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Over the past years, a large number of new approaches in the domain of ocean-color

have been developed, leading to a variety of innovative descriptors for phytoplankton

communities. One of these methods, named PHYSAT, currently allows for the qualitative

detection of five main phytoplankton groups from ocean-color measurements. Even

though PHYSAT products are widely used in various applications and projects, the

approach is limited by the fact it identifies only dominant phytoplankton groups. This

current limitation is due to the use of biomarker pigment ratios for establishing empirical

relationships between in-situ information and specific ocean-color radiance anomalies

in open ocean waters. However, theoretical explanations of PHYSAT suggests that

it could be possible to detect more than dominance cases but move more toward

phytoplanktonic assemblage detection. Thus, to evaluate the potential of PHYSAT for

the detection of phytoplankton assemblages, we took advantage of the Continuous

Plankton Recorder (CPR) survey, collected in both the English Channel and the North

Sea. The available CPR dataset contains information on diatom abundance in two large

areas of the North Sea for the period 1998-2010. Using this unique dataset, recurrent

diatom assemblages were retrieved based on classification of CPR samples. Six diatom

assemblages were identified in-situ, each having indicators taxa or species. Once this first

step was completed, the in-situ analysis was used to empirically associate the diatom

assemblages with specific PHYSAT spectral anomalies. This step was facilitated by the

use of previous classifications of regional radiance anomalies in terms of shape and

amplitude, coupled with phenological tools. Through a matchup exercise, three CPR

assemblages were associatedwith specific radiance anomalies. Themaps of detection of

these specific radiances anomalies are in close agreement with current in-situ ecological

knowledge.
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1. INTRODUCTION

Phytoplankton play a key-role in oceanic biogeochemical cycles
(Falkowski, 1994; Beaugrand, 2015). For example, by fixing
inorganic carbon through photosynthesis, phytoplankton act as
a carbon biological pump by exporting carbon to the deep ocean
(Kump et al., 2010). Moreover, phytoplankton is at the base
of the marine food web—transferring carbon and energy from
grazers to higher trophic levels. Phytoplankton species scatter
and absorb light differently according to their concentration,
pigments composition, size, morphology, intracellular structure,
cells arrangement, and associated dissolved organic matter
(Morel and Bricaud, 1981; Bricaud and Morel, 1986; Dubelaar
et al., 1987; Stramski and Kiefer, 1991; Siegel et al., 2005;
Clavano et al., 2007; Boss et al., 2009; Whitmire et al., 2010).
Optical properties can be studied from in-situ and remote-
sensing measurements, and are currently used in ocean-color
applications to investigate phytoplankton in surface waters.
Thus, chlorophyll-a pigment concentration (Chl-a hereafter),
considered as a proxy for phytoplankton biomass (e.g., Kirk,
1994), has now been estimated from space for more than 30 years
(O’Reilly et al., 1998). More recently, using particulate organic
carbon, or chlorophyll-Chromophoric Dissolved Organic Matter
(CDOM), remote-sensing products have been released (e.g.,
Stramski et al., 2008; Duforêt-Gaurier et al., 2010). These ocean-
color products provide medium-resolution and synoptic scale
data that are required to study the main characteristics of
phytoplankton distribution.

Beyond phytoplankton concentration estimation, an accurate

knowledge of phytoplankton community composition and

distribution is important to understand the diversity, structure

and functioning of marine food-web, and associated ecosystem
services (Nair et al., 2008; Sathyendranath et al., 2014).
Phytoplankton Functional Types (PFTs) are defined as
phytoplankton species with similar functions in terms of
geochemical roles and physiological traits (Hood et al., 2006).
Several PFT classifications have been proposed, depending on
scientific interest (Nair et al., 2008; Sathyendranath et al., 2014).
For example, cell size is considered as a first level approach to
define PFTs (Nair et al., 2008). These size classes are useful in
understanding biochemical functions such as nutrient uptake
efficiencies in relation to surface-area-to-volume-ratio (Platt
and Jassby, 1976). However, a size-based approach would not
be suitable when phytoplankton characterized by different
functions fall under the same size class. For example, dimethyl
sulphide (DMS) producers and calcifiers are often grouped in
the nanophytoplankton size class (Nair et al., 2008). Another
approach to define PFTs is to classify phytoplankton according
to their biogeochemical functions (calcifiers, silicifiers, nitrogen-
fixers, DMS producers) (Le Quéré et al., 2005). In the last decade,
ocean-color derived products have been developed to allow for
the detection of phytoplankton communities in surface waters
(Nair et al., 2008; Sathyendranath et al., 2014; Mouw et al., 2017).
Some remote-sensing methods are able to detect phytoplankton
size classes (e.g., Uitz et al., 2006; Mouw and Yoder, 2010;
Brewin et al., 2011; Devred et al., 2011; Bricaud et al., 2012; Li
et al., 2013 or particle size distribution, Kostadinov et al., 2009,

2010), giving a global distribution of phytoplankton size in the
ocean. In addition, several algorithms have been developed to
identify: (i) one specific PFT from space (e.g., Smyth et al., 2002;
Subramaniam et al., 2002; Sathyendranath et al., 2004) , and (ii)
several PFTs (e.g., Aiken et al., 2007; Alvain et al., 2008; Raitsos
et al., 2008; Bracher et al., 2009; Hirata et al., 2011; Sadeghi et al.,
2012). A review of the different PFTs detection methods, based
either on direct analysis of remote-sensing data or on empirical
and semi-empirical approaches, can be found in recent papers
(Nair et al., 2008; Brewin et al., 2011; Sathyendranath et al., 2014;
Bracher et al., 2015b; Mouw et al., 2017).

Among the available approaches, PHYSAT was developed
to detect phytoplankton groups on a global scale by using
radiance anomalies (Alvain et al., 2008). This method retrieves
the empirical labeling of specific ocean-color radiance anomalies
based on in-situ measurements. During its first implementation,
four phytoplankton groups were detected, when dominant, based
on biomarker in-situ pigment inventories (Alvain et al., 2005).
These four groups were detected in global oceanic waters,
from prior analysis of their biomarker pigments: diatoms,
nanoeucaryotes, Synechococcus-like, and Prochlorococcus. Even
though PHYSAT maps have been used in a large variety of
applications (e.g., D’Ovidio et al., 2010; De Monte et al.,
2013; Navarro et al., 2014; Thyssen et al., 2015), its limitation
could hold back future developments. In fact, to date, the
algorithm only detects dominant phytoplankton groups. This
limitation is due to the use of ratios on biomarker pigment
concentrations during the empirical calibration steps of the
PHYSAT algorithm, which do not provide information about
phytoplankton assemblages (Alvain et al., 2005, 2008). However,
the study of Alvain et al. (2012) showed that characteristics of
radiance anomalies are explained theoretically by phytoplankton
characteristics such as cell size, composition, intracellular
structure, cells arrangement, and absorption. This studymade the
suggestion that specific radiance anomalies could be empirically
extended beyond dominance cases. Thus, analysis restricted to
“dominant” groups based on biomarker pigments may represent
an under-exploitation of radiance anomalies database, which
could also contain a large diversity of information. Other types
of in-situ data about phytoplankton are common, such as the
Continuous Plankton Recorder (CPR thereafter, SAHFOS, 2015).
In this context, the possibility to enhance the radiance anomaly
labeling capabilities, when in-situ information about specific
phytoplankton abundance are available, was evaluated. For this
purpose, the CPR diatom database from the North Sea and
the English Channel were used (Figure 1). Broadly, diatoms
represent a dominant taxon in the North Sea, at least during
part of the year, with an abundance contribution from 40 to
90% of total microphytoplankton (Reid et al., 1990; Leterme
et al., 2006). Please note that here the term “dominant” has
not the same meaning that the one used in PHYSAT (see
definition n◦ 6 in Supplementary Material). Although North
Sea waters are not only characterized by diatoms, the fairly
detailed information on diatom species and taxa provides
a good starting point in this evaluation. However, a new
approach was necessary to promote the use of abundance
data to empirically associate radiance anomalies with specific
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FIGURE 1 | Location of the 5977 CPR sample points from 1998 to 2010, in

the areas of the North Sea and English Channel (−4◦W to 9◦E and 48 to

60◦N).

phytoplankton assemblages in-situ; and therefore, enable future
improvements of PHYSAT.

In this paper, a method was designed to label radiance
anomalies (Ra(λ) thereafter) according to in-situ information
provided by the CPR survey. The goal was to answer the
following question: is there an empirical association between the
presence of a diatom assemblage and specific radiance anomaly
signals (as supported by the theoretical study of Alvain et al.,
2012)? First, tools were developed and applied to extract suitable
ecological information (i.e., diatom assemblages) from the CPR
in-situ database (section 2.4.2). Second, the Ra(λ) was classified
according to their form and amplitude (Ben Mustapha et al.,
2014), and to their phenological characteristics (section 2.2).
The objective of this second step was to fully characterize the
Ra(λ) ranges in terms of shapes, amplitudes, and phenological
behaviors in order to increase the chances of finding an
association between specific in-situ diatom assemblages and a
specific signal from remote-sensing. Finally, simultaneous in-
situ and remote-sensing measurements were used to evaluate
the relationships between the presence of diatom assemblages
and the detection of specific radiance anomalies (sections 2.4.3
and 2.4.4).

2. MATERIALS AND METHODS

Figure 2 displays the diagram of the process followed in this
study. A list of definitions is available in the Supplementary

Material (Supplementary Material Section 1, Definitions). These
words are number indexed.

The method used in this paper is based on the PHYSAT
approach. Hence, a description of the general principle of the
PHYSAT (Alvain et al., 2005, 2008) is given first, followed then
by the actual process applied in this study.

2.1. General Principle of PHYSAT
The PHYSAT method is based on remote-sensed normalized
water leaving radiances anomalies (Ra(λ))15. In fact, for a given
chlorophyll-a concentration, it is possible to compute the mean
value of radiances at each wavelength for the entire globe (2005
and 2014 versions) or specific regions (in present study, the
North Sea was used). However, when considering one given pixel,
associated with a chlorophyll-a concentration, the corresponding
radiance values are slightly different from the global or regional
mean. These differences can be characterized by the following
Equation:

Ra(λ) =
nLw(λ)

nLwref(λ, Chl-a)
(1)

Where Ra(λ) is the radiance anomaly at the sensor wavelengths,
computed for each pixel; nLw(λ) is the observed normalized
water-leaving radiance12 at the same wavelength for a given
pixel, and nLwref(λ, Chl-a) is the mean value of radiances at each
wavelength and for a given chlorophyll-a.

Thus, when the value of Ra(λ) is greater than one, this
indicates that the pixel has nLw(λ) values higher than the mean
for the corresponding chlorophyll-a value. Whereas, when the
value of Ra(λ) is less than one, this indicates that the pixel has
nLw(λ) values lower than the mean. By considering the range
of wavelength of a given remote sensor, it is possible to obtain
Ra(λ) spectra with specific shape and amplitude, depending on
the differences at each wavelength between the pixel values and
the mean for the corresponding chlorophyll-a.

PHYSAT takes advantage of these small anomalies by
empirically associating specific Ra(λ) shapes and amplitudes
with a phytoplankton situation observed in-situ, through
matchups10 exercise and in-situ investigations. Theoretical
studies first brought an explanation for the specific shapes and
amplitudes, showing that they are related to a combination
of phytoplankton absorption, backscattering, and dissolved
organic matter absorption (Alvain et al., 2012). All these
parameters, when acting simultaneously on the light, produce
specific anomalies around the mean radiance signal for a
given chlorophyll-a concentration, associated with specific
phytoplankton situation. To develop PHYSAT it is therefore
necessary to have:

− Mean values of nLw(λ) for small ranges of chlorophyll-a.
These mean values have to be computed for a given sensor in
order to calculate a mean signal, including the characteristics
of the sensor and processes

− Ra(λ) computed from the observed values and the above
mean values following Equation 1; and then classified
according to their shapes, amplitudes (Alvain et al., 2005;
Ben Mustapha et al., 2014), and phenology (this study).
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FIGURE 2 | Diagram of the processing steps followed in this paper. For each step, the associated Section(s) is displayed in italic. The three main steps are framed

with dotted lines. The first step involved the processing of remote-sensing data; the second step involved the processing of CPR data and the third step involved the

test of association between the results of steps one and two.

− A concurrent in-situ database with information on
phytoplankton to empirically give a name to radiance
anomalies

− Clear sky conditions (as define in Alvain et al., 2005) for
matchups between the remote-sensing Ra and the in-situ data

Different approaches can be used to analyze Ra(λ) shapes and
amplitudes. In the first version of PHYSAT (Alvain et al., 2005),
large envelopes of minimum and maximum Ra(λ) values were
used. This was in fact, the first time radiance anomalies had
been analyzed. In Ben Mustapha et al. (2014), an improvement
consisted of using a Self-Organizing Map (SOM hereafter) to
classify the Ra(λ) more precisely and independently. Here, this

last approach was used, in addition to some phenological tools

(see section 2.4.1). Phenological tools allow, for instance, the

separation of pixels with similar radiance anomalies (shape and

amplitude), but with very different phenological characteristics

(see the Figure S1 in the Supplementary Material for an

illustration). These steps allow the grouping of the Ra(λ) into

refined Ra(λ) classes16 with their specific shape, amplitude,

and seasonal characteristics. Once this two-step classification is
made, it is possible to empirically associate the Ra(λ) classes to
a specific phytoplankton situation. In the 2005 (Alvain et al.,
2005) and 2014 (Ben Mustapha et al., 2014) versions, biomarkers
pigments were used for this step, allowing only the detection of
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dominance6 cases. Here, Ra(λ) spectra are associated with a more
detailed in-situ database (CPR) in order to evaluate the potential
of specific Ra(λ) for specific diatoms assemblages1 in the surface
waters. This last step aims to give a name to specific Ra(λ); names
which could be completed each time new in-situ samples with
Ra(λ) matchups are available.

2.2. Computation of PHYSAT Radiance
Anomalies for This Study
In this study, the daily level 2 SeaWiFS remote-sensed normalized
water leaving radiance (nLw, in the up-to-date version) between
1998 and 2004 in the English Channel and the North Sea (−4◦W
to 9◦E and 48 to 60◦N), with a resolution of 1 km2, was used
(NASAGoddard Space Flight Center, Ocean Ecology Laboratory,
Ocean Biology Processing Group, 2014). The SeaWiFS data were
selected instead of other ocean-color sensors due to the greater
number of matchups with CPR data. Standard flags were applied
to mask out pixels from clouds, ice, land, and sun-glint. In
addition, pixels with aerosol optical thickness (at 865 nm) above
0.15 were excluded to ensure high atmospheric correction quality
(Alvain et al., 2005). Furthermore, the classification proposed by
Vantrepotte et al. (2012) was applied in this area to delineate
waters with optical properties influenced by phytoplankton and
associated CDOM3 (from phytoplankton degradation), and to
flag waters influenced by other mineral particulate matters
and potential remaining waters influenced by terrestrial origin
CDOM. Radiance anomalies were subsequently computed by
applying Equation 1 to selected data. The use of SeaWiFS data
till 2004 ensured a homogeneous spatial coverage in the study
area. Equation 1 was applied based on regional level 2 data in
order to refine the study in the area of interest in this first attempt
to highlight empirical links between phytoplankton assemblages
and Ra(λ) classes. Subsequently, a specific mean signal for small
ranges of chlorophyll-a (nLwref(λ, Chl-a) in Equation 1) was
computed for the area under consideration.

2.3. In-Situ CPR Data
To evaluate the potential of PHYSAT in the detection of
phytoplankton assemblages, it is necessary to make use of in-
situ information about phytoplankton assemblages that may
be potentially associated with a specific remote-sensing signal.
An ideal in-situ database would be an inventory of all
phytoplankton assemblages at a synoptic scale and with a high-
repeat frequency over the course of one full calendar year (or
longer). Unfortunately, such a database is currently not available.
However, CPR data (SAHFOS, 2015) collected in the English
Channel and North Sea, are particularly relevant in this first
attempt to evaluate the potential of PHYSAT for the detection
of diatom assemblages.

The Continuous Plankton Recorder survey is an upper layer
plankton monitoring program that regularly collects samples in
the North Atlantic and the North Sea, since 1946 (Reid et al.,
2003). Studies have shown that this machine gives a satisfactory
picture of the epipelagic zone (Lindley and Williams, 1980;
Williams and Lindley, 1980). Inside the CPR machine, plankton
are filtered by a moving band of silk—of mesh size 270 µm.
These samples (which represent approximately 18 km of tow)

are then analyzed later in the laboratory (Warner and Hays,
1994; Batten et al., 2003). Consequently, more than 400 species
or taxa are identified and/or counted each month within the
scale of the North Atlantic and its adjacent seas (Beaugrand,
2004). CPR phytoplankton abundance is a semi-quantitative
estimate (see methods of abundance determination in Batten
et al., 2003; Richardson et al., 2006, andWarner and Hays, 1994).
However, the proportion of captured cells by the machine reflects
major changes in abundance, distribution, and composition of
phytoplankton (Robinson, 1970; Colebrook, 1982; Batten et al.,
2003).

This in-situ dataset is unequaled in terms of size,
spatio-temporal coverage, and representativeness of
microphytoplankton abundance; it is classified into four groups:
dinoflagellates, diatoms, silicoflagellates, and prymnesiophyceae.
In particular, the CPR dataset (5,977 samples, Figure 1)
recorded an abundance of 72 diatom species or taxa over the
period 1998–2010, representing from 40 to 90% of the total
microphytoplankton abundance in Summer (June-August) and
Spring (March-June), respectively (Leterme et al., 2006). These
diatoms are identified at a species or taxonomic level (one taxon
could represent more than one species). Although diatoms are
not alone in North Sea waters, and are associated with other
types of phytoplankton (e.g., pico- and nano-phytoplankton),
dealing with diatoms as an indicator of assemblages is the first
step in describing phytoplankton communities. Thus, diatom
assemblages are suitable to give a first answer to the following
question: can specific radiance anomaly be empirically associated
with the presence of a certain phytoplankton (here diatom)
assemblages, as suggested by a previous theoretical study (Alvain
et al., 2012)?

2.4. Processing Steps
2.4.1. Characterization of PHYSAT Radiance

Anomalies: Step 1
The following processing steps correspond to Step 1 in Figure 2.
The main objective was to characterize and classify the set
of radiance anomalies. First, the regional radiance anomalies
(computed by Equation 1) were classified according to their
shape and amplitude by a Self-Organizing Map (SOM) algorithm
(Kohonen, 2013) as previously defined in Ben Mustapha
et al. (2014). Second, outgoing radiance anomaly classes were
classified according to their phenological14 signature. This latter
classification is supported by the hypotheses that two similar
spectra (shape and amplitude)—(i) having the same phenology
could be considered as identical; and (ii) having a different
phenology could be associated with different in-situ situations.

So, to describe the characteristics of PHYSAT radiance
anomalies, regional Ra(λ) spectra were classified by SOM into
100 sets of radiance anomalies following the approach of
Ben Mustapha et al. (2014). However, this large number of
Ra(λ) classes was potentially above the variability attainable
by the phytoplankton. Consequently, the outputs of the
SOM classification were adjusted to reflect the sought-after
variability. To that purpose, a phenology-based classification
was applied to group some of the 100 Ra(λ) classes, which
presented almost identical seasonal characteristics based on
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occurrence frequencies (Figure 2, Step 1), by using conventional
delineations of phenological characteristics (Platt et al., 2009).
These metrics have been shown to be relevant at global and
regional scales to characterize seasonal signals (e.g., Thackeray
et al., 2008; Zhai et al., 2011; Racault et al., 2012). Timing of
initiation14, maximum, termination14, and minimum, together
with duration14 between (i) initiation and maximum, and
(ii) maximum and termination, were used as multivariate
characteristics for each Ra(λ) class; then used to regroup
the Ra(λ) classes with the traditional UPGMA19 (Unweighted
Pair Group Method with Arithmetic mean, Jain and Dubes,
1988) algorithm, based on an Euclidean distance. Analyses
of classifications, based on different distances (Euclidean
and Chord) and classification algorithms, did not alter the
classifications (not shown here). Consequently, we selected the
distance (here Euclidean) and the classification algorithm (here
UPGMA) that yielded the best cophenetic correlation4 (Halkidi
et al., 2001). The UPGMA classification was performed using a
bootstrap re-sampling method to obtain robust groups of Ra(λ)
classes, and verified by the Approximately Unbiased p-value
(p < 0.05) (Shimodaira and Hasegawa, 2001; Shimodaira, 2002).
The total number of Ra(λ) classes was downsized from 100 to
85, each representing a different radiance anomaly spectrum
(shape and magnitude of the spectrum) and phenology (seasonal
characteristics). At this stage, the 85 Ra(λ) classes are not
associated with the presence of specific diatom assemblages in
the surface open waters13. This last piece of information can be
extracted from the CPR data analysis explained hereafter.

2.4.2. Characterization of Diatom Assemblages from

in-Situ CPR Data: Step 2
The following processing steps correspond to Step 2 in Figure 2.
The main objective was to analyze the large CPR database in
order to obtain condensed ecological information suitable to be
matched with Ra(λ) classes in Step 3. The CPR diatom counts
recorded the occurrence of 72 diatom species and taxa. As
mentioned above, diatoms were considered in this study as an
indicator of the phytoplankton community composition; as such
a species or taxa level description was not available from the other
phytoplankton groups identified via CPR. The diatom species or
taxa formed assemblages1; some occurring in the same location
at the same time according to their physical, chemical, and/or
biological preferences (Sverdrup, 1953; Platt and Jassby, 1976).
Before the calibration2 step of PHYSAT, it was essential to assess
recurrent in-situ diatom assemblages and their composition.
For that purpose, the Indicator Value method (IndVal method,
Dufrêne and Legendre, 1997) was chosen. This method has been
successfully applied in various disciplines (e.g., Earth ecology,
Chen et al., 2010; Ocean ecology, Darnis et al., 2008; medicine,
Meadow et al., 2014; biochemistry, Schröder et al., 2015), and for
various problems, e.g., climate change (Connor et al., 2013), and
system pollution (Nahmani et al., 2006). It is a two-step approach:
first, the samples are classified according to the composition and
abundance of taxa; and second, an indicator value is computed
according to the samples classification, allowing the indicator
taxa or species8 to be highlighted. The IndVal (Indicator Value)
method was selected to define the diatom assemblages because

it deals with relative abundance and occurrence. It is based on
a simple asymmetrical approach combining two criteria (the
fidelity7 and the specificity18) to define a composite measure of
the indicator value of each taxon with respect to a group of
samples. Essentially, the measure of fidelity7 is at its maximum
when a taxon occurs in only one group of samples; and
specificity18, when a particular taxon is present in all samples of
this group.

Assemblages characterization from the IndVal method first
required the classification of CPR samples according to their
diatom composition and abundances. The samples typology was
obtained using an UPGMA classification algorithm19, based here
on a dissimilarity distance computed on samples-standardized
abundance of diatom taxa. The rare diatom taxa17 were removed
from this classification step, leading to a database of 11 non-rare
diatom taxa. Then, the next step was to determine the number
of assemblages that had both a statistical and an ecological
meaning as defined in Legendre and Legendre (2012), through
the computation of the Indicator Value (Equation 2). The IndVal
is computed for each possible cut-off level in typological samples
(i.e., for each possible diatom assemblage). For example, the first
cut-off level delineated two diatom assemblages, and the second
one delineated three diatom assemblages—with their respective
Indicator Value.

Aij = Nindividualsij / Nindividualsi.

Bij = Nsamplesij/Nsamplesj.

IndValij = Aij x Bij (2)

Where Aij is a measure of specificity : Nindividualsij is the mean
number of individuals of taxon i across group of samples j; and
Nindividualsi. is the sum of the mean number of individuals of
taxon i over all groups of samples.

And Bij is a measure of fidelity: Nsamplesij is the number of
samples in cluster j where taxon i occurs; and Nsamples.j is the
number of samples in cluster j

And IndValij is the Indicator Value of the taxon i in the sample
group j (Equations from Dufrêne and Legendre, 1997).

An ideal number of assemblages is reached when the Indicator
Value does not increase significantly for a higher number of
assemblages (see details in Dufrêne and Legendre, 1997; Aho
et al., 2008). Please note that, the Indicator Value method was
computed for the whole CPR diatom dataset (from 1998 to 2010)
in order to reflect, as close as possible, the in-situ situations.

2.4.3. Calibration and Validation Procedure: Step 3
At this stage, in-situ diatom assemblages and classes of remote-
sensing Ra(λ) (with different shape, magnitude, and phenology)
were obtained. So, it was now possible to study potential matches
between diatom assemblages and Ra(λ) classes. To achieve this,
the in-situ CPR samples were matched to their associated satellite
pixels (in a 3-by-3-pixel box corresponding to 9 km2) with a
margin of ±3 h between the two measures (classical matchup10

procedures, referred in Bailey and Werdell, 2006, Figure 2,
Step 3). The set of coincident measures (nmatchups = 450) was
randomly divided in two subsets: a calibration subset (ncalibration
= 360), and a validation subset (nvalidation = 90); corresponding
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to 80 and 20% of the total number of matchups, respectively.
The calibration step labeled9 empirically the radiance anomalies
if, at least 50% of Ra(λ) class observations were assigned to the
same in-situ assemblage in the calibration subset of matchups
(this is the classical threshold used in PHYSAT, Alvain et al., 2005;
Ben Mustapha et al., 2014).

Then, the radiance anomalies labeled with a diatom
assemblage were subsequently validated with an independent
subset (20% of CPR coincident measures, not used for
calibration). The validation procedure considered only the
labeled-Ra(λ). Here, the occurrence of labeled-Ra(λ) (one or
more radiance anomaly classes) over the validation subset was
checked. Ideally, in the validation subset, the labeled-Ra(λ) class
has to be associated with the same diatom assemblage as the one
which it was associated during the calibration (corresponding to a
validation of 100%).Misclassification occurs when a Ra(λ) class is
associated with a specific assemblage in the calibration step, but is
found to correspond to another assemblage in the validation step.
Furthermore, a misclassification occurs too when the specific
labeled Ra(λ) class is not found in the validation subset.

2.4.4. Repetition of the Calibration Procedure: Step 3′

Because of the variability of the in-situ CPR data (in time
and space), this calibration validation procedure was performed
several times (number of separate procedures = 1,200) for
different randomly-defined subsets of the calibration and
validation to optimize the representativeness of the validation
subset and strengthen the results (following a concept applied in
ocean-color e.g., Craig et al., 2012; Bracher et al., 2015a; Brewin
et al., 2015). This number of separate repetitions (n = 1,200)
ensured that each randomly-selected matchup measurement was
included at least once in the validation subset (Figure 2, Step 3).
For each run of a calibration validation procedure, some Ra(λ)
were labeled as a specific assemblage, followed by a validation
percentage computation. This enabled the most robust Ra(λ)
labels to be retained according to the rate of calibration, which
meant that these labels had emerged regardless of the calibration
and validation subsets.

3. RESULTS

3.1. Indicator Taxa and Diatom
Assemblages
The typology of CPR samples is displayed in Figure 3. According
to this hierarchical clustering, the Indicator Value (IndVal,
see section 2.4.2) was computed from level one (L1) to level
six (L6)—see Table 1. For the first hierarchical subdivision
in two groups (level 1, first Column of Table 1), only two
diatom taxa were indicators (Chaetoceros spp2 and Thalassiosira
spp.). From level 1 to 5 in Table 1, the number of indicator
taxa increased, reaching six indicator taxa in level 5. The
IndVal increased significantly among the first six hierarchical
levels (or slightly decreased, insignificantly). There was an
exception for the Thalassiosira spp., for which the IndVal
values decreased significantly from level 1 to 5. This can be
explained by the decrease in the specificity measure, whereas
the fidelity measure was always at a maximum. The fifth level,

FIGURE 3 | CPR samples typology obtained from the Bray-Curtis dissimilarity

measure of the standardized abundance of diatoms and an UPGMA clustering

algorithm. Each branch represents a CPR sample. Lx corresponds to x
successive hierarchical clustering levels, giving a number of assemblages

indicated by the roman number between parentheses.

differentiating six diatom assemblages, was the best one for which
a compromise was found between the number of assemblages, the
indicator taxon, and the IndVal values. Consequently, six diatom
assemblages were retained, represented by an indicator diatom
taxa and a set of secondary taxa. These assemblages are described
in Table 2.

3.2. Repetitive Calibration-Procedure
The number of matchups for each in-situ assemblage is presented
in Column M (number of matchups) in Table 2. The calibration
validation procedure was run 1,200 times to take into account
the natural variability of the diatom assemblages. Figure 4

displays the number of times Ra(λ) was labeled for the 1,200
random calibration subsets. About 30% of Ra(λ) classes were
never associated with an in-situ assemblage according to the
criteria defined in the previous sections [for instance, Ra(λ)
n◦7 in Figure 4]. First, these Ra(λ) were either absent from
the matchups or not present significantly to be labeled. Second,
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TABLE 1 | This table represents a combination of the results from the classification of CPR samples and the computation of Indicator Values.

1 (II) 2 (III) 3 (IV) 4 (V) 5 (VI) 6 (VII)

Chaetoceros spp1 27.8 (III) 38.3 (II) 61.6 (II) 59.3 (II)

Chaetoceros spp2 31.4 (I) 70.2 (I) 65.1 (I) 60.6 (I) 59.4 (I)

T. nitzschoides 30 (II) 83.6 (II) 81.1 (III) 77.8 (III) 77.1 (III)

P. seriata 74.8 (IV) 71.6 (IV)

Thalassiosira spp. 92.4 (II) 83.9 (III) 76.7 (III) 72.5 (IV) 67.9 (V) 67 (V)

R. imbricata 86.1 (V) 82.9 (VI) 81.9 (VI)

Each column represents a clustering level (number), given a number of assemblages (roman number). Indicator values are obtained for the successive hierarchical clustering levels from
level one (two assemblages, I and II) to level six (seven assemblages, I to VII). For a species at a specific clustering level (a particular case of the table), IndVal is displayed as well as their
attributed assemblage (indicated by the roman number between parentheses). Only indicator values greater than 25% and significant (p-value < 0.05) were displayed (according to
Dufrêne and Legendre, 1997). The results for the six most abundant species are displayed in the Table for clarity, which are the six species for which the Indicator Value was significant.
Bold values identify the highest IndVal observed among clustering levels for each dominant species.

TABLE 2 | This table represents information on in-situ data on the left part and on coincident measures on the right part.

Species in assemblage M C V

Chaetoceros spp.2 (60.6); Rhizosolenia styliformis (3.6); Corethron hystrix (1.7) 52 41 11

Chaetoceros spp.1 (61.6); Bacteriastrum spp. (1.8); Leptocylindrus spp. (1.7) 72 57 15

Thalassionnema nitzschoïdes (78.1); Odontella sinensis (11.8); Fragillaria spp. (4.8) 93 74 19

Pseudonitzschia seriata (74.8); Proboscia alata (8.3); Coscinodiscus spp. (2.7) 65 51 14

Thalassiosira spp. (67.9); Skeletonema costatum (15.6); Asterionellopsis glacialis (7.0) 116 92 24

Rhizosolenia imbricata (82.9); Rhizosolenia hebetata (7.8); Paralia sulcata (7.4) 52 41 11

On the left part, the in-situ assemblages are described with indicator species (in bold) and secondary diatom species with their attributed Indicator Value according to Dufrêne and
Legendre (1997) from CPR diatom data in parentheses. On the right part, M is the number of coincident measures associated with this assemblage; and C and V are respectively the
number of coincident measures for calibration (80% of M) and validation (20% of M).

around 33% of Ra(λ) classes were associated with only one
specific assemblage over the entire repetition procedure of
calibration validation [for instance, Ra(λ) n◦15 in Figure 4].
Finally, the remaining 37% of Ra(λ) classes were associated
with multiple assemblages during the repetitive procedure [for
instance, Ra(λ) n◦25 in Figure 4]. These cases of multiple
labeling were assumed to be possible considering that different
phytoplanktonic communities can be associated with the
presence of the diatom assemblage described here. For example,
Ra(λ) n◦57 in Figure 4, was labeled in less than 20% of calibration
subsets; and labeled for half of the Thalassionema nitzschoides
assemblage and half of the Thalassiosira spp. assemblage. For
this Ra(λ) , the in-situ information available at this stage was
not sufficient as this Ra(λ) was probably associated with a
unidentified phytoplankton assemblage at this point. For a few
number of Ra(λ) classes [example n◦50 in Figure 4], the Ra(λ)
were labeled in a large majority with the same assemblage.
This depended upon the random separation of CPR samples
in calibration and validation subsets; this result shows how
necessary the repetition of the calibration was using a repetitive
procedure. Only the assemblage labels which appeared in at least
70% of calibration repetitions (840 random calibration subsets)
were retained. This threshold was chosen to ensure that the
approach was robust enough for this first attempt in identifying
specific radiance anomalies associated with the presence of a
specific diatom assemblage. The threshold helped to retain only
labeling that could be observed regardless of the calibration

subset. Considering this threshold, the procedure led to the
labeling of 11.7% of the 85 available Ra(λ) classes (total of Ra(λ)
classes). Amongst the six in-situ diatom assemblages identified
in the CPR dataset, three assemblages were robustly associated
with ten Ra(λ) classes. In fact, during the 1200 repetitions
of the calibration, assemblages characterized by Thalassionema
nitzschoides, Thalassiosira sp., and Rhizosolenia imbricata, were
associated with the one of the Ra(λ) classes more than 840 times
(70% threshold). On the contrary, assemblages characterized by
two taxa of Chaetoceros and by Pseudonitzschia seriata were not
sufficiently associated with Ra(λ) classes in the multiple steps of
calibration.

3.3. Radiance Anomaly Spectra Associated
with Diatom Assemblages
Figure 5 displays the spectra of labeled-Ra(λ) classes associated
with the three diatom assemblages. These Ra(λ) spectra are
characterized by different amplitudes, shapes, and seasonalities.
Note that these results were expected for intra-assemblage as
well as inter-assemblage spectra variations in terms of shape
and amplitude (see further information in section 4). Please also
consider that, some Ra(λ) could appear very similar in terms
of shape and amplitude, but their seasonal characteristics were
different (an example is shown in Figure S1). The assemblage
characterized by Thalassionema nitzschoides (Table 2) was
associated with six different Ra(λ) classes (representing 7.1%
of available Ra(λ) classes, Figure 5a for referent spectra) based
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FIGURE 4 | Percentage of Ra(λ) classes labeled with diatom assemblage(s) during the repetitive procedure of labeling including 1,200 random subsets of calibration.

X axis represents the Ra(λ) classes identified by a number (1–85) and Y axis represents the rate of labeling of these Ra(λ) for the 1,200 random calibration-subsets.

Each bar corresponds to the percentage of labeling of a specific Ra(λ) class (height) and associated with a specific in-situ assemblages indicated by the colors. See

sections 2.4.3 and 2.4.4 for method of labeling and repetitive procedure. Blue dotted line represents the 70% threshold which define a robust labeling (section 3.2).

FIGURE 5 | Labeled-radiance anomaly spectra (reference spectra of Ra(λ)) classes*) for (a) assemblage characterized by Thalassionema nitzschoides; (b)
assemblage characterized by Thalassiosira spp.; and (c) assemblage characterized by Rhizosolenia imbricata. The gray background represents the entire diversity5

(minimum and maximum) of North Sea radiance anomalies spectra. X axis represents the five SeaWiFS wavelengths and the Y axis represents the radiance anomaly

according to Equation (1). *The reference spectrum of a Ra(λ) class is computed from the Self-Organizing Map algorithm (SOM). It represents a compression of the

information contained in all initial Ra(λ) spectra assigned in this specific Ra(λ) class by the SOM algorithm (Ben Mustapha et al., 2014).

on the available in-situ dataset. According to their shapes, these
labeled Ra(λ) could be divided into two subgroups: high and
low Ra(λ), at 412 and 443 nm, respectively. The assemblage
characterized by Thalassiosira spp. was associated with one Ra(λ)
class (1.2% of available Ra(λ), Figure 5b for referent spectrum).
This reference spectrum had a straight shape. The Rhizosolenia
imbricata assemblage was associated with three Ra(λ) classes
(3.3% of available Ra(λ), Figure 5c for referent spectra). These
spectra were different in shape and amplitude. At this stage, 10
Ra(λ) classes, with specific shapes, amplitudes, and seasonalities,
were associated with three diatom assemblages, which were
selected after the repetitive calibration validation procedure
applied to the available CPR dataset.

3.4. Validation
Validation results are presented in Figure 6 and a summary of
the validation scores is presented in Table 3. Figure 6 displays

the mean validation scores (and standard deviation) for all
Ra(λ) classes over the successive repetition of the calibration

procedure. This highlights the variability of the validation scores,

according to the variation of the calibration and validation

subsets of matchups. The three assemblages for which a strong

association could not be found with Ra(λ) had validation scores

around 20% (see Total validation in Table 3). The validation for

assemblages with a strong association with Ra(λ), as defined in
section 2.4.4, is displayed in two ways. First, the total validation
scores, which takes into account all labeled Ra(λ) (robustly-
labeled or not), reached 61.8, 60.6, and 60.5%, respectively
for Thalassionema nitzschoides assemblage, Thalassiosira spp.
assemblage and Rhizosolenia imbricata assemblage (Table 3,
column Total validation). These validation scores are increased
by selecting the Ra(λ) according to the rate of labeling
(70% threshold on repetitive calibration, see Figure 4 and
section 2.4.4). Second, the validation scores reached 74.7,
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FIGURE 6 | Mean validation scores (square points in percentage, Y axis) across the repetition of labeling procedure for the 85 Ra(λ) classes (X axis), with the standard

deviation (black lines) for the six diatom assemblages: (a) Chaetoceros spp.2 assemblage, (b) Chaetoceros spp.1 assemblage, (c) Thalassionema nitzschoides
assemblage, (d) Pseudonitzschia seriata assemblage, (e) Thalassiosira spp. assemblage, and (f) Rhizosolenia imbricata assemblage. A dotted line is drawn when the

Ra(λ) class has been labeled as the assemblage at least one time. A gray background is drawn when the Ra(λ) class has been robustly labeled according to the rate

of labeling (see Figure 4 and section 2.4.4). When the in-situ information is not sufficient to label and validate the association, only a dotted line is drawn (for example

a), Ra(λ) ◦4).
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TABLE 3 | This table represents the validation scores in two ways: (i) the total

validation scores, which take into account all labeled-Ra(λ) in each 1,200 repetition

of the calibration/validation procedure (average of all validation scores displayed in

Figure 6) and (ii) the selected validation score according to the rate of labeling

(see Figure 4 and section 2.4.4), which take into account only the robustly

labeled-Ra(λ) (average of validation scores with a gray background in Figure 6).

Assemblage name Labeled-Ra(λ) Total

validation

(%)

Selected

validation

(%)

Chaetoceros spp.2 Ø 17.06 Ø

Chaetoceros spp.1 Ø 25.0 Ø

Thalassionnema
nitzschoïdes

n◦ 15, 24, 50, 51, 64, 66 61.82 74.73

Pseudonitzschia seriata Ø 21.25 Ø

Thalassiosira spp. n◦ 58 60.58 95.24

Rhizosolenia imbricata n◦ 18, 29, 36 60.47 63.82

When a robust association is not found, the symbol Ø is displayed.

95.2, and 63.8%, respectively, for Thalassionema nitzschoides
assemblage, Thalassiosira spp. assemblage, and Rhizosolenia
imbricata assemblage (Table 3, column Selected validation).

3.5. Spatial and Seasonal Distribution of
Ra(λ) Classes Associated with Diatom
Assemblages
Specific labeled Ra(λ) were sought in the daily standard ocean-
color maps with the aim of producing frequency detection
maps. Monthly mean spatial frequencies of the labeled Ra(λ)
are displayed in Figure 7. The frequency of occurrence of the
labeled Ra(λ) for each pixel was averaged for each month over
the period 1998–2004 (based on SeaWiFS data). It is worth to
note that the frequency rarely rose above 0.5, except for a few
pixels, suggesting that extension by additional Ra(λ) classes not
labeled yet, opens the possibility for future investigations. The
Ra(λ) identified as the Thalassionema nitzschoides assemblage
(Figure 7A) showed their highest frequencies in spring (March
and April) and fall (September and October). These classes
were more frequently detected in the southern part of the
North-Sea, the English Channel, and along the western coasts
of the United Kingdom (UK). In the summer, the frequency
of Ra(λ) classes associated with Thalassionema nitzschoides was

low, and was located in the northern part of the North Sea

and along the southern coasts of the UK. The frequency of

the detection of the Ra(λ) class labeled as the Thalassiosira
spp. assemblage showed a very low frequency (due to only
one labeled Ra(λ), based on available in-situ dataset at this
stage). This Ra(λ) class had its highest frequency in the
middle of the year (June and July), and was mainly located
in the middle of the North Sea (Figure 7B). The Ra(λ)
classes identified as the Rhizosolenia imbricata assemblage
exhibited a higher frequency in spring (March and April),
which subsequently diminished during the following months,
remaining low for the rest of the year. These labeled-
Ra(λ) were located in the English Channel, and along the
southern coast of the UK. In summer (June and July), a

higher frequency pattern appeared near the Norwegian coast,
which progressively disappeared during the following months
(Figure 7C).

4. DISCUSSION

4.1. Concerning the Choice of Indicator
Value Method to Analyze CPR Diatom
Counts
The indicator value method, combined with samples
classification, allowed the identification of six diatom
assemblages, each having their own seasonal cycle and
geographical characteristics. These assemblages were stable
over the period of 1998–2010 (in qualitative terms). For the
five indicator taxa (Chaetoceros spp1, spp2, T. nitzschoides, P.
seriata, and R. imbricata), the IndVal increased until the fifth
clustering level of the CPR samples classification (reaching six
assemblages), and then decreased, indicating that these taxa
are stenotopic, i.e., they have a small niche11 breadth (Dufrêne
and Legendre, 1997). They also have a strong seasonality
and a relatively limited spread, which has been commonly
reported in the North Sea and English Channel (e.g., Reid
et al., 1990; Rousseau et al., 2002; Hoppenrath, 2004; Bresnan
et al., 2009; Hinder et al., 2012). On the contrary, Thalassiosira
spp. IndVal decreased significantly among the successive
hierarchical levels, indicating that this taxa is eurytopic, i.e.,
it has a large “niche breadth.” During the IndVal procedure,
Thalassiosira spp. was the only one which was indicator at the
taxa level (potentially more than one species), which probably
explains the eurytopic behavior of this taxon. However, these
results are supported by a number of studies, which have
reported an increase in Thalassiosira spp. abundance and its
spatial distribution (e.g., Bresnan et al., 2009; Hinder et al.,
2012).

In this study, diatom assemblages were used as indicator
of phytoplankton community composition. However, the
three diatom assemblages highlighted here vary in terms
of associated phytoplankton community, which has not
been totally assessed at this point. From the CPR data,
the dinoflagellates could be present with diatoms. Indeed,
Thalassionema nitzschoides assemblage contributes an average
of 93% of total microphytoplankton cells (7% of dinoflagellates
cells), 83.2% for Thalassiosira spp. assemblage (16.8% of
dinoflagellates cells), and 65.1% for Rhizosolenia imbricata
assemblage (34.9% of dinoflagellates cells). So, the dinoflagellate
community could partly explain the variability in terms of
labeled-Ra(λ) characteristics (section 4.3), together with the
other non-characterized community. Although dinoflagellates
are present in the assemblages alongside diatoms, they are not
classified as indicators according to Dufrêne and Legendre
(1997).

Even if diatom assemblages are appropriate for this first
evaluation of PHYSAT in the detection of assemblages, a more
detailed in-situ database will be required in the future to take
into account additional phytoplankton cases (more assemblages
or taxonomic groups).
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FIGURE 7 | (Continued)

4.2. Spatio-Temporal Distribution of
Labeled-Ra(λ)
Based on the CPR dataset available for this study, ten Ra(λ)
classes (out of 85) were associated with three specific diatom
assemblages in North Sea waters, with a high degree of
confidence. The three other assemblages could not be robustly

associated with Ra(λ) classes, according to our criteria (sections
2.4.3 and 2.4.4). For the ten Ra(λ) classes associated with

diatom assemblages, monthly maps of Ra(λ) frequency show,

for the first time, spatial and temporal variability in agreement

with previously published literature in the North Sea (Reid
et al., 1990; Beaugrand et al., 2001). In addition, the spatial
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FIGURE 7 | (Continued)

distribution of all labeled-Ra(λ) classes followed known patterns
relating to physical and hydrological conditions in the North
Sea during the year that drive the phytoplankton distribution
(Reid et al., 1990). In fact, four ecological regions have been
commonly recorded based on phytoplankton, zooplankton, and
fish studies in the North Sea (Daan et al., 1990; Reid et al., 1990;
Fransz et al., 1991; Beaugrand et al., 2001). The Flamborough

Front is a transitional region between the north of the front
seasonally stratified and the south of the front (well-mixed
area) (Otto et al., 1990; Ducrotoy et al., 2000). The fourth
region is the Skagerrak, related to the Kattegat-Skagerrak flow
(Otto et al., 1990). These regions have different conditions
in nutrients, temperature, and available light, explaining that
different phytoplankton assemblages could bloom according
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FIGURE 7 | Climatology maps of labeled Ra(λ) classes detection frequencies (SeaWiFS level 2 data over 1998–2004) for Ra(λ) classes labeled as (A) Thalassionema
nitzschoides assemblage ; (B) Thalassiosira spp. assemblage ; and (C) Rhizosolenia imbricata assemblage. Frequencies are computed by dividing the number of

labeled Ra(λ) over the month (with a minimum of three occurrences) by the number of total Ra(λ) classes occurrence (labeled at this stage or not). If more than one

Ra(λ) is labeled for a given assemblage, their frequencies are added. Please note that the color scales are different for the three distributions. White pixels means that

less than 3 occurrences are recorded in the month. Due to high-solar zenith angle in the boreal Winter (November to February), signal could not be retrieved poleward

52◦N and thus, only the results for the months of March to October are shown.

to their preferences (Margalef, 1978). The spatial distribution
of labeled Ra(λ) frequencies delineated these four ecological
regions.

Thalassionema nitzschoides and its associated taxa are
dominant in winter, and bloom both in early spring and
autumn in the North Sea (Figure 8A). The literature records
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FIGURE 8 | Mean seasonal abundance (105 cells per liter) based on in-situ CPR counts between 1998 and 2010 for the labeled assemblages (solid lines) and their

indicator species (dashed lines): (A) Thalassionema nitzschoides assemblage; (B) Thalassiosira spp. assemblage; and (C) Rhizosolenia imbricata assemblage.

show that their occurrence in some locations of the southern
North Sea relates to specific environmental conditions (e.g.,
Edwards et al., 2001; Rousseau et al., 2002; Wiltshire et al.,
2010). In fact, the assemblage characterized by Thalassionema
nitzschoides is common in high-nutrient conditions in neritic
waters (Van Iperen et al., 1993) as is the case in spring and
autumn in the southern North Sea (Commission, 2010). The
distribution of the labeled Ra(λ) was very similar to the literature
on the occurrence and bloom of this assemblage.

The Rhizosolenia imbricata assemblage blooms in early
spring with mixed waters, and maintains itself until summer
(Figure 8C); taking place most of the time along the coastline
(e.g., Hinder et al., 2012). The labeled Ra(λ) had a similar spatio-
temporal distribution.

Concerning the assemblage composed by Thalassiosira spp.,
the literature has recorded a winter dominance, a spring
blooming period, and a second autumn bloom since the 2000s
(Hinder et al., 2012 and Figure 8B). Our results, based on the
labeled Ra(λ) at this stage, show, in contrast, a higher frequency
in summer in the core area of the North Sea. However, this
difference could be due to the limited amount of information
available to correctly detect this group. In fact, coincident
measurements are sufficient for calibration in summer (71.5%
of the Thalassiosira spp. assemblage matchups from May to
August); while there were only a few matchups for the other
months (28.5%, split in other months). Even if this Ra(λ) was
correctly labeled, based on our first validation exercise ( 60% of
correct identification), there are probably other winter, spring,
and/or autumn radiance anomalies that may correspond to this
assemblage. Thus, for the moment, the frequency of labeled
anomaly signal remains low due to the small number of Ra(λ)
classes with coincident in-situmeasures.

4.3. Variability in Labeled-Ra(λ) Spectrum
Characteristics in Terms of Shape,
Amplitude and Seasonnality
The main characteristics of the Ra(λ) used in the past PHYSAT
versions (Alvain et al., 2005, 2008; Ben Mustapha et al., 2014)

are the shape and amplitude of the spectra (Alvain et al., 2012).
In this study, the Ra(λ) have also been classified according to
their phenology. This classification has two main advantages: (i)
it avoids splitting the Ra(λ) classes (from the SOM algorithm),
and therefore increases the chances of getting a larger number
of coincident measurements; and (ii) it allows the distinction
between two spectra that look similar in terms of shape and
amplitude (as shown in Figure S1).

4.3.1. Intra- and Inter-assemblage Variation of Ra(λ)

Characteristics
In some instances, one diatom assemblage could be associated
with more than one Ra(λ) class (e.g., Thalassionema nitzschoides
assemblage, which was associated with six Ra(λ) classes). These
Ra(λ) spectra could be very different in terms of shape and
amplitude. This is not surprising, as the shape and amplitude
of Ra(λ) could vary with inherent optical properties due to
phytoplankton characteristics and composition. In a theoretical
study (Alvain et al., 2012) showed that radiance anomalies
in PHYSAT results from a combination of (i) phytoplankton
absorption, which affects both Ra(λ) shape and amplitude
(especially at 443 nm); (ii) particulate backscattering, which
strongly affects amplitude, but has a limited effect on the shape
of Ra(λ); and (iii) CDOM (due to phytoplankton) absorption,
which affects shape (mainly at 412 nm) and amplitude of
the Ra(λ). This may explain why several Ra(λ) could be
associated with different assemblages depending on: (a) the
phytoplankton community composition associated with the
diatom assemblage; (b) the growth stage, inducing different
size, morphology, cells arrangement (including free cells, chains
forming and aggregates), and pigment concentration; and (c)
the CDOM concentration, sometimes reflecting the decline of a
bloom.

The following hypotheses are proposed for the explanation
of the inter-assemblage variations of radiance anomalies: (i) the
morphology of cells: pennate (Thalassionema nitzschoides and
Rhizosolenia imbricata), and oblate diatoms (Thalassiosira spp.);
(ii) the arrangements of cells: the three characteristic diatoms
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could form chains (star, zigzag, and linear chains); (iii) cell
sizes (from 2 to 230 µm, depending on growth stage); and
(iv) associated phytoplankton communities. Intra-assemblage
variations of radiance anomaly could be explained by: (i) the
shift between free and chained cells; (ii) cell size variations; (iii)
different species (in the case they are identified at taxa level) ; (iv)
the shift in associated communities (e.g., from associated other
diatoms to dinoflagellates); or (iv) the adaptation of pigments
(quality and quantity), depending on available light and on the
stage of the bloom.

All of the above hypotheses will need further investigations,
considering in-situ optical parameters and a full characterization
of phytoplankton communities, CDOM, and non-algal particles.
Presently, it is impossible to isolate the contribution of
inherent optical properties on the variation of radiance anomaly
without in-situ or laboratory experiments (Alvain et al., 2012).
However, the robustness of the labels and validation encourages
us to complete more analyses following these approaches.
Furthermore, the phenological tools applied to the Ra(λ)
classification seems a promising tool for the calibration of
PHYSAT.

4.3.2. “Multiple” Labeling Cases
The labeling-procedure shows that one Ra(λ) class could be
successively linked to different assemblages depending on the
calibration subset (cases of “multiple” labeling, see Figure 4, and
section 3.2). Two different phytoplankton communities inducing
the same radiance anomalies (depending on combinations of
inherent optical properties) are rare cases according to Alvain
et al. (2012), but are possible. In addition to an insufficient
optical signal, this situation could also be explained by the
presence of other phytoplankton communities associated with
our diatom assemblages; not yet identified due to CPR data
not available for other phytoplankton groups (pico-, and nano-
phytoplankton). However, the validation scores observed in
this study are encouraging, and also highlight the fact that
a large number of Ra(λ) classes remain unattributed to any
specific assemblage, indicating that our approach could be further
completed. Future in-situmeasurements coupling phytoplankton
analyses and optical properties are strongly needed to ameliorate
our procedure and identify whether specific Ra(λ) classes
associated with many phytoplankton cases exist. The addition
of phenology to classify the Ra(λ) reduces misclassification.
Indeed, different optical properties leading to a similar spectra
and phenology are considered as rare, based on current
knowledge.

4.4. Remaining Ra(λ) Database,
Limitations, and Perspectives
For this first attempt to evaluate PHYSAT in non-dominance
cases detection, very stringent steps were chosen, with a high
degree selection (such as the 70% threshold on the rate
of labeling). Potential future extension of this method, with
additional in-situ data (hopefully not just limited to diatoms)
will have to find a balance between strict thresholds, dataset
availability, and score of validation. If the proposed method
allows the identification of 11.7% of the available Ra(λ) classes

at this stage, the remaining anomaly classes are available for
future investigation and empirical labeling. Figure 9 illustrates
the potential of PHYSAT development by showing spatial
distribution of the most frequently detected Ra(λ) classes in
the North Sea. The Ra(λ) classes in Figure 9 show a clear
seasonal succession, as themost frequent Ra(λ) classes are not the
same between months. Furthermore, their spatial distributions
delineate specific patterns in agreement with the environmental
conditions described above (ecological regions in the North Sea).
The 88.3% remaining unlabeled Ra(λ) classes could represent:
(i) one of the diatom assemblages described here, at a different
step of development, or associated with different non-diatom
phytoplankton species (with no-matchup at the moment); or
(ii) other unidentified assemblages of phytoplankton. In fact, the
North Sea is a highly variable environment for phytoplankton,
mostly dominated by diatoms (winter, spring, and autumn) and
dinoflagellates (summer), but also by Prymnesiophyceae (such
Phaeocystis sp.), Chlorophyceae, Cyanobacteria, and sometimes
Coccolithophorids (Gieskes and Kraay, 1983; Reid et al., 1990;
Hoppenrath, 2004; Hoppenrath et al., 2007; Sapp et al., 2007;
Masquelier et al., 2011; Bonato et al., 2015).

If this study shows the potential of detection of phytoplankton
situations beyond the dominance, there are still developments
to be carried out with other in-situ information to characterize
phytoplankton community. Although non-quantitative, these
observations would be useful to estimate the contribution of
assemblages to the chlorophyll-a estimation (Alvain et al.,
2006, 2008) and then completing approaches such as OC-PFT
(Hirata et al., 2011), PhytoDAS (Bracher et al., 2009). In this
way, we support that development of in-situ measurements
will allow us to identify more phytoplankton assemblages and
better understand the limitation of this empirical approach.
Some preliminary investigations, based on in-situ data, have
shown that the Ra(λ) classes associated with diatoms assemblages
previously characterized would not be associated with other
groups (especially microphytoplankton as dinoflagellates) (not
shown here). This observation is valid only for the Ra(λ) classes
considered as robustly labeled, which would confirm that cases of
multiple labeling (in the repetition of the calibration procedure)
are due to other phytoplankton assemblages. These investigations
will be considered in future developments.

Further studies will be required in the future to assess three
main concerns about PHYSAT. First, a full characterization of the
phytoplankton community and their optical properties during a
bloom could permit us to analyze the variations of the radiance
anomaly in terms of shape and amplitude, and to understand the
optical justification of the empirical linkage (Alvain et al., 2012).
Then, the CPR measurements are based on moving samples
representing 18 km of tow, which may lead to a biased location
of the sample and thereby on the matchups measurements. This
has been considered in this study by observing the homogeneity
of the remote-sensing observations within 3 days. This point
needs to be considered for future studies, especially for a study of
the Ra(λ) characteristics. Second, the requirements for regional
algorithms have to be estimated by studying other regions.
Previous studies have already demonstrated that regional ocean-
color algorithms are sometimes necessary (for example, Volpe
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FIGURE 9 | Maps of most frequently detected radiance anomalies classes in the North Sea in March (A), June (B), and October (C). The color bar displays the 85

different Ra(λ) classes (0–85). The color corresponds to the Ra(λ) class (identify by a number) with the highest frequency in a specific pixel and month.

et al., 2007 for the Mediterranean Sea). The regional approach
of PHYSAT developed for this first evaluation is not comparable
to the global approach due to the use of specific reference tables
in these two cases. Third, PHYSAT requires a specific reference
table (see Equation 1) for each ocean-color sensor. For now,
it is difficult to evaluate the uncertainties during the transition
of the PHYSAT labels from one sensor to another one. Thus,
impacts ofmulti-sensors inter-calibration will have to be carefully
addressed before PHYSAT application to standardized remote-
sensing database. That is one reason why we greatly support
the development of in-situ measurements to carry out a new
calibration and/or to validate the transposition of labels between
ocean-color sensors.

5. CONCLUSION

PHYSAT (Alvain et al., 2005, 2008) is an ocean-color algorithm
that has allowed us to identify five phytoplankton groups
based on ocean-color radiance anomalies analysis in terms
of shape and amplitude. However, this empirical algorithm
was limited to dominant cases due to the use of biomarker
pigment ratios in the empirical calibration step. In this study,
we took advantage of both the addition of phenological tools
to analyze the radiance anomalies and the diatom species

abundance data to evaluate the PHYSAT potential in terms of
phytoplankton assemblages detection. The use of abundance
data in the PHYSAT calibration step presents a promising
avenue for future investigations and development of PFT
algorithms. Although this study is based on a limited number
of assemblages at this stage, it demonstrates the potential of
development of the PHYSAT method beyond the dominance
case, toward the detection of phytoplankton assemblages.
Three diatom assemblages were successfully associated with
specific ocean-color radiance anomalies with a robust validation.
For now, there are no scientific reasons to prevent the
use of PHYSAT radiance anomalies in other non-coastal
waters and to associate remaining radiance anomalies with
other assemblages. This first attempt to compute maps of
signals associated with specific diatom assemblages highlights
distinct spatial and temporal patterns in agreement with
previous knowledge. Thyssen et al. (2015) showed that it is
possible to describe the community structure at the basin-
scale by comparing high resolution techniques (cytometry)
and remote-sensing radiance anomalies. These recent results
support both the development of PHYSAT beyond dominance-
case detection, as well as the strong need of additional
in-situ information about phytoplankton assemblages. This
last objective could not only be performed based on CPR
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observations, but also on automated in-situ analysis such as
cytometry (Thyssen et al., 2015) or DNA sequencing approaches
(Ottesen et al., 2011). Indeed, PHYSAT calibration is not limited
to a specific type of data and only requires homogeneous
datasets. Approaches based on ocean-color signal analysis,
empirically coupled with exhaustive in-situ measurements
(phytoplankton and optical properties) will help us to further
understand which and how environmental conditions drive
the phytoplankton composition and its succession, together
with potential applications in the investigation of long-term
changes.
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