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Commonly we see the diffuse attenuation coefficient of downwelling irradiance (Kd) expressed as a sum of the contributions of various constituents. We show here that, both theoretically and numerically, because Kd is an apparent optical property (AOP), this approach is not consistent with radiative transfer. We further advocate the application of models of Kd developed in past decades that are not only consistent with radiative transfer but also provide more accurate estimates, in particular for coastal turbid waters.
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BACKGROUND

Solar radiation is the energy source for the entire earth system. In aquatic environments, unlike terrestrial environments, solar radiation can penetrate to great depths to fuel photosynthesis and to heat up the upper layer (Zaneveld et al., 1981; Platt, 1986; Lewis et al., 1990). The propagation of solar radiation from surface to greater depths can be expressed as (Mobley, 1994)

[image: image]

Here Ed (W/m2/nm) is the downwelling irradiance, z (m) is the depth from the surface (0− for subsurface), Kd (m−1) is the attenuation coefficient of downwelling irradiance between surface and depth z, and λ (nm) for wavelength. Since the variation of Ed(0−) is independent of water properties (except extremely turbid waters where the enhanced upwelling flux will result in significant contributions to Ed(0−) due to internal reflection), it is then imperative to describe the variation of Kd for various aquatic environments when quantifying the impact of water constituents on the heat budget (Morel and Antoine, 1994; Ohlmann et al., 2000), the feedback of oceanic systems on climate changes (Rochford et al., 2001; Gnanadesikan and Anderson, 2009), as well as the vertical variation of primary production (Sathyendranath and Platt, 1995).

Historically, with an objective of easy modeling and efficient calculation for large scale applications, Kd is commonly expressed as (Smith and Baker, 1978; Morel, 1988; Morel and Maritorena, 2001),
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with Kw the contribution of pure (sea)water, and Kbio the contributions of phytoplankton. In this expression, i.e., the so-called “Case-1” scheme (Morel and Prieur, 1977), the attenuation of pure (sea)water is considered as a background, while other constituents that are actively changing, such as phytoplankton and suspended mineral solids, are considered as added contributions. In addition, the contributions of colored dissolved organic matter (CDOM) and organic detritus are considered as co-varying with phytoplankton, and lumped into the Kbio term. So their contributions are not ignored or omitted as might be implied by the equation, although its application is limited to “Case-1” waters.

In order to explicitly evaluate and understand the impact of constituents such as CDOM and/or suspended mineral particles or particulate inorganic matter (PIM) on the propagation of solar radiation, Kd in many studies is expanded as a sum of more components, although there are subtle variations among these models (Smith and Baker, 1978; Baker and Smith, 1982; Gallegos et al., 1990; Devlin et al., 2009; Kim et al., 2015),
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Here KCDOM and KPIM are the diffuse attenuation coefficients resulted from CDOM and PIM, respectively. In essence, these biogeo-optical models of Kd effectively treat Kd, an apparent optical property (AOP) (Preisendorfer, 1976), as an inherent optical property (IOP) (Preisendorfer, 1976), which is not consistent with the definitions and the nature of variations of Kd (Stavn, 1988). The attitude of treating Kd as an IOP might stem from that Kd of “Case 1” water, after correcting for the sun angle effect, can be considered as a “quasi” IOP (Gordon, 1989). However, it was never claimed that this would work in any other water types than “Case 1” water. Many subsequent studies have, for the most part, somehow ignored these limitations in applications.

Fundamentally Kd is sun-angle dependent (Stavn, 1988; Mobley, 1994) (also weakly dependent on atmospheric properties). So, considering the model of Morel and Maritorena (2001), it is specifically stated that the model and the empirical coefficients (Equation 3 in Morel and Maritorena, 2001) are valid just for low zenith sun angles. But this restriction has in fact largely been ignored by the research community, which leads to inconsistent applications and errors. For instance, if we use this model for early morning or late afternoon situations, because of the likely large sun angle, this can easily result in 30% or greater errors in estimating Kd (Morel et al., 2002; Lee et al., 2005b). In the following, we demonstrate the non-additive nature of Kd theoretically and numerically.

THEORETICAL MODEL OF KD

Based on radiative transfer, Kd is a function of IOPs (especially the absorption, a, and backscattering, bb, coefficients) as (Lee et al., 2005b),
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Here μd (μu) is the average cosine and rd (ru) is the shape factor for the downwelling (upwelling) light field (Stavn and Weidemann, 1989), respectively. R is the irradiance reflectance (Gordon et al., 1975). Through numerical simulations via Hydrolight, it was found that the above expression could be simplified as (Lee et al., 2005b)
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with m0−3 constants that are independent of wavelength and water properties. Note that these model parameters vary weakly with depth (Lee et al., 2005b) due to changes of light field structure, consistent with the change of μd with depth (Stavn, 1988; Berwald et al., 1995; McCormick, 1995). Also note that for large zenith angles, the forward scattering coefficient will also contribute to the diffuse attenuation coefficient through its contribution to μd, μu, rd and ru (Stavn and Weidemann, 1989). Mathematically, Equation (5) can be rewritten as,

[image: image]

Consequently, although a(λ) and bb(λ) are additive, a nature of IOPs, the interaction term between a(λ) and bb(λ) (the third term on the right side of Equation 6) is not additive, thus Kd cannot be additive—a general nature of AOPs. This characteristic is further highlighted in details below.

For simplicity, let's consider a medium has just two constituents: pure seawater and suspended inorganic mineral particles (PIM). For pure seawater alone, following Equation (6), there is
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Here aw(λ) and bbw(λ) are the spectral absorption and backscattering coefficients of pure seawater.

For suspended inorganic mineral particles alone,
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with aPIM and bbPIM being the absorption and backscattering coefficients of suspended mineral particles.

Therefore, a sum ([image: image]) of the two contributions to Kd following Equations (2) and (3) resulted in,
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However, when the medium is composed of both pure seawater and suspended mineral particles, its Kd following radiative transfer (Equation 6) is
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Clearly, as shown above, when there are more constituents, because the light field is determined by the bulk properties (Stavn, 1988; Stavn and Weidemann, 1989; Lee et al., 2005b), aw and aPIM will affect the contribution of both bbw and bbPIM to Kd. However, when Kd is treated as an additive property of Kw and KPIM, the effect of aw on the contribution of bbPIM and the effect of aPIM on the contribution of bbw are excluded.

NUMERICAL DEMONSTRATION

To demonstrate the above point numerically, Figure 1 compares Kd spectra from Hydrolight (Mobley and Sundman, 2013) simulations with [image: image], where the two component spectra (Kw and KPIM) were also obtained from Hydrolight simulations using the same constituents as for Kd. Specifically, spectral (400–800 nm, 10 nm interval) Ed(z) were simulated with Hydrolight, and Kd between surface and z is calculated following

[image: image]
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FIGURE 1. Comparison of Kd spectra between Hydrolight simulation (blue), sum of individual components (red), and that from semi-analytical model based on bulk IOPs (green). The range for Kd is between surface and 5 m.



For the derivation of Kw from Hydrolight, all other constituents were held to 0 except for the properties of pure seawater. Values of aw are a combination of Lee et al. (2015) and Pope and Fry (1997) while values of bbw are those of Morel (1974). For the derivation of KPIM from Hydrolight, PIM was set as 10 g/m3 and the default optical model parameters for suspended minerals included in Hydrolight were used to get the absorption and scattering coefficients of PIM. Note that this PIM concentration is just a low-medium value for turbid coastal waters (Babin et al., 2003; Doxaran et al., 2009). For this simulation, an idealized “transparent pure seawater” was used where very low values of aw (0.1 × 10−4 m−1) and bbw (0.5 × 10−5 m−1) were employed. With such a setup the contribution of this “transparent pure seawater” to the calculated Kd (Equation 11) is then negligible, and the resultant Kd from Hydrolight simulations can be considered as KPIM. The sun angle for all simulations for both Kw and KPIM was set as 30° from zenith along with a clear sky.

There are distinct differences in Kd (at least for this case) in the longer wavelengths (~10–15% for the 600–800 nm range), where aw makes significant contributions to the total a; and this contribution, when there are sediments, to Kd is not represented in the additive descriptions of Kd (the red curve). For the shorter wavelengths (<~500 nm), because most (>~98%) of the contributions to Kd comes from PIM, the sum of the two terms match the bulk results well. Certainly the impact of the non-additive nature of Kd depends on the values of both a and bb. For “Case-1” waters or waters where the scattering coefficients are relatively small, it might be applicable, without great errors, to treat Kd(λ) as an additive property. However, this will depend on the validity of the above-mentioned assumptions. While not based on any assumptions of “Case-1” conditions or dependencies, the modeled Kd spectrum following Equation 5 is in an excellent agreement with the Hydrolight Kd spectrum (~1% differences, see Figure 1), which highlights the much wider applicability of models based on radiative transfer. And, the robust performance of this model was also demonstrated in Zimmerman et al. (2015) for the quite turbid Chesapeake Bay waters.

Historically (Lorenzen, 1972; Smith and Baker, 1978; Woodruff et al., 1999; Gallegos, 2001; Devlin et al., 2008), there are also studies that treat the attenuation coefficient (K(PAR)) of the photosynthetic available radiation (PAR) as being additive of the contributions of individual constituents,
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with Kx(PAR) for contributions except phytoplankton and pure (sea)water. Following the above logic and discussion regarding spectral Kd, we easily observe that this model is not consistent with radiative transfer either (Morel, 1988). In particular, it is ambiguous of the light spectra that should be used for the calculation of Kw(PAR) or Kbio(PAR). Further, because K(PAR) is the attenuation coefficient of solar radiation of a wide spectral range (400–700 nm, i.e., the PAR spectral range), while the spectral quality of Ed(z) changes significantly from surface to depths, which then causes K(PAR) to change greatly (as much as a factor of 4) from surface to depth (Lee et al., 2005a; Lee, 2009). Consequently, the applicability of such biogeo-optical models for K(PAR) is ambiguous at the very least.

CONCLUSIONS

Because the interaction term (the third term on the right side of Equation 6) of Kd(λ) (or K(PAR)) depends on the values of both a and bb, the contribution of this term to Kd is not always small or negligible. Also, this interaction term is not a linear function of a and bb. Therefore, for consistency with radiative transfer and for more accurate estimation, and also to incorporate advancements in ocean optics of recent decades, it is better to get bulk IOPs first from biogeochemical properties, and then to calculate Kd based on IOPs. In short, IOPs are additive, but AOPs are not.
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