a higher concentration, gave the highest
response. The intensity of their TICs only differed in the early
retention time range, where the 1,000mL sample extracted onto
0.2 g of PPL resin showed a lower response. This difference
indicated that polar compounds were less efficiently retained as
the resin became saturated and is a response that is consistent
with the hydrophobic nature of PPL.

The overall number of features (defined as a single peak
in an extracted ion chromatogram; XIC) in each sample was
identified based on thresholds and deconvolution settings in
the software tool used (MZmine2) and the strict requirement
that features must appear in the XIC of 4 of 5 replicates. After
blank subtraction, it was found that the number of features
increased with injection concentration and that more features
were identified in positive mode than negative mode. The overall
sum of features observed in positive and negative mode across all
groups was 13,987 and 7,328. The number of positive (negative)
features (Figure S3) increased from 1,235 (465) in the lowest
concentration samples (100mL extraction volume) to 5,653
(2,715) of the medium concentrated samples (500mL extraction
volume) to 7,766 (3,408) and 8,167 (4,217) features in the
highest concentrated samples (1,000 mL/0.2 g and 1,000 mL/1 g)

respectively. These data highlight the concentration dependency
of the mass spectrometer, which needs to be carefully controlled
when performing comparative analyses. The feature tables are
available in the Supporting Information of this article.

The two samples with the highest extraction efficiency (100
mL/0.2 g and 1,000 mL/1 g) also had the highest proportion of
unique MS features in positive mode (45 and 41%, respectively,
compared with 22 and 33% for the other two samples,
absolute values shown in Table S2). The trend was similar for
features identified in negative mode as well but all samples
exhibited a higher proportion of unique features in negative
mode. The observed similarity of the two samples with high
extraction efficiencies may have been a coincidence, but is
not unexpected given that polar compounds, for example,
were extracted more efficiently if the PPL column was not
saturated. Besides differences in sample composition, different
injection concentrations affect signal/noise ratios and can result
in concentration dependent changes in peak shape, which can
lead to retention time misalignment between different sample
groups and thus more unique features. More relaxed retention
time tolerances or stricter filtering toward minimum repetition
of features will likely alleviate this problem. If samples are likely
to be low in DOC concentration then injecting a short dilution
series will be useful.

Molecular Formula Assignment
From a global dataset perspective, the number of features
with assigned formulas within a 5 ppm mass error tolerance
increased with injected sample concentration. This finding is
consistent with the hypothesis that low S/N ratios will be omitted
from the molecular formula assignment calculation at lower
injection concentrations. For instance, the number of features
with assigned formulas within a 5 ppm mass error tolerance
is slightly lower for the smaller extraction volumes (shown
in Figure 3B). This can be explained by the assumption that
some features were either noise or had a molecular composition
which was not considered through our calculation parameters
(e.g., contained elements other than C, H, O, N, and S,
Na, Cl).

To increase the confidence of molecular formula annotation,
we made our data analysis more stringent through the alignment
of XICs from both positive and negative ionization modes. This
alignment groups different ion species from the same molecule
e.g., adducts (M+H+, M+Na+, M-H+, and M+Cl−). If two or
more matching ion species were aligned, a consensus molecular
formula (the highest ranked common formula) was created. The
overall number of consensus features of all volume groups was
3,060 and resulted in 2,600 molecular formulas (shown in the
Supporting Information). To display the chemical space of the
molecular formulas observed in the different groups, we created
Van Krevelen diagrams, displaying the H/C vs. O/C ratios of
the molecular formulas, differentiated between positive mode,
negative mode and consensus formulas (Figure 3A).

In order to loosely categorize “likely” and “unlikely” H/C and
O/C ratios in DOM, we also mapped out the distributions of
previously characterized metabolite formulas in Van Krevelen
space using structures <500 Da from the Supernatural database
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FIGURE 3 | Visualization of molecular diversity by Van Krevelen diagram and feature distribution over sample and chemical space. In (A) the H/C vs. O/C ratios of

computed molecular formulas from ESI+ and ESI– mode as well as from consensus features (matched XIC of at least two ion species/ adducts from both ESI+ and

ESI– scans) are shown. In (B) total feature numbers and formula annotation rates are shown for different ionization modes and plotted against the different extraction

volumes. In B, features are labeled based on extraction volumes and total injected carbon. (C,D) displays the Van Krevelen plot and frequency distributions of 233,692

molecular formulas from the supernatural chemical database (Banerjee et al., 2015).

(Banerjee et al., 2015), which includes molecular formulas from
more than 230,000 natural products. The Supernatural Van
Krevelen plot and density plots of H/C and O/C ratios are
shown in Figures 3C,D. The highest density of molecules in
the Supernatural database is constrained by H/C ratios between
0.5 and 2.5 and O/C ratios between 0 and 0.5. There is a
striking resemblance between this area and the hotspot region
of H/C vs. O/C ratios linked to consensus (or shared) features
between ionization modes and between DOM sample groups
(Figures S7, S8). As such, we have higher confidence in molecular
formula annotations for DOM features that appear in these Van
Krevelen regions. Many masses resulted in multiple possible
molecular formulas within our mass tolerance constraints, and
our analysis displays only the best match (highest ranked
consensus formula for various adducts). Therefore, the elemental
ratio information provided by our high confidence region is
more appropriate for describing a statistically significant global
sample composition. However, such an approach may not
be suitable for confident annotation of particular ion species.
Furthermore, post-production modification of metabolites in
seawater will likely drive some H/C and O/C ratios away
from those predicted by a metabolite database (e.g., loss
of unsaturation, photo-oxidation; Arakawa et al., 2017), and
so, while the comparison with the Supernatural database is
useful for constraining our dataset, we cannot exclude the

remaining molecular formulas without further scrutiny of the
data.

Tandem Mass Spectrometry and Spectral
Networking
Statistical comparison to known compounds from large scale
libraries can help to increase the confidence of molecular formula
assignments. The frequency of individual molecular formulas
in the supernatural database provides an empirical basis to
demonstrate that manymolecules often share the samemolecular
formula, but not the same chemical structures. The frequency of
molecular formulas in this database ranges from many unique
to several 100 redundant formulas, with an average of 5.5
structures per molecular formula. Chromatographic retention
times (e.g., Figures S4, S5) could be used to differentiate between
individual molecules with identical formulas. However, absolute
and relative retention times often vary between studies due to
differences in LC gradients, HPLC column type, and instrument
conditions. Thus, relying on MS1 features, even when molecular
formula assignments are robust, is not a suitable characteristic for
compound library searches, unless the standardized methods are
used for library generation and sample analysis.

For this reason, we examined the efficacy of tandem MS in
data driven acquisition (DDA) mode, to provide molecular level
information for DOM in an untargeted context. Unlike MS1
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feature detection and molecular formula assignment, MS/MS
spectra do not depend on chromatographic reproducibility and
allow comparison between different instrument platforms if
the same fragmentation methods and similar fragmentation
energies are used. Tandem mass spectra matching to library
entries are considered level two annotations according to the
2007 metabolomics standards initiative (Sumner et al., 2007)
and probably the most effective approach for high-throughput
annotation of small molecules in complex samples. In our
workflow, we acquired MS/MS spectra in top 5 DDA mode,
in which up to five precursor ions are submitted for MS/MS
after each MS1 survey scan. With a medium resolution (Rm/z 200

= 17.000), the iterative scan cycles result in several thousand
spectra per sample. To reduce redundancy and computation
time we clustered identical spectra to consensus spectra (Frank
et al., 2008) and searched them against several spectral libraries,
including GNPS (Wang et al., 2016), MassBank (Horai et al.,
2010), ReSpect (Sawada et al., 2012) HMDB (Forsythe and
Wishart, 2009), and NIST 2014 (Stein, 2014). Hereby a strict
precursor mass tolerance of m/z 0.01 was used first, followed by
a maximum allowed precursor delta mass of up to m/z 100, with
the intention to annotate putative analogs. Besides dereplication
of known compounds from the libraries, an additional multiple
spectral alignment of all clustered spectra was performed.
Thereby, all spectra are compared to each other using cosine
similarity scoring (Stein and Scott, 1994) and spectrum-spectrum
matches, with a cosine score higher or equal to 0.7 are connected
as “nodes” in a network (Watrous et al., 2012; Wang et al., 2016).
If nodes yielded a database hit during a spectrum library search,
they can be labeled as specific compounds and nodes around
the “hit” can be assumed to have similar chemical scaffolds. If
the delta masses, fragmentation patterns and chemical formulas
of the database hit are carefully interpreted, putative structures
of previously unknown spectra can be proposed with a certain
confidence.

The spectral network of all samples acquired is shown in
Figure 4A. Nodes that contained MS/MS spectra from blanks
were subtracted from all samples. Depending on the origin of
clustered spectra, nodes were labeled gray (100mL, 0.2 g PPL),
orange (500mL, 0.2 g PPL), green (1,000mL, 0.2 g PPL), and
red (1,000mL, 1 g PPL) if spectra came exclusively from this
group. If a node contained spectra from more than one group,
it was considered as shared feature and was labeled blue. The
size of the nodes was increased proportionally to the number of
samples which contained a particular MS/MS spectrum. Nodes
with a library hit were shown with a diamond shape with a
thick border if the precursor matched within 10 ppm, and as a
thin line for hits observed with higher precursor delta masses
(from analog search). Overall, we observed 6,272 nodes. Of these
only 32 had an associated positive library hit. We also evaluated
MS/MS information in the context of extraction volume and
total injected carbon, by examining the total number of nodes
contributing from each concentration/extraction group, as well
as by tallying the number of unique nodes per group (Figure S6
as well as in a Table S2). The highest number of both total nodes
and unique nodes were identified in the lowest concentration
sample group (0.19 µmol injected C). The remaining samples

had a smaller number of nodes and unique nodes, but the 1,000
mL/1 g PPL group had an elevated number of both types of nodes
when compared with the other two concentration groups. This
trend with respect to injection concentration was different from
that observed for feature number and unique feature numbers as
determined fromMS1 (Figure S6, right). In that case, the number
of both node types increased with injection concentration.
In order to generate a metric for assessing the quality of
the data resulting from differences in injection concentration,
we investigated spectral annotation rates (Figure S6). Spectral
annotation rates were low across all groups but the lowest
annotation rate was found for the lowest injection concentration
(100mL extraction volume). Thus, while the number of nodes
(total and unique) was highest for the lowest concentration
injection, these nodes were annotated with lower efficiency. In
addition, this sample group also showed a high number of self-
looped nodes (i.e., many spectra were not connected to other
nodes). The highest concentration injection groups (1.48 and
1.86 µmol injected C) had fewer self-looped nodes. Together,
these observations suggest that the quality of MS/MS spectra
generated from the lowest concentration group was so poor
(low S/N) that even identical spectra could not be confidently
identified. Thus, we propose the use of spectral annotation rate
and number of unique nodes (Figure S6, left) as a quality control
check, to determine whether certain samples in a dataset are likely
to be poorly represented because they were injected at too low of
a concentration.

The overall library annotation rate of the dataset was at 0.5%,
and for the two 1,000mL (1.48 and 1.86 µmol injected C) groups
around 1%. The low annotation efficiency is likely a result of a
combination of factors, all of which need to be addressed in future
work.

One important reason for the low annotation efficiency is
linked to the fact that more than one molecule is isolated prior to
fragmentation in the collision cell, which results often in chimeric
spectra (i.e., DOM MS/MS spectra are often a combination of
fragments from multiple molecules with very similar masses
that could not be separated by the unit resolution of the
quadrupole, and naturally, yield lower matching scores to library
MS/MS spectra). The general field of metabolomics has been
grappling with the issue of chimeric spectra. Besides technical
improvements in chromatographic or gas phase precursor
separation (multi-dimensional chromatography or ion mobility),
repetitive or large scale analysis of different samples could help
to bypass this problem. Here, a possible solution could be
an alignment of numerous chimeric spectra and searching for
consensus fragments. However, the bioinformatic tools for the
detection (Lawson et al., 2017) and separation of chimeric spectra
are still in development. In addition, low annotation rates also
result from the low number of available library spectra that match
compounds in DOM. Nevertheless, the reported annotation rate
is in a similar range as other non-targeted metabolomic datasets
(Bouslimani et al., 2015; Petras et al., 2016; Floros et al., 2017) that
are typically less complex than DOM.

This still poses a universal barrier to untargeted MS/MS
analyses. This problem is independent from the data acquisition
parameters and can be solved by expanding the chemical
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FIGURE 4 | Molecular Network. Global spectral network from all sample groups is shown in (A). Nodes from blanks were subtracted. According to origin, nodes were

labeled gray (100mL, 0.2 g PPL, 0.19 µmol injected C), orange (500mL, 0.2 g PPL, 0.83 µmol injected C), green (1,000mL, 0.2 g PPL, 1.46 µmol injected C) and red

(1,000mL, 1 g PPL, 1.86 µmol injected C) if spectra came exclusively from this group. If a node was shared between two or more groups it was labeled blue. The size

of the nodes represents the sample frequency, i.e. the number of samples which contained a particular MS/MS spectrum. Nodes with a library hit are displayed in

diamond shape with a thick boarder line if the precursor matched within 10 ppm and with a thin line for hits with higher delta masses (from analog search). In (B)

zoomed subnetworks of selected molecular families are shown.

space in spectral libraries. Community driven databases such
as GNPS (Wang et al., 2016) provide a good platform for
researchers to contribute to the growth of spectral library
knowledge, much like how nucleotide or protein databases were
established in recent years (Bateman et al., 2004; Sayers et al.,
2012).

Besides looking for perfect matches, spectral libraries were
searched for spectral similarity/analog hits (the same way
sequence libraries are used to search for homolog hits with
BLAST Altschul et al., 1997). The analog search was set to
allow precursors differences of up to m/z 100. Taking the
resulting putative analogs into account, we could increase the
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overall annotation rate to 13.7% and to more than 20% for
the two highest injection concentration groups. As a caution,
we know that removing the stringent precursor mass filter can
increase the rate of false positive hits. Therefore, analog hits
should always be considered as putative annotations requiring
subsequent statistical or ideally, manual validation. Assuming
that the spectral networking approach connects similar spectra
to subnetworks, then true library hits in a network should be
surrounded by analog hits.

Following this logic, we could observe a subnetwork of amino-
sugars (Figure 4B) containing one node with a library hit to N-
acetyl-glucosamine, which is surrounded by several other analog
hits to amino sugars or glycans. The inclusion of the library
hit increases our confidence in the analog annotations in this
subnetwork of an amino-sugar molecular family. The finding is
in line with evidence from other studies showing that amino
sugars are highly abundant in marine DOM (Ogawa et al., 2001;
Aluwihare et al., 2005; Davis et al., 2009). In other subnetworks
acetamido-oxohexanoic acid could be identified and a node
connected to it was annotated as well as acetamido-oxohexanoic
acid, but with a delta mass of m/z 48.036. Furthermore, we
could identify subnetworks with several hits to themarine natural
product B27A19 from a marine sponge library, and another
molecular family of acyl-carnitines, both of which contained
analog hits to the same compounds in the subnetworks. All
spectrum library mirror plots of the above mentioned database
hits are shown Figures S9–S11.

To further evaluate the effect of concentration on spectral
quality, we examined the distribution of MS/MS library matches
across the different injection concentrations. Acetamido-
oxohexanoic acid, for example, was found in at least 4 of 5
replicates across all samples except for the lowest concentration
injections. N-Acetyl-glucosamine and B27A19 were present
in the three highest concentration samples as well, but only
occurred in some of the replicates. The underlying reason could

be the automatic triggering of MS/MS acquisition through data
dependent acquisition (DDA). If a precursor ion is not among
the most abundant ions in a survey scan then it will not be
selected for subsequent MS/MS. By using a dynamic exclusion
list for precursors that had already been submitted, we assumed
that DDA would consider most of the ions, depending on the
complexity of a given time point in the LC run, and the scan
speed of the mass spectrometer. Nevertheless, for medium and
low abundant compounds, the machine might not have had
enough time to acquire MS/MS scans, and for some compounds,
small shifts in chromatographic profiles may have changed the
order of MS/MS selection, which triggered MS/MS acquisition in
some but not all samples. Repeated measurements can alleviate
this bias and increase annotation rates.

To test the initial assumption of intensity dependency, we
plotted the sample frequency (number of samples contributing
to one consensus spectrum) of all network nodes, shown in
Figure 5. Only around 110 consensus spectra where found in
all four groups (20 samples, grouped into five replicates of
four different injection concentrations). The precursor intensity,
plotted on the second y-axis, shows that these ions are among
the most abundant compounds in DOM extracts (Figure 5).
Looking at some of the chemical IDs, we observed that
the fatty acid glycerin ester mono-laurine and the terpene
dihydroactinidiolide, which shares structural similarity with the
head group of beta-carotene, were present in all samples. In this
context, it is very interesting that oxidation products of beta-
carotene have been recently described as abundant in refractory
DOM (Arakawa et al., 2017).

If we inspect the nodes that occur at lower frequencies, we can
see that the average precursor intensity decreases accordingly,
and that only around 10% of the nodes are shared by 10 or
more samples (mainly from the 1,000mL groups with 1.46 and
1.86 µmol injected C). Of the low abundance compounds, more
than 50% of all nodes are only found in one sample. Pantothenic

FIGURE 5 | Network Node Frequency Plot. Frequency of MS/MS features in all 20 samples. Frequency is hereby defined as the number of samples contributing to

one consensus spectrum. Each dot represents one network node. Library annotations of selected nodes are shown above. The order of nodes was sorted first by

frequency and in a second level by precursor intensity which is drawn on the second y-axis. The average intensity of frequency bins is shown as a solid black line.
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acid, a cofactor involved in fatty acid and secondary metabolite
biosynthesis, provides an example of such a compound. Next
to the above described problem of precursor selection, chimeric
spectra, as noted previously, may be another reason for the high
number of unique nodes. Chimeric spectra can result in an
artificial diversification of MS/MS patters, which then appear as
unique nodes. The repetitive analysis of the same sample can
help to bypass this problem, for example through an alignment
of chimeric spectra and search of consensus fragments. However,
the bioinformatic tools for the detection (Lawson et al., 2017)
and separation of chimeric spectra are still being developed
in our data analysis workflow. Another missing piece of the
software aided data analysis is the connection ofMS1 andMS/MS
features. Due to lower sensitivity of MS/MS and the overall
higher numbers of MS1 features, our results indicate that for
a comprehensive analysis of DOM, we need to merge MS1
feature tables and the networking database dereplication output.
Currently, this is typically done either manually or with simple
search functions in R or excel. The matching often results in
difficulties, especially if precursor masses differ slightly from
averaged MS1 masses from XICs or if the MS/MS event was
triggered too far off the apex of the chromatographic peak. A
more streamlined approach for large scale data analysis would
likely involve implementing an MS/MS scan number assignment
to XICs during MS1 feature extraction. Once established, this
link could be used downstream during data analysis to link
network nodes back to MS1 features and to reduce redundancy
in the network, providing the most comprehensive molecular
characterization of DOM. Most recently, such an approach has
been described for MZmine2 (Olivon et al., 2017), but the
software implementation and usage of the workflow is not
yet straightforward. Recently, we tested a more user-friendly
graphical software module directly implemented in MZmine2,
which is now available within the latest version (MZmine2.28).
We caution that the evaluation of this tool is still ongoing.

CONCLUSION

Our results show the successful implementation and assessment
of non-targeted LC-MS/MS workflow for the analysis of DOM.
We tested different sample volumes and sample volume to
cartridge bed mass ratios. Both MS1 and MS/MS results
indicate that the 1,000mL sample groups with higher total
carbon concentration, showed the most features and most
database annotations. Given the general low variability of DOC
concentrations in sea water (40–80 µmol L−1; Hansell, 2013),
we suggest that 1,000mL is an adequate and practical sample
volume covering this DOC range. The 1 g cartridges showed
slightly better results on MS1 level, but depending on the
specific project may not warrant the considerably higher price.
Furthermore, our results indicate that spectral annotation rate
and unique node number are good predictors of when it is
appropriate to compare compositional features in two samples.
We recommend that these parameters are examined when
comparing samples of significantly different concentrations.
Concentrating samples with poor annotation rates and rerunning

the series can alleviate this concern. For the global chemical
characterization of DOM, our results show that through an
alignment of chromatographic peak profiles and orthogonal
ionization modes we could enhance the confidence in molecular
formula annotations and reduce redundancy of different ion
adducts. Through comparison to ∼230,000 unique chemical
structures from a natural product database we showed that
the chemical space of our experimentally obtained molecular
formulas falls in a similar range as those of known compounds.
With the implementation of MS/MS networking and library
dereplication specific structural annotations to observed ion
species can be added. This allows for a more precise level
of molecular annotation of DOM that will contribute toward
advanced investigation of chemo-ecological relationships within
marine ecosystems. We furthermore anticipate that, if data
acquisition and data sharing is established and encouraged by
funding agencies, the workflow presented here could be applied
within multiple research groups in order to enable a global
comparison of datasets at planetary scales.

EXPERIMENTAL PROCEDURE

Sample Preparation and Solid Phase
Extraction
Surface water from the Scripps Pier (La Jolla, USA) was collected
with bucket and transported in a 20 L PTFE-carboy on February
2nd 2017 (10:05:39 (PST): temperature 14.58◦C, chlorophyll a
0.47 µg/L; salinity 33.18 g/kg). The seawater sample was filtered
through a membrane filter (0.2µm pore size; Acropak, Pall) and
adjusted to pH 2 with hydrochloric acid (38% p.a., LCMS trace
metal grade, J.T. Baker, USA). The well mixed filtrate was poured
into combusted glass bottles. Five replicates each of 100, 500, and
1,000mL were extracted through 0.2 g bed mass PPL cartridges
as well as five replicates of 1,000mL through 1 g PPL cartridges.

Before use, the cartridges were rinsed and activated with one
cartridge volume of methanol (LC-MS grade, Fisher Chemical,
Belgium) and refilled with methanol for conditioning overnight
(see Figure S1). Afterwards, the cartridges were rinsed with two
cartridge volumes of water (LCMS grade, J.T. Baker, USA), two
cartridge volumes of methanol and two cartridge volumes of
water at pH 2 (acidified with HCl). For extraction, the filtered and
acidified seawater [100ml (0.2 g), 500ml (0.2 g), 1,000ml (0.2 g),
1,000ml (1.0 g)] was gravity passed through each PPL cartridge
with a flow rate below 5ml min−1. Subsequently, remaining
salt was removed with three cartridge volumes of pH 2 water.
After drying with inert pure nitrogen gas, DOM was eluted
with 3ml (for 0.2 g PPL) and 6ml (for 1.0 g PPL) of methanol
into combusted glass vials. After taking an aliquot of extract
for determining extraction efficiencies by direct concentration
measurements (see below) the extracts were dried down with
a vacuum centrifuge (Centrivap, labconco) and transferred in
an amber glass GC vial. The extract was dried down again
and stored at −20◦C until later dissolved in 100 µL methanol
for LC-MS/MS analysis. All glassware used during sampling
and sample treatment was pre-combusted for 4 h at 450◦C. All
other materials were cleaned with acidified ultrapure water and
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rinsed with sample water before use. For verification of possible
contamination, procedural blanks for each volume and cartridge
size were performed by repeating the sample preparation with
water (LC-MS grade, J.T. Baker, USA).

Dissolved Organic Carbon (DOC) and
Extraction Efficiencies
DOC concentrations were analyzed by high-temperature
catalytic combustion using a TOC-VCPH/CPN Total Organic
Carbon Analyzer equipped with an ASI-V autosampler
(Shimadzu, Japan). Standard solutions ranging from 10 to
100 µmol C L−1 were used for calibration and Deep Atlantic
Seawater reference material (DSR, D. A. Hansell, University of
Miami, Florida, USA) as well as Deep Pacific Seawater (CCE
P1604) and Scripps PierWater reference material were measured
to control for instrumental precision (1 µmol L−1) and accuracy
(1.5 µmol L−1). Aliquots of the acidified filtrate (pre-extraction)
were sampled for quantification of DOC. To calculate DOC
concentrations of extracts, 250 µl of the methanol extracts were
isolated based on weight and evaporated overnight at 50◦C
before re-dissolving in 15ml ultrapure water at pH 2 for DOC
analysis. Additionally, the last 40mL of permeate from each SPE
extraction was taken to determine the DOC concentration of the
PPL flow through (post-extraction). Extraction efficiency was
then calculated by subtracting this permeate DOC concentration
from the pre-filtered DOC concentration in the seawater
entering the SPE column.

Liquid Chromatography Tandem Mass
Spectrometry (LC-MS/MS)
DOM samples were re-dissolved in 100 µL methanol and 1%
formic acid of which 10 µL were injected into a ultra-high
performance liquid chromatography (UPLC) system coupled
to a Q-Exactive orbitrap mass spectrometer (Thermo Fisher
Scientific, Bremen, Germany) in three independent runs, first in
high resolution positive mode, then in high resolution positive
DDA MS/MS mode and finally in UHR negative mode. For the
chromatographic separation, a C18 core-shell column (Kinetex,
100 × 2mm, 1.8 um particle size, 100A pore size, Phenomenex,
Torrance, USA) with a flowrate of 0.5 mL/min (Solvent A: H2O
+ 0.1% formic acid (FA), Solvent B: Acetonitrile (ACN) + 0.1%
FA) was used. After injection, the samples were eluted during
a linear gradient from 0 to 0.5min, 5% B, 0.5 to 8min 5 to
50% B, 8 to 10min 50 to 99% B, followed by a 2min washout
phase at 99% B and a 3min re-equilibration phase at 5% B. For
positive mode measurements, the electrospray ionization (ESI)
parameters were set to 52 L/min sheath gas flow, 14 L/min
auxiliary gas flow, 0 L/min sweep gas flow and 400◦C auxiliary
gas temperature. The spray voltage was set to 3.5 kV and the
inlet capillary to 320◦C. 50V S-lens level was applied. MS scan
range was set to 150–1,500 m/z with a resolution at m/z 200
(Rm/z 200) of 140,000 with one micro-scan in positive mode. The
maximum ion injection time was set to 100ms with automated
gain control (AGC) of 1.0E6. MS/MS spectra were recorded
in data dependent acquisition (DDA) mode. Both MS1 survey
scans (150–1,500 m/z) and up to 5 MS/MS scans of the most
abundant ions per duty cycle were measured with Rm/z 200 of
17,500 with one micro-scan in positive mode. The maximum

ion injection time was set to 100ms with automated gain control
(AGC) targets set to 1.0E6 for survey scans and 3.0E5 for MS/MS
with minimum 10% C-trap filling. MS/MS precursor selection
windows were set to m/z 1. Normalized collision energy was
set to a stepwise increase from 20 to 30 to 40% with z = 1 as
default charge state. MS/MS experiments were triggered at the
apex of peaks within 2–15 s from their first occurrence. Dynamic
exclusion was set to 5 s. Ions with unassigned charge states were
excluded from DDA as well as isotope peaks. For negative mode
measurements, the electrospray ionization (ESI) parameters were
identical to the positive mode measurements besides the polarity
switching and an adjusted spray voltage. MS scan range was also
set to 150–1,500 m/z with R m/z 200 of 140,000, one micro-scan
and maximum ion injection time of 100ms with an AGC target
of 1.0E6.

Raw Data Processing
Thermo.raw datasets were converted to.mzXML in centroid
mode using MSConvert (Chambers et al., 2012). LC-MS/MS.raw
and.mzXML data can be found on the Mass spectrometry
Interactive Virtual Environment (http://massive.ucsd.edu/) with
the accession number MSV000080562.

MS1 Feature Extraction
As the first step of data analysis MS1 feature extraction
was performed with MZmine2 (Pluskal et al., 2010). For
both positive and negative mode data, mass detection was
performed with a signal threshold of 3.0e4 and 0.6 s minimum
peak width. Extracted ion chromatograms were built with a
minimum peak height of 9.0e4 and a relative mass tolerance
of 5 ppm. Chromatographic deconvolution was performed with
the baseline cutoff algorithm with a baseline level of 3.0e4
and a minimum peak height of 9.0e4. The maximum peak
length was set to 2min. For isotope peak grouping, mass
and retention time tolerances were set to 5 ppm and 0.1min
respectively. For alignment of extracted ion chromatograms
(XICs) between samples, the same mass and retention time
tolerances as above were used. After alignment, only XIC which
contained at least 2 isotope peaks and which occurred at least
4 times out of 5 replicates were further considered. The aligned
peak list was further filtered with a duplicate peak filter in
which duplicate XIC within 5 ppm mass windows and 0.1min
retention time windows. All peak areas of XICs as well as
binary information of XIC (present/not present) can be found in
the Data Sheet 2, positive-mode, negative-mode and consensus
XICs.

Molecular Formula Calculation and
Matching of Orthogonal Ionization Modes
Molecular formulas of MS1 features (XIC) <500 m/z were
calculated with an in-house R script applying the Rdisop
Bioconductor package (https://bioconductor.org/packages/
release/bioc/html/Rdisop.html), implementing the method
developed by (Böcker et al., 2009). The generated formulas were
filtered by the following rules: N rule, O/C ratio ≤ 1, H/C ratio
≤ 4 and >0, element counts: C ≤ 100, H ≤ 200, O ≤ 80, N
≤ 10, S ≤ 2 modified from (Cortés-Francisco et al., 2014) and
our inspection of ∼233.000 molecular formulas obtained from
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the supernatural structure database (Banerjee et al., 2015), and
maximal mass error of 5 ppm. Resulting molecular formulas
were scored by the method described by (Böcker et al., 2009)
and the top1 hit was used for downstream statistical analysis.
The code to perform the above formula calculations and
filtering is available as a jupyter notebook at https://github.com/
DorresteinLaboratory/adductMatchAndFormPrediction.

Following the filtering process presented above, molecular
formulas were subsequently filtered by presence of matching
ions detected in both positive and negative modes. For that, the
most common ESI ion species (Huang et al., 1999) ([M+H]+,
[M+Na]+ for positive mode and [M-H]+ and [M+Cl]− for
negative mode) were searched in each ionization mode, matched,
and tagged in the data. Calculated molecular formulas can be
found in the Data Sheet 2.

Spectral Networking
MS/MS spectra were analyzed with GNPS (Wang et al., 2016).
Therefore, the data was filtered by removing all MS/MS peaks
within a 17 Da window of the precursor m/z and MS/MS spectra
were filtered by choosing only the top 6 peaks in 50 Da windows.
The data was then clustered with MS-Cluster (Frank et al.,
2008), with a precursor mass tolerance of 0.01 Da and a MS/MS
fragment ion tolerance of 0.01 Da. A spectral network was then
created with a minimum spectral similarity of cosine 0.7 and
more than 4 matched peaks. Only the top 10 edges connecting
one node were kept in the network. Consensus spectra were
searched against the GNPS spectral library as well as Massbank,
ReSpect,HMDB, andNIST14 (Forsythe andWishart, 2009; Horai
et al., 2010; Sawada et al., 2012; Stein, 2014; Wang et al., 2016)
with a precursor mass tolerance of 0.01 Da and a MS/MS
fragment ion tolerance of 0.01 Da as well as in analog search
mode with as maximum precursor delta mass of m/z 100. Library
hits discussed in this article were inspected manually and mirror
plots of spectrum library matches are shown in the Supplemental
Information. Finally, spectral networks were the visualized in
Cytoscape 3.4 (Shannon et al., 2003).

Data and Software Code Accessibility
All LC-MS/MS data can be found on the Mass spectrometry
Interactive Virtual Environment (MassIVE) at https://massive.
ucsd.edu/ with the accession number: MSV000080562

Molecular Networking Data and all results of the Spectra
Library Comparison can be found at the Global Natural Product
Social Molecular Networking (GNPS) website with the links:

http://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=
e89fe14eddbb43b5baa2b3d65c257661,

http://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=
81b58b4ec67145b490cb0490f39165aa,

The code to perform ion species matching and molecular
formula calculation is available at:

https://github.com/DorresteinLaboratory/
adductMatchAndFormPrediction.
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Hawai‘i at Mānoa and publication UNIHI-SEAGRANT-JC-16-
12 of the University of Hawai‘i Sea Grant College Program.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fmars.
2017.00405/full#supplementary-material

REFERENCES

Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W., et al.

(1997). Gapped BLAST and PSI-BLAST: a new generation of protein database

search programs.Nucleic Acids Res. 25, 3389–3402. doi: 10.1093/nar/25.17.3389

Aluwihare, L. I., Repeta, D. J., Pantoja, S., and Johnson, C. G. (2005). Two

chemically distinct pools of organic nitrogen accumulate in the ocean. Science

308, 1007–1010. doi: 10.1126/science.1108925

Amin, S. A., Hmelo, L. R., van Tol, H., Durham, B., Carlson, L. T., Heal, K. R., et al.

(2015). Interaction and signalling between a cosmopolitan phytoplankton and

associated bacteria. Nature 522, 98. doi: 10.1038/nature14488

Anderson, M. J., and Willis, T. J. (2003). Canonical analysis of principal

coordinates: a useful method of constrained ordination for ecology. Ecology 84,

511–525. doi: 10.1890/0012-9658(2003)084[0511:CAOPCA]2.0.CO;2

Arakawa, N., Aluwihare, L. I., Simpson, A. J., Soong, R., Stephens, B. M.,

and Lane-Coplen, D. (2017). Carotenoids are the likely precursor of a

Frontiers in Marine Science | www.frontiersin.org 12 December 2017 | Volume 4 | Article 405

https://github.com/DorresteinLaboratory/adductMatchAndFormPrediction
https://github.com/DorresteinLaboratory/adductMatchAndFormPrediction
https://massive.ucsd.edu/
https://massive.ucsd.edu/
http://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=e89fe14eddbb43b5baa2b3d65c257661
http://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=e89fe14eddbb43b5baa2b3d65c257661
http://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=81b58b4ec67145b490cb0490f39165aa
http://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=81b58b4ec67145b490cb0490f39165aa
https://github.com/DorresteinLaboratory/adductMatchAndFormPrediction
https://github.com/DorresteinLaboratory/adductMatchAndFormPrediction
https://www.frontiersin.org/articles/10.3389/fmars.2017.00405/full#supplementary-material
https://doi.org/10.1093/nar/25.17.3389
https://doi.org/10.1126/science.1108925
https://doi.org/10.1038/nature14488
https://doi.org/10.1890/0012-9658(2003)084[0511:CAOPCA]2.0.CO;2
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


Petras et al. LC-MS/MS Analysis of DOM

significant fraction of marine dissolved organic matter. Sci. Adv. 3:e1602976.

doi: 10.1126/sciadv.1602976

Azam, F., and Malfatti, F. (2007). Microbial structuring of marine ecosystems,

Nature reviews.Microbiology 5, 782. doi: 10.1038/nrmicro1747

Banerjee, P., Erehman, J., Gohlke, B. O., Wilhelm, T., Preissner, R., and Dunkel, M.

(2015). Super Natural II—a database of natural products. Nucleic Acids Res. 43,

D935–D939. doi: 10.1093/nar/gku886

Bateman, A., Coin, L., Durbin, R., Finn, R. D., Hollich, V., Griffiths-Jones, S., et al.

(2004). The Pfam protein families database. Nucleic Acids Res. 32, D138–D141.

doi: 10.1093/nar/gkh121

Benner, R., and Amon, R. M. (2015). The size-reactivity continuum of

major bioelements in the ocean. Ann. Rev. Mar. Sci. 7, 185–205.

doi: 10.1146/annurev-marine-010213-135126

Böcker, S. (2017). Searching molecular structure databases using tandem

MS data: are we there yet? Curr. Opin. Chem. Biol. 36, 1–6.

doi: 10.1016/j.cbpa.2016.12.010

Böcker, S., Letzel, M. C., Lipták, Z., and Pervukhin, A. (2009). SIRIUS:

decomposing isotope patterns for metabolite identification. Bioinformatics 25,

218–224. doi: 10.1093/bioinformatics/btn603

Bouslimani, A., Porto, C., Rath, C. M., Wang, M., Guo, Y., Gonzalez, A., et al.

(2015). Molecular cartography of the human skin surface in 3D. Proc. Natl.

Acad. Sci. U.S.A. 112, E2120–E2129. doi: 10.1073/pnas.1424409112

Breiman, L. (2001). Random Forests, Machine Learning 45, 5–32.

doi: 10.1023/A:1010933404324

Chambers, M. C., Maclean, B., Burke, R., Amodei, D., Ruderman, D. L., Neumann,

S., et al. (2012). A cross-platform toolkit for mass spectrometry and proteomics.

Nat. Biotechnol. 30, 918–920. doi: 10.1038/nbt.2377

Cortés-Francisco, N., Harir, M., Lucio, M., Ribera, G., Martínez-Llad,ó, X., Rovira,

M., et al. (2014). High-field FT-ICR mass spectrometry and NMR spectroscopy

to characterize DOM removal through a nanofiltration pilot plant. Water Res.

67, 154–165. doi: 10.1016/j.watres.2014.08.046

D’Andrilli, J., Dittmar, T., Koch, B. P., Purcell, J. M., Marshall, A. G., and Cooper,

W. T. (2010). Comprehensive characterization of marine dissolved organic

matter by Fourier transform ion cyclotron resonance mass spectrometry with

electrospray and atmospheric pressure photoionization. Rapid Commun. Mass

Spectr. 24, 643–650. doi: 10.1002/rcm.4421

da Silva, R. R., Dorrestein, P. C., and Quinn, R. A. (2015). Illuminating

the dark matter in metabolomics. Proc. Natl. Acad. Sci. 112, 12549–12550.

doi: 10.1073/pnas.1516878112

Davis, J., Kaiser, K., and Benner, R. (2009). Amino acid and amino sugar yields

and compositions as indicators of dissolved organic matter diagenesis. Organ.

Geochem. 40, 343–352. doi: 10.1016/j.orggeochem.2008.12.003

Dittmar, T., and Kattner, G. (2003). Recalcitrant dissolved organic matter in the

ocean: major contribution of small amphiphilics. Mar. Chem. 82, 115–123.

doi: 10.1016/S0304-4203(03)00068-9

Dittmar, T., Koch, B., Hertkorn, N., and Kattner, G. (2008). A simple

and efficient method for the solid-phase extraction of dissolved organic

matter (SPE-DOM) from seawater, Limnol. Oceanogr. Methods 6, 230–235.

doi: 10.4319/lom.2008.6.230

Dittmar, T., and Paeng, J. (2009). A heat-induced molecular signature in marine

dissolved organic matter. Nat. Geosci. 2, 175. doi: 10.1038/ngeo440

Flerus, R., Lechtenfeld, O., Koch, B. P., McCallister, S., Schmitt-Kopplin,

P., Benner, R., et al. (2012). A molecular perspective on the ageing of

marine dissolved organic matter. Biogeosciences 9, 1935. doi: 10.5194/bg-9-19

35-2012

Floros, D. J., Petras, D., Kapono, C. A., Melnik, A. V., Ling, T. J., Knight, R.,

et al. (2017). Mass spectrometry based molecular 3D-cartography of plant

metabolites. Front. Plant Sci. 8:429. doi: 10.3389/fpls.2017.00429

Forsythe, I. J., and Wishart, D. S. (2009). Exploring human metabolites using the

human metabolome database. Curr. Protoc. Bioinformatics Chapter 14, Unit14

18. doi: 10.1002/0471250953.bi1408s25

Frank, A. M., Bandeira, N., Shen, Z., Tanner, S., Briggs, S. P., Smith, R. D., et al.

(2008). Clusteringmillions of tandemmass spectra. J. Proteome Res. 7, 113–122.

doi: 10.1021/pr070361e

Gika, H. G., Theodoridis, G. A., Plumb, R. S., and Wilson, I. D. (2014).

Current practice of liquid chromatography–mass spectrometry in

metabolomics and metabonomics. J. Pharm. Biomed. Anal. 87, 12–25.

doi: 10.1016/j.jpba.2013.06.032

Guo, L., Santschi, P. H., and Warnken, K. W. (1995). Dynamics of dissolved

organic carbon (DOC) in oceanic environments. Limnol. Oceanogr. 40,

1392–1403. doi: 10.4319/lo.1995.40.8.1392

Halewood, E. R., Carlson, C. A., Brzezinski, M. A., Reed, D. C., and Goodman,

J. (2012). Annual cycle of organic matter partitioning and its availability to

bacteria across the Santa Barbara Channel continental shelf. Aquatic Microbial

Ecol. 67, 189–209. doi: 10.3354/ame01586

Hansell, D. A. (2013). Recalcitrant dissolved organic carbon fractions. Ann. Rev.

Mar. Sci. 5, 421–445. doi: 10.1146/annurev-marine-120710-100757

Hartmann, A. C., Petras, D., Quinn, R. A., Protsyuk, I., Archer, F. I., Ransome,

E., et al. (2017). Meta-mass shift chemical profiling of metabolomes

from coral reefs. Proc. Natl. Acad. Sci. U.S.A. 114, 11685–11690.

doi: 10.1073/pnas.1710248114

Hawkes, J. A., Dittmar, T., Patriarca, C., Tranvik, L., and Bergquist, J. (2016).

Evaluation of the orbitrap mass spectrometer for the molecular fingerprinting

analysis of natural dissolved organic matter. Anal. Chem. 88, 7698–7704.

doi: 10.1021/acs.analchem.6b01624

Heal, K. R., Qin, W., Ribalet, F., Bertagnolli, A. D., Coyote-Maestas, W., Hmelo,

L. R., et al. (2017). Two distinct pools of B12 analogs reveal community

interdependencies in the ocean. Proc. Natl. Acad. Sci.U.S.A. 114, 364–369.

doi: 10.1073/pnas.1608462114

Hertkorn, N., Harir, M., Koch, B. P., Michalke, B., and Schmitt-Kopplin, P.

(2013). High-field NMR spectroscopy and FTICRmass spectrometry: powerful

discovery tools for the molecular level characterization of marine dissolved

organic matter. Biogeosciences 10, 1583–1624. doi: 10.5194/bg-10-1583-2013

Herzsprung, P., Hertkorn, N., von Tümpling, W., Harir, M., Friese, K., and

Schmitt-Kopplin, P. (2016). Molecular formula assignment for dissolved

organic matter (DOM) using high-field FT-ICR-MS: chemical perspective and

validation of sulphur-rich organic components (CHOS) in pit lake samples.

Anal. Bioanal. Chem. 408, 2461–2469. doi: 10.1007/s00216-016-9341-2

Hopkinson, C. S. Jr., and Vallino, J. J. (2005). Efficient export of carbon

to the deep ocean through dissolved organic matter. Nature 433, 142.

doi: 10.1038/nature03191

Horai, H., Arita, M., Kanaya, S., Nihei, Y., Ikeda, T., Suwa, K., et al. (2010).

MassBank: a public repository for sharing mass spectral data for life sciences. J.

Mass Spectr. 45, 703–714. doi: 10.1002/jms.1777

Huang, N., Siegel, M. M., Kruppa, G. H., and Laukien, F. H. (1999). Automation

of a Fourier transform ion cyclotron resonance mass spectrometer for

acquisition, analysis, and e-mailing of high-resolution exact-mass electrospray

ionization mass spectral data. J. Am. Soc. Mass Spectr. 10, 1166–1173.

doi: 10.1016/S1044-0305(99)00089-6

Johnson, W. M., Soule, M. C. K., and Kujawinski, E. B. (2016). Evidence for

quorum sensing and differential metabolite production by a marine bacterium

in response to DMSP. ISME J. 10, 2304. doi: 10.1038/ismej.2016.6

Karl, D., and Björkman, K. (2002). Dynamics of DOP, Biogeochemistry of Marine

Dissolved Organic Matter. Amsterdam: Elsevier. 249–366.

Kujawinski, E. B., Freitas, M. A., Zang, X., Hatcher, P. G., Green-Church, K.

B., and Jones, R. B. (2002). The application of electrospray ionization mass

spectrometry (ESI MS) to the structural characterization of natural organic

matter. Org. Geochem. 33, 171–180. doi: 10.1016/S0146-6380(01)00149-8

Kujawinski, E. B., Longnecker, K., Alexander, H., Dyhrman, S. T., Fiore, C.

L., Haley, S. T., et al. (2017). Phosphorus availability regulates intracellular

nucleotides in marine eukaryotic phytoplankton. Limnol. Oceanogr. Lett. 2,

119–129. doi: 10.1002/lol2.10043

Lawson, T. N.,Weber, R. J., Jones, M. R., Chetwynd, A. J., Rodriguez-Blanco, G., Di

Guida, R., et al. (2017). msPurity: automated evaluation of precursor ion purity

for mass spectrometry-based fragmentation in metabolomics. Anal. Chem. 89,

2432–2439. doi: 10.1021/acs.analchem.6b04358

Lechtenfeld, O. J., Koch, B. P., Geibert, W., Ludwichowski, K. U., and Kattner, G.

(2011). Inorganics in organics: quantification of organic phosphorus and sulfur

and trace element speciation in natural organic matter using HPLC-ICPMS.

Anal. Chem. 83, 8968–8974. doi: 10.1021/ac201765a

Letscher, R. T., and Moore, J. K. (2015). Preferential remineralization of dissolved

organic phosphorus and non-Redfield DOM dynamics in the global ocean:

impacts on marine productivity, nitrogen fixation, and carbon export. Global

Biogeochem. Cycles 29, 325–340. doi: 10.1002/2014GB004904

Liesenfeld, D. B., Habermann, N., Owen, R. W., Scalbert, A., and Ulrich,

C. M. (2013). Review of mass spectrometry–based metabolomics in

Frontiers in Marine Science | www.frontiersin.org 13 December 2017 | Volume 4 | Article 405

https://doi.org/10.1126/sciadv.1602976
https://doi.org/10.1038/nrmicro1747
https://doi.org/10.1093/nar/gku886
https://doi.org/10.1093/nar/gkh121
https://doi.org/10.1146/annurev-marine-010213-135126
https://doi.org/10.1016/j.cbpa.2016.12.010
https://doi.org/10.1093/bioinformatics/btn603
https://doi.org/10.1073/pnas.1424409112
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1038/nbt.2377
https://doi.org/10.1016/j.watres.2014.08.046
https://doi.org/10.1002/rcm.4421
https://doi.org/10.1073/pnas.1516878112
https://doi.org/10.1016/j.orggeochem.2008.12.003
https://doi.org/10.1016/S0304-4203(03)00068-9
https://doi.org/10.4319/lom.2008.6.230
https://doi.org/10.1038/ngeo440
https://doi.org/10.5194/bg-9-1935-2012
https://doi.org/10.3389/fpls.2017.00429
https://doi.org/10.1002/0471250953.bi1408s25
https://doi.org/10.1021/pr070361e
https://doi.org/10.1016/j.jpba.2013.06.032
https://doi.org/10.4319/lo.1995.40.8.1392
https://doi.org/10.3354/ame01586
https://doi.org/10.1146/annurev-marine-120710-100757
https://doi.org/10.1073/pnas.1710248114
https://doi.org/10.1021/acs.analchem.6b01624
https://doi.org/10.1073/pnas.1608462114
https://doi.org/10.5194/bg-10-1583-2013
https://doi.org/10.1007/s00216-016-9341-2
https://doi.org/10.1038/nature03191
https://doi.org/10.1002/jms.1777
https://doi.org/10.1016/S1044-0305(99)00089-6
https://doi.org/10.1038/ismej.2016.6
https://doi.org/10.1016/S0146-6380(01)00149-8
https://doi.org/10.1002/lol2.10043
https://doi.org/10.1021/acs.analchem.6b04358
https://doi.org/10.1021/ac201765a
https://doi.org/10.1002/2014GB004904
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


Petras et al. LC-MS/MS Analysis of DOM

cancer research. Cancer Epidemiol. Prev. Biomarkers 22, 2182–2201.

doi: 10.1158/1055-9965.EPI-13-0584

Longnecker, K., and Kujawinski, E. B. (2017). Mining mass spectrometry

data: using new computational tools to find novel organic compounds

in complex environmental mixtures. Organ. Geochem. 110, 92–99.

doi: 10.1016/j.orggeochem.2017.05.008

Lucas, J., Koester, I., Wichels, A., Niggemann, J., Dittmar, T., Callies, U.,

et al. (2016). Short-term dynamics of North Sea bacterioplankton-dissolved

organic matter coherence on molecular level. Front. Microbiol. 7:321.

doi: 10.3389/fmicb.2016.00321

Makarov, A., Denisov, E., and Lange, O. (2009). Performance evaluation of a

high-field Orbitrap mass analyzer. J. Am. Soc. Mass Spectr. 20, 1391–1396.

doi: 10.1016/j.jasms.2009.01.005

Moran, M. A., Kujawinski, E. B., Stubbins, A., Fatland, R., Aluwihare, L. I., Buchan,

A., et al. (2016). Deciphering ocean carbon in a changing world. Proc. Natl.

Acad. Sci. U.S.A. 113, 3143–3151. doi: 10.1073/pnas.1514645113

Ogawa, H., Amagai, Y., Koike, I., Kaiser, K., and Benner, R. (2001). Production

of refractory dissolved organic matter by bacteria. Science 292, 917–920.

doi: 10.1126/science.1057627

Olivon, F., Grelier, G., Roussi, F., Litaudon, M., and Touboul, D. (2017). MZmine 2

data-preprocessing to enhance Molecular Networking reliability. Anal. Chem.

89, 7836–7840. doi: 10.1021/acs.analchem.7b01563

Osterholz, H., Singer, G., Wemheuer, B., Daniel, R., Simon, M., Niggemann, J.,

et al. (2016). Deciphering associations between dissolved organic molecules

and bacterial communities in a pelagic marine system. ISME J. 10, 1717–1730.

doi: 10.1038/ismej.2015.231

Petras, D., Jarmusch, A. K., and Dorrestein, P. C. (2017). From single

cells to our planet - Recent advances in using mass spectrometry

for spatially resolved metabolomics. Curr. Opin. Chem. Biol. 36, 24–31.

doi: 10.1016/j.cbpa.2016.12.018

Petras, D., Nothias, L. F., Quinn, R. A., Alexandrov, T., Bandeira, N.,

Bouslimani, A., et al. (2016). Mass spectrometry-based visualization of

molecules associated with human habitats. Anal. Chem. 88, 10775–10784.

doi: 10.1021/acs.analchem.6b03456

Pluskal, T., Castillo, S., Villar-Briones, A., and Oresic, M. (2010). MZmine

2: modular framework for processing, visualizing, and analyzing mass

spectrometry-based molecular profile data. BMC Bioinform. 11:395.

doi: 10.1186/1471-2105-11-395

Quinn, R. A., Vermeij, M. J., Hartmann, A. C., d’Auriac, I. G., Benler, S.,

Haas, A., et al. (2016). Metabolomics of reef benthic interactions reveals

a bioactive lipid involved in coral defence. Proc. R. Soc. B 283, 20160469.

doi: 10.1098/rspb.2016.0469

Reemtsma, T., These, A., Linscheid, M., Leenheer, J., and Spitzy, A. (2008).

Molecular and structural characterization of dissolved organic matter from

the deep ocean by FTICR-MS, including hydrophilic nitrogenous organic

molecules. Environ. Sci. Technol. 42, 1430–1437. doi: 10.1021/es7021413

Repeta, D. J., Ferrón, S., Sosa, O. A., Johnson, C. G., Repeta, L. D., Acker, M.,

et al. (2016). Marine methane paradox explained by bacterial degradation of

dissolved organic matter. Nat. Geosci. 9, 884–887. doi: 10.1038/ngeo2837

Romano, S., Dittmar, T., Bondarev, V., Weber, R. J., Viant, M. R., and Schulz-Vogt,

H. N. (2014). Exo-metabolome of Pseudovibrio sp. FO-BEG1 analyzed by ultra-

high resolution mass spectrometry and the effect of phosphate limitation, PLoS

ONE 9:e96038. doi: 10.1371/journal.pone.0096038

Rubert, J., Zachariasova, M., and Hajslova, J. (2015). Advances in high-

resolution mass spectrometry based on metabolomics studies for food–a

review. Food Addit. Contam. A 32, 1685–1708. doi: 10.1080/19440049.2015.

1084539

Sawada, Y., Nakabayashi, R., Yamada, Y., Suzuki, M., Sato, M., Sakata, A., et al.

(2012). RIKEN tandem mass spectral database (ReSpect) for phytochemicals:

a plant-specific MS/MS-based data resource and database. Phytochemistry 82,

38–45. doi: 10.1016/j.phytochem.2012.07.007

Sayers, E. W., Barrett, T., Benson, D. A., Bolton, E., Bryant, S. H.,

Canese, K., et al. (2012). Database resources of the national center for

biotechnology information, Nucleic Acids Res. 40, D13–D25. doi: 10.1093/nar/

gkr1184

Scheltema, R. A., Hauschild, J. P., Lange, O., Hornburg, D., Denisov, E., Damoc,

E., et al. (2014). The Q Exactive HF, a Benchtop mass spectrometer with a pre-

filter, high-performance quadrupole and an ultra-high-field Orbitrap analyzer.

Mol. Cell. Proteom. 13, 3698–3708. doi: 10.1074/mcp.M114.043489

Scheubert, K., Hufsky, F., Petras, D., Wang, M., Nothias, L. F., Düehrkop, K., et al.

(2017). Significance estimation for large scale metabolomics annotations by

spectral matching. Nat. Commun. 8:1494. doi: 10.1038/s41467-017-01318-5

Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage,

D., et al. (2003). Cytoscape: a software environment for integrated

models of biomolecular interaction networks. Genome Res. 13, 2498–2504.

doi: 10.1101/gr.1239303

Siegenthaler, U., and Sarmiento, J. (1993). Atmospheric carbon dioxide and the

ocean, Nature 365, 119–125. doi: 10.1038/365119a0

Sipler, R., and Bronk, D. (2015). “Dynamics of dissolved organic nitrogen,” in

Biogeochemistry of Marine Dissolved OrganicMatter. 2nd Edn., eds D. A. Hansel

and C. A. Carlson (Amsterdam: Elsevier), 127–232.

Sogin, E. M., Putnam, H. M., Nelson, C. E., Anderson, P., and Gates, R. D. (2017).

Correspondence of coral holobiont metabolome with symbiotic bacteria,

archaea and Symbiodinium communities. Environ. Microbiol. Rep. 9, 310–315.

doi: 10.1111/1758-2229.12541

Stein, S. (2014). The NIST 14 Mass Spectral Library. Gaithersburg, MD: National

Institute of Standards and Technology.

Stein, S. E., and Scott, D. R. (1994). Optimization and testing of mass spectral

library search algorithms for compound identification. J. Am. Soc. Mass Spectr.

5, 859–866. doi: 10.1016/1044-0305(94)87009-8

Sumner, L. W., Amberg, A., Barrett, D., Beale, M. H., Beger, R., Daykin,

C. A., et al. (2007). Proposed minimum reporting standards for chemical

analysis Chemical Analysis Working Group (CAWG)Metabolomics Standards

Initiative (MSI).Metabolomics 3, 211–221. doi: 10.1007/s11306-007-0082-2

Viant, M. R., and Sommer, U. (2013). Mass spectrometry based environmental

metabolomics: a primer and review. Metabolomics 9, 144–158.

doi: 10.1007/s11306-012-0412-x

Vinaixa, M., Schymanski, E. L., Neumann, S., Navarro, M., Salek, R. M., and

Yanes, O. (2016). Mass spectral databases for LC/MS-and GC/MS-based

metabolomics: state of the field and future prospects. Trends Anal. Chem. 78,

23–35. doi: 10.1016/j.trac.2015.09.005

Wang, M., Carver, J. J., Phelan, V. V., Sanchez, L. M., Garg, N., Peng, Y., et al.

(2016). Sharing and community curation of mass spectrometry data with

Global Natural Products Social Molecular Networking. Nat. Biotechnol. 34,

828–837. doi: 10.1038/nbt.3597

Watrous, J., Roach, P., Alexandrov, T., Heath, B. S., Yang, J. Y., Kersten, R. D., et al.

(2012). Mass spectral molecular networking of living microbial colonies. Proc.

Natl. Acad. Sci. U.S.A. 109, E1743–E1752. doi: 10.1073/pnas.1203689109

Weber, R. J., Lawson, T. N., Salek, R. M., Ebbels, T. M., Glen, R. C., Goodacre,

R., et al. (2017). Computational tools and workflows in metabolomics: an

international survey highlights the opportunity for harmonisation through

Galaxy.Metabolomics 13, 12. doi: 10.1007/s11306-016-1147-x

Zark, M., Christoffers, J., and Dittmar, T. (2017). Molecular properties of

deep-sea dissolved organic matter are predictable by the central limit

theorem: evidence from tandem FT-ICR-MS. Mar. Chem. 191, 9–15.

doi: 10.1016/j.marchem.2017.02.005

Zhou, B., Xiao, J. F., Tuli, L., and Ressom, H. W. (2012). LC-MS-based

metabolomics.Mol. Biosyst. 8, 470–481. doi: 10.1039/C1MB05350G

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2017 Petras, Koester, Da Silva, Stephens, Haas, Nelson, Kelly, Aluwihare

and Dorrestein. This is an open-access article distributed under the terms of

the Creative Commons Attribution License (CC BY). The use, distribution or

reproduction in other forums is permitted, provided the original author(s) or licensor

are credited and that the original publication in this journal is cited, in accordance

with accepted academic practice. No use, distribution or reproduction is permitted

which does not comply with these terms.

Frontiers in Marine Science | www.frontiersin.org 14 December 2017 | Volume 4 | Article 405

https://doi.org/10.1158/1055-9965.EPI-13-0584
https://doi.org/10.1016/j.orggeochem.2017.05.008
https://doi.org/10.3389/fmicb.2016.00321
https://doi.org/10.1016/j.jasms.2009.01.005
https://doi.org/10.1073/pnas.1514645113
https://doi.org/10.1126/science.1057627
https://doi.org/10.1021/acs.analchem.7b01563
https://doi.org/10.1038/ismej.2015.231
https://doi.org/10.1016/j.cbpa.2016.12.018
https://doi.org/10.1021/acs.analchem.6b03456
https://doi.org/10.1186/1471-2105-11-395
https://doi.org/10.1098/rspb.2016.0469
https://doi.org/10.1021/es7021413
https://doi.org/10.1038/ngeo2837
https://doi.org/10.1371/journal.pone.0096038
https://doi.org/10.1080/19440049.2015.1084539
https://doi.org/10.1016/j.phytochem.2012.07.007
https://doi.org/10.1093/nar/gkr1184
https://doi.org/10.1074/mcp.M114.043489
https://doi.org/10.1038/s41467-017-01318-5
https://doi.org/10.1101/gr.1239303
https://doi.org/10.1038/365119a0
https://doi.org/10.1111/1758-2229.12541
https://doi.org/10.1016/1044-0305(94)87009-8
https://doi.org/10.1007/s11306-007-0082-2
https://doi.org/10.1007/s11306-012-0412-x
https://doi.org/10.1016/j.trac.2015.09.005
https://doi.org/10.1038/nbt.3597
https://doi.org/10.1073/pnas.1203689109
https://doi.org/10.1007/s11306-016-1147-x
https://doi.org/10.1016/j.marchem.2017.02.005
https://doi.org/10.1039/C1MB05350G
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles

	High-Resolution Liquid Chromatography Tandem Mass Spectrometry Enables Large Scale Molecular Characterization of Dissolved Organic Matter
	Introduction
	Experimental Concept
	Results and Discussion
	Extraction Efficiency
	Global Analysis of Total Ion Currents and Extracted Ion Chromatograms
	Molecular Formula Assignment
	Tandem Mass Spectrometry and Spectral Networking

	Conclusion
	Experimental Procedure
	Sample Preparation and Solid Phase Extraction
	Dissolved Organic Carbon (DOC) and Extraction Efficiencies
	Liquid Chromatography Tandem Mass Spectrometry (LC-MS/MS)
	Raw Data Processing
	MS1 Feature Extraction
	Molecular Formula Calculation and Matching of Orthogonal Ionization Modes
	Spectral Networking
	Data and Software Code Accessibility

	Author Contributions
	Acknowledgments
	Supplementary Material
	References


